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FUNCTIONS WHICH OPERATE ON
CHARACTERISTIC FUNCTIONS

ALAN G. KONHEIM AND BENJAMIN WEISS

Let G be a locally compact abelian group and B*(G) the
family of continuous, complex-valued non-negative definite
functions on G. Set

BHG) = {feB*(G): f(0) < 1}
OG)={feB (G):f(0)=1}

A complex-valued function defined on the open unit disk is
said to operate on {Bf(G),B*(G) if feB(G) implies
F(f)eB*(@), similarly for {0(G), ?(G)}. Recently C. S. Herz
has given a proof of a conjecture of W. Rudin that F' operates
on {Bf (@), B*(G)} if and only if

*) F@ = S cu"s", cun=0,]2<1.

m,n=0
for a certain class of G. We shall show by independent methods
that F' operates on ®(R') if F is given by (¥) for |z| =1 and
F(1) =1. This answers a question posed by E. Lukacs and
provides in addition an alternate proof of Herz’s theorem.

Let U, B denote two familes of functions a, b: X— Y. A function
F:Z < Y— Y is said to operate on (U, B) provided that for each ae A
with range (a) & Z we have F(a)e®B. If A =B we say simply that
F operates on A, Recently there has been considerable interest in
determining, for particular families (2, B) the class of functions which
operate.

If A is the family of complex-valued 27-periodic functions on R*
which have absolutely convergent Fourier series

o

9 — {a:a(a) ~ S @ with S, || < oo}
k kE=—oo

= —o0

then a classic result of N. Wiener [10] states that 1/ac 2 provided
that a(f) = 0(0 < 0 < 2r). P. Lévy [3] generalized Wiener’s theorem
by proving that analytic functions operate on .

If A is the family of all non-negative-definite matrices (a;,;) with
—1 < a;; <1 then I. J. Schoenberg [8] proved that any continuous
function F' which operates on 2, F": (a;,;) — (F(a;,;)) must be of the form

F(x) = icnw“
(,z20 —1<a<])

[3
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The theorem of Wiener-Lévy can be obtained in a more general
setting. Let G be a locally compact abelian group and G its dual
group, i.e. the set of continuous homomorphisms of G into the
multiplicative group of complex numbers of modulus one, endowed
with the weak topology. For zt a complex-valued, regular measure on
G with finite total variation we define its Fourier-Stieltjes transform by

@) = | #@ds) (e 6)

and denote by B(@) the family of such transforms. Then

THEOREM. Real entire fumnctions operate on B(@) (see [7] for
definition).

In particular by taking G = Z (the group of integers) we obtain
the Wiener-Lévy theorem.

A few years ago a converse to this theorem was obtained by
H. Helson, J. P. Kahane, Y. Katznelson and W. Rudin [1]. They
proved that if F' operates on B(G) then F is a real-entire function.

In probability theory the elements of B(@) which are of most direct
interest are those £ which arise from nonnegative measures f, i.e.
according to Bochner’s theorem the £ which are nonnegative-definite
on G. Let B+(G) denote this family. Rudin has conjectured [6] that
the functions which operate on (B{(Z), B*(Z))' must have the form

o

Fiz)y= > ¢,.7"2™.

n,m=0
(e, n20)

Recently C. S. Herz [2] published a proof of Rudin’s conjecture for
(Bi (@), B7(@)) under certain restrictions on G. His proof consists of (1)
showing that if F, defined on the unit disk, operates on (B; (G), B*(G))
then F operates on (B{(/"), BT({",)) where I, is the discrete multiplicative
group of complex numbers of modulus one, and (2) characterizing the
functions which operate on (B{(/,), B*({"y)).

Lukacs posed in [5] the question of determining the class of
functions which operate on the set of characteric functions @(RY),
where @(G) = {fe B*(G): f(0) =1} .

We shall answer here the question posed by Lukacs, directly and
by quite independent methods. This will actually yield an alternate
proof of Herz’s more general result by making use of some of his
preliminary propositions. In §1 we state the main theorem and outline

the proof. The details occupy us in §2-§4. In §5 we show how to
obtain the more general result.

1 Z= the additive group of integers with discrete topology, B;(G)=
{feB+(G): f0) < 1}
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1. Statement of the main theorem and outline of the proof.
THEOREM 1. If F operates on @(R') then F is given by

*) F@)= 3 c.27"  (z]=1).
n,m=0
(¢, mZ0)

WER >\ e Conyw = 1.

Assuming that F' is continuous it is first shown that F operates
on Bi(RY). It then follows that

F(re®) = 2 a,(r) exp (ik0)

(0=7r=1) wherea,(r) = 0(k =0, =1, +2, --.). Having obtained this
representation we prove that not only is «,(r) nonnegative, but also
absolutely monotonic. Thus

oo oo

(1) F(re®y = 3 ] . " exp (1k0)

Jo=—00 m=

with a;, = 0. On the other hand, if the theorem is to ke true, then

F(re*) = i { > c,hmr”*’”} exp (tk0) .
k Q

=00 n,mz
n—m=k

In order to pass from (1) to (*) a,(r) must actually be of the form
a(r) = 71 3% by
n=0

with b,, = 0. To prove that the exponents of # in a,(r) increase by
two can be done directly (Lemma 5). To prove that a,(r) = O(r'*")
(near r = 0) we introduce the more general representation of F

F(r,exp (int) + 75 exp (I\t) + «++ + 7, exp (tA,1))

= D0 gy (T Tay =+ +, 7,) €XD {% 2 kﬂwt}
e =

1£isn

where (r,, 7,, -+, *,) varies in a suitable cube of R". The vanishing
of a,(r) to the correct order is then deduced from the simple observation
that @ ey, (e 7o 20, 70) = O(riry -+ - 1) if all k; # 0 (Lemma 4).
Finally we turn to the question of continuity. Since F(¢) is a
continuous function for every ¢ ¢ @(R"), the natural approach would be
to prove directly that z, — z, implies F(z,) — F(z,) by constructing a
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ch.f. ¢ together with a bounded sequence {t,} such that ¢(t,) = z,.2
However, as the referee has observed it suffices to prove a slightly
weaker interpolation property; namely that some ¢ € @(R!) exists which
interpolates, on a bounded sequence, some subsequence of the {z,}. His
lemma and proof are given in § 4.

2. Several lemmata., In this section we assume that F is
continuous on 4 = {2:]2| = 1} and operates on @(R").

LEMMA 1. If pe Bf(RY) then F(p)e Bf(RY.

Proof. 1t suffices by Cramey’s criterion [5, p. 65] to show that
SASAF(p(t — ) exp (ia(t — w))dtdu = 0
0J0

for all real £ and A > 0. If the lemma were false there would exist
therefore and A4, > 0 and 2, such that

(2) S:oS:OF(p(t — u)) exp (12t — w))dtdu = —d < 0°.

The funection

(1—p(0»(1—%) if |t < e

Pe(t) = {
0 if [t]>e

is in Bf(R") for every ¢ > 0, [5, p. 70] and thus ¢. = p. + p € BT (RY).
It is, in fact, in @(R') since 4.(0) = 1. Because F operates on @(R').

(3) SASAOF ($e(t — w)) exp (iw(t — w))didu = 0 .
On the other hand
IS: OS:O {F(p(t — u)) — F(ge(t — u))} exp (12, — u))dtdul

_ Hgg (F(o(t — w) — F$ut — u)} exp (it — w))dédu l < 44
G.={t,u): 0=t <A,0=u=<A, |t —u|=¢

since | F()| =1 on 4. If we take ¢ < d/4A, then (3) contradicts (2).
Let n be a positive integer and 2w, A, Ay --- A\, be rationally
independent real numbers. For each vector m = (m,, m,, -+, m,) with

2 We were not able to deduce this strong interpolation property for @(R!) and
this necessitated a somewhat round about argument in the original version of this

paper.
3 That the integral in (2) is real follows from the easily verified identity F(z)=F(z).
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integral components and each vector r = (r, 7, ---,7,) with 0=
r; <1l/m(l =i =mn) we formally define a,(r) by

(4)  a,(r) = limit _LST F<Z r, eXp (@'xkt)) expl—it mkxkf dt .
T—oo 2T -7 k=1 ( k=1

LeMMA 2. The limit in (4) ewxists and s independent of
Ay Ay, oy N, (Provided that 27, My, Ny, + ++, N, are rationally independent
real numbers).

Proof. Combining Lemma 1 with the observation that
35 i exp (i) € Bi (R
we see
F(kz,:l 7, exp (t\, -)) € Bf(RY

and hence the limit in (4) exists [5, p. 43].
The Kronecker-Weyl theorem [9] next shows that

i = ([T [ #(E o)

(5)
X exp —‘7/ Z mk¢]¢ d¢1d¢2 cre d¢n
=

and hence «,(r) is independent of the particular {\;} chosen.
A function f defined on the cube 0 =2, < a(1 =i =mn) is called
absolutely momnotonic function if
pirtdattin

PPN >
SaTouE - owir S@y, @y ooy ,) =0

throughout the cube for j,, 7, +++,75,.=0,1,2, --- Just as in the case
of one variable, an absolutely monotonic function admits a power series
expansion with nonnegative coefficients.

LEMMA 3. The pointwise limit of absolutely monotonic functions
1s absolutely monotonic.

Proof. For w = 1 the lemma is well known. We then proceed
by induction to n -+ 1. Suppose

hkmlt fk(/rly Tay ** rnﬂ) = f(,rl’ Tay oy rn'i'l) .

For fixed », 7y, +-+, 7, we have
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Jery Tay w00y o)) = g() @y i(T1y Tay =0y Ta)Vhgs = F(P1, Ty 20, Tut)
and hence
Sy Ty o ooy Tony) = ; Q11 Ty =+ ) Tu)Tiin
with
ATy Tay v 00y 1) = lir_)rgt g, f(T1y Tay =20y 1) &

Since a, (71, 75, ++ -, r,) is an absolutely monotonic function the induction
hypothesis implies a;(r,, *,, -++, 7,) is likewise so and lemma is proved.

LEMMA 4. In the cube 0 = r, <1/n(1 =t = n)
(4i) a,(r) is an absolutely monotonic function

(6) a,(r) = ogq;zém Qi iy (MYPITR o o i
1§}§n
and

(4ii) If m; = 0 for every 1 (1L =i =) then @;,...,;(m) =0 if
1;, =0 for some j (L =7 =< n).

Proof. 1. Generalizing a result of Rudin [6, p. 618] we will show
that if f is continuous in the cube 0 = z; < a (1 =< ¢ < n) and satisfies

2m (F2m P4
(7) S S S f(a, + b,cos b, a, + b,cos ,, -+, a, + b, cos8,)
0

0 Jo

X ﬁ cos 7,0,d0, = 0
k=1

for all integers 7., 75, **+,5,=0,1,2, -« - whenever 0<b; < a;,a; +b; < a,
then f is absolutely monotonic in the cube 0= 2, <a (1 =1t = n).
2. To see that a,(r) satisfies (7) (with @ = 1/n) we observe that

I= < 1 >n Szrfgﬂ'. .o S“am(al + b,cos b, +++,a, + b, cosd,)
27'[ 0 Jo 0

X fI cos 7,0, db,
k=1

n 2z (f 21w b4
=<—2l7r—> S g S a,(a, + b cos b, +++,a, + b,cosb,)
0 0 0

X exp —i S 7,0, d0,d0, - - do,
k=1
since the integrand in I is an even function of each of the {4,}. Next,

the integral representation of a,_(r) and the Kronecker-Weyl theorem
yields
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I= (L)ngzzgm...gm
o2 0 Jo 0
x F((a, + b, cos 0,) exp (t¢,) + --- + (@, + b, cos 0,) exp (14,))
X exp —i 3 (il + mygy) db; -+ d,dg, -+ dg, .
A final application of the Kronecker-Weyl theorem shows

T n
I= limitz—lfg_TF<Z (@, + b, cos £,t) exp (q;,xkt)>

Pose =
X exp —1 kijl (768, + mn )t dt?

and this limit is nonnegative because
f\; (@, + b, cos C,-) exp (in,) € Bi(RY)

Lemma 1 and [5, p. 43].

3. Suppose first that f satisfies (7) and is of class C. To show
that
(8)

QirtdatHrtin

— - iy Loy +o,%,) =0
0xi10232 « « » Oxin S, @, )
in the cube 0 =2, <a(l=v=n) welet N=j3,+J,+ -+ + 7, and
write, by Taylor’s theorem,
f(al + bl cos 01’ 2% + bn cos 012)
(9) :ii<blcos€1 B
o k! 0

L=

"'if“i
1=i<n

6 k
4 oo + bncos——> f
x, oz,

9 9 >N+1 5

o (Besige
b /] <ee 40, a,
+(N+1)! lcoslax + + 0, cos o2
Multiply (9) by 1%, cosj.0,df, and integrate from 0 to 27. Set b; =
b < min, a, and let b | 0 to obtain (8).
4. If fis a priort only continuous, we proceed as follows: let
g: R — R' satisfy
(i) geC~
(i) g) >0 1if 0 <t < 1;g(t) =0 otherwise
1
(iif) Sg(t)dt ~ 1.
0
If f satisfies (7), then so does

Fol@y, @y voey1,) = Slgl...gl

0Jo 0

z;=a;+n;b;c080; o
1=si=n
1 n

X fla, + 0yy,y =+, @, + 0Y,) kI;II 9(y.)dy,

4 The numbers 2z, 21, -+, An, {1, - -+, {n are taken to be rationally independent real
numbers.
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onthecube 0= 2, <a—0(1 =% =mn). Now f;€C~ and the argument
in 3. applies to show that f; is absolutely monotonic. But f;— f
(pointwise) in the cube 0=z, < a(l =% = n) and Lemma 3 permits
us to complete the proof of 4(i).

5. If m;, # 01 = k = n) then from (5) we see

a‘m(O’ Toy =y Irn) = am(/rly 07 Ty *0*y /rn) =
- am(rls Toy 2%y Tuy 0) =0

and this yields (4)ii.
LemmA 5. If

" ay(r) = o= | Frexp i) exp (—iks) dg
k: 0, il’ iz, “ee

then
51) ay(—7) = (—Dfa,(r)
and

5(ii)  au(r) = 2, a0 —l=r<1
with .
Qs =0 ;am < oo
Thus
gak,”r“ of k is an even integer

a(r) =+
S Qi of k is am odd integer .
J=0

Proof. For 5(i) note
2n
a(—1) = o | "Flr exp i(s + ) exp (—ik) dg = (—1¥a,(0) .
Proceeding as in the proof of Lemma 4, we show that

on
S a,(cos ) exp —ivf df = 0
0

v=0,+1,+2 ...

go that a,(cos-)e B*(R'). It follows from [4, p. 202] that

a,(cos 0) = i b,,; cos 70
7=0
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with
b = ogbm < oo
If T; denotes the jth Tchebychev polynomial then
(1) (@) = i b Tiw) —l=a<1.
But for 0 < 2 =<1, Lemma 4 yields the representation
a(x) = ; ay, ;%7
with

ak;jgoz(l)ak,j< ©o .
=

Using elementary properties of the Tchebychev polynomials and
the fact that the Fourier series of a C= function may be differentiated
term-by-term, 5(i) and (11) imply that the equality

> %7 = > by, Ti(x)
7=0 i=o
extends to —1 < 2 < 1, and this proves 5(ii).

3. Proof of Theorem 1 with hypothesis of continuity.
F(r exp (t¢)) is a continuous, periodic, nonnegative definite function.
We can therefore write

(12) F(rexp (i9)) = 3_au(r) exp (ikd)
0=r=s1 0=d=2rm
with
@) Z 00 =0, £1, 2, -+) 5 ar) = F(r) .

In (12) we set z = r exp (¢¢) and use Lemma 5 to conclude that

(13) F@) = S 2"+ 3 (dyn2"[7" + e, 22"
n,m=0 1IEm=n<oo
with
Com=0(n,m=20,1,2,-)
Qo =206, =201l =m=n < )

S tomF S (A €am) =1

n,m=0 l=msn<oo
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We will now show that d, ., = 0. Let 2w, \,, - -+, N, , N be rationally
independent real numbers and set
70
(14) 2 = rexp (INt) + > 7, exp (1A, 1)
k=1
in (13) where
0=r<28 r.=r2n QA=k=n).

Let m = (m,, 1,1, --+, 1) and note by Lemma 4
\'ﬂ/———/

70

(15) U1y V1, Wy v ooy Tp)) = Cot ity oo e ¥y 0(PFry o0 1, )

— Cm< 1 >n0,rn0+1 + 0(,’.71,0-{-1) .
2m,

Examing the term 2*/z® with 2z as in (14) we obtain

7o a
(r exp (tAt) + > 7, exp (ix,;))
f=1

2 B
<’r exp (—int) + on, 7, €Xp (—ixkt)>
k=1

(16) = re-t(exp (int) + = 3 exp (i) exp (G6M)
2n, =1
o 1 710 . p _
<2 b”{ o, 22 SXP (10w — W)} b=1)

so that only the terms 2*/zf with B=m,—j,a=n,+J0=5=m,— 1)
yield a contribution to a,(r, 7, 75, +++, 7,). But with 2z as in (14)

limit L ST 2704327071 exp (—i(mh + Ny + <+ + N, D)
1o 27 J-r ¢

= Djrmo—moti
with D;.# 0 for j = 0. Thus (15) implies that d,,., = 0. A similar

argument shows e, ,,, = 0 and the theorem is proved with the hypothesis
of continuity.

4. The continuity of F”, We begin with an interpolation lemma.

LeMMA 6. Let z,—2,(2,|<1,n=0,1,2,--:). There exists a
ch.f. ¢, a sequence (of real numbers) t, — 1 and a sequence (of integers)
{n} such that ¢(t,) = z,,.

Proof. Let z, =1 — (2/3)97"; then (9"/2)r, = (1/6) (mod 1) while
9O+"/12)r, = (1/2) (mod 1) for m > 0. Hence

5 We wish to acknowledge our thanks to the referee for the statement and proof
of Lemma 6.



FUNCTIONS WHICH OPERATE ON CHARACTERISTIC FUNCTIONS 1289

&3

cos %9”7,, = , COS %9“"’1—” =0 (m > 0)

and cos (7/2)9" = 0. Let {,} be a sequence of positive numbers such
that

2]+ 7, < 1.

n=1

We define inductively a sequence {¢,} of positive-definite functions
as follows; let

§60(t) = |zo } iRt |

Assume that ¢, ¢, ---, ¢, have been defined such that ¢;(1) =0 for
j > 0. Choose integers m,., and n,,, such that

< 7]7’*’“1
2

Ypr1 =

»
]z::(‘} 'éj(rmpﬂ) T Ry

and define '

: T ;
$p1i(t) = 27, (cos 5p+1t)<COS E9mf’+lt>6”‘1’+1t
where ¢,., and \,;, are chosen such that
i 7
¢p+1(fmp+1) = znp_H - ;4) @j(TmI,,H) .

We shall assume that the sequence {m,} is strictly increasing. If we
set ¢, = 7,, and

6(t) = i 6:(t) + eA(2)

where 4(x) = max (0,1 — 2|x|) and ¢ > 0 is such that ¢(0) =1 then
oty = 2,,(k=1,2,---) and ¢ e O(R").

LeMMA 7. F 4s continuous in the open unit disk {z:|z| < 1}.

Proof. Suppose not; then there would exist a 2z, |2,| <1 and a
sequence {z,} (|2, | < 1) such that z, — 2z, and F'(z,) 4 F(z,). By passing
to a subsequence if necessary we can assume that {F(z,)} converges.
By Lemma 6 there is a ch.f. ¢ and a sequence (of real numbers) {¢,}
with limit one such that ¢(¢,) = 2,,. But then

Flz,) = F($(1)) = limit F(¢(,)) = limit F(z,,)

which is a contradiction.
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REMARK. For future reference let us note that Lemma 1 now
shows that F' operates on Bj(R')U @(R").

LEMMA 8. F s continuous on —1 < x < 1.

Proof. By observing that F(cos-)e @(R'), we obtain, just as in
Lemma 5

Fw) = 3, p,T.(@)
where p, = 0 and
2 p.=1.

Since |T,(x)| =1 on —1 <« <1, F is continuous there.
THEOREM 2. F' is continuous on 4.

Proof. As we have already remarked, F' operates on B (R") U @(RY).
Now Lemmata 2-5 carry over mutatis mutandis to prove that

(20) Fi)= 3 ¢, 22"

n,m=0

lz] <1

where ¢,,,, = 0. Setting z = ¢ in (20) and using Lemma 8 we see that

M

limit S
z11 k=0 n,
n-t

ComX® = F(1) =1.

=

3

0
k

s
Il

But the {c,,.} are nonnegative and hence

SV Cpm=1.
7n,m=0

Thus our series in (20) extends to a continuous function on 4. We
agsert that F' is equal to this extension. For let ¢ e @(RY) t, — t, with
0 <|o(ty)| <1,]6(t)| =1. Then F(¢) is a continuous function and
thus limit F(¢(t,)) = F(¢(t,)). But

limit F(3(t,)) = limit 3% ¢,,n(9(6)"#(5)"
= 31 Cun(@(t) (@)
and thus

Fgt) = 3 conld(t)"@ED)" -

n 0
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5. Concluding remarks. In order to obtain the general theorem
we require two propositions due to Herz [2 p. 165, p. 167].

ProposiTioN 1. If a locally compact abelian group H has elements
of arbitrarily high order then every F' which operates on (B (H), B*(H))
is continuous.

ProrosiTiON 2. If a locally compact abelian group H has elements
of arbitrarily high order, then every F' which operates on (Bi (H), B*(H))
operates on (B (Z), B*(Z)).

REMARKS. 1. In Propositions 1 and 2 it is assumed that F is
defined on {z:|z| < 1}.

2. Proposition 1 does not include our Lemma 7 since we assume
merely that F' operates on @(R'), not on (B (R'), BT(RY)).

THEOREM 2. If a locally compact abelian group H has elements
of arbitrarily high order, then F' operates on (B{(H), BY(H)) if and
only tf

o

F(z)= > c,.2"2", (2] <1)

n,m=0

where c,,, = 0.

Proof. By Propositions 1 and 2 we may assume that H = Z and
that F' is continuous. It suffices, by the proof of Theorem 1, to show
that F operates on (B;(R'), BT (R')). Suppose » € Bf(R!) and set ¢ =
F(\). Since ¢ is continuous all that must be verified is that ¢ is a
nonnegative-definite function. For any o > 0, the sequence {}, = Mnd)}
is nonnegative definite and therefore by the hypothesis {p(nd)} is a
nonnegative definite sequence for any o > 0. Since ¢ is continuous

S:quﬁ(u — v) exp (tx(u — v))dudv
Al8

= lin?it Sy ¢(m — m)o) exp 1ad(n — m) 6 .

§{0 n,m=1

But since {¢(n0)} is a nonnegative-definite sequence for each ¢ > 0

Al8

#((n — m)d) expitxo(n — m) 0= 0

n,m=1

and hence by Cramer’s criterion ¢ is nonnegative definite.

We conclude with a few remarks.
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1. There is a formal relation between the result of [1] and our
Theorem 1. Every real-entire function F' can be written in the form

F:(F1—F2)+7:(F3"‘F4)

where F, F,, F, and F, satisfy (*). On the other hand every fie B(é)
is of the form

ﬁ = (/'/21 - ﬁz) + %(ﬁa - ﬁ4)

where 7, 2, f; and £, are in B*(G). A direct proof of our theorem
starting from this observation would be desirable.

2. The proof given here of Theorem 1 demonstrates in one stroke
that F' is real-analytic in 4 and if it is expressed as a power series in
z and z it has nonnegative coefficients. If one could prove directly that
F operates on all Fourier transforms assuming values in 4 then proof
of the theorem could be completed in two steps:

(A) F is real-analytic [7, Chapter VI] and thus

F@) = 3 c,.22"
n,m=0
B) ¢u=0mn,m=0,1,2,-.-) The second step is a consequence
of the explicit representation

e e e 1 1 T ntm .
Cp,m = limit limit S F <Z 75, eXp (m,,t))

rl0 T—oe prtm 9T g k=1
X exp (z Nt — 0 S M+kt> dt*
k=1 k=1

where the inner limit exists and is positive by virtue of Lemma 1 and
[5, p. 43] and the outer limit exists by (A) above.

3. For nondiscrete G with elements of arbitrarily high order one
can show by using the methods used in the proof of Theorem 1, that
F operates on @(G) if and only if F' satisfies (*). If G is discrete this
needn’t be the case, and F needn’t even be continuous as, F(z) =
0(Z|<1),=1(z] =1), which operates on @(Z) already shows. For
such discrete groups we don’t know if it is true that F operates on
@(G) implies that F must operate on B (G). If it were true then at
least the structure of F' for |z| < 1 could be determined.
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