CLASSES OF DEFINITE GROUP MATRICES

R. C. Thompson

Abstract

Two positive definite symmetric $n \times n$ matrices A, B with integer elements and determinant one are said to be congruent if there exists an integral C such that $B=C A C^{T}\left(C^{T}\right.$ is the transpose of C). This is an equivalence relation. The number of equivalence classes, C-classes, is finite and is known for all $n \leqq 16$. Let G be a finite group of order n and let Y, Z be two positive definite symmetric group matrices for G with integral elements and determinant one. If an integral group matrix X for G exists such that $Z=X Y X^{T}$ then Z, Y are said to be G-congruent. G congruence is an equivalence relation. In this paper the interlinking of the G-classes with the C-classes is determined for all groups of order $n \leqq 13$. The principal result is that the G-class number is two for certain groups of orders eight or twelve and is one for all other groups of order $n \leqq 13$.

Let G be a finite group with elements $g_{1}, g_{2}, \cdots, g_{n}$. Let $x_{1}, x_{2}, \cdots, x_{n}$ be variables and let X be an $n \times n$ matrix whose (i, j) element is x_{k} where k is determined by $g_{k}=g_{i} g_{j}^{-1}$. We say X is a group matrix for G. In this paper we study group matrices which have rational integers as elements. We call a matrix M integral if its elements are rational integers, unimodular if the determinant of $M=\operatorname{det} M= \pm 1$, symmetric if $M=M^{T}$ where M^{T} is the transpose of M. We let M^{*} denote the complex conjugate of M^{T}. The words positive, definite, symmetric, integral, unimodular are abbreviated as p, d, s, i, u, respectively. We say $p d s i u$ matrices M and M_{1} are congruent if $M_{1}=$ $U M U^{r}$ for some $i u U$. Congruence is an equivalence relation on the set of $n \times n$ pdsiu matrices. The number of equivalence classes (briefly: C-classes) is finite and in fact [2] is one for $1 \leqq n \leqq 7$, two for $8 \leqq n \leqq 11$, and three for $n=12,13$. If G is a finite group we say $p d s i u$ group matrices M and M_{1} are G-congruent if $M_{1}=U M U^{r}$ for some iu group matrix U for G. Since sums, products, inverses, and transposes of group matrices for G are still group matrices for G, G congruence is an equivalence relation on the set of $p d s i u$ group matrices for G. Not much is known about the equivalence classes (briefly: G-classes). In this paper we find all G-classes and determine their relationship with the C-classes for all groups of order $n \leqq 13$; we also get a little information for $n>13$. Our interest in this problem stems from the following Theorem 1, proved in [8].

Received November 9, 1964.

Theorem 1. If a pdsiu group matrix M for G is in the principal C-class then M is in the principal G-class, when G is solvable.

The principal class is, of course, the class containing I_{n}, the $n \times n$ identity matrix.

One may ask: are there any $p d s i u$ group matrices for G, other than the identity?

Theorem 2. There exist pdsiu group matrices for G in addition to the identity precisely when G is not any of the following types of groups:
(i) the direct product of cyclic groups of orders two and/or four;
(ii) the direct product of cyclic groups of orders two and/or three;
(iii) the quaternion group or the direct product of the quaternion group with cyclic groups of order two.

Proof. Combining the discussion on p. 340 of [6] with Theorem 11 of [1] shows that an iu group matrix for G exists which is not a permutation matrix or the negative of a permutation matrix precisely when G is not any of the groups (i), (ii), (iii). If M is an iu group matrix for G, not a permutation matrix or the negative of a permutation matrix, then $M M^{T}$ is a $p d s i u$ group matrix for G and not the identity since the (i, i) element of $M M^{T}$ is the sum of squares of the integers in row i of M.

Concerning the finiteness of the G-class number, only the following fact is known.

Theorem 3. The G class number is finite if G is abelian.
Proof. This follows from the argument of [3], making use of Lemma 2 of [7].
2. Two lemmas. Let $P=P_{n}$ be the $n \times n$ companion matrix of the polynomial $\lambda^{n}-1$. Let $v=v_{n}=(1,1, \cdots, 1)$ be the row n-tuple in which each entry is one.

Lemma 1. Let p be an odd prime and let t be an integer prime to p. Then $\lambda=1$ is a simple eigenvalue of $P_{p}^{t}, \lambda=-1$ is not an eigenvalue, and v_{p} spans the eigenspace of P_{p}^{t} belonging to $\lambda=1$.

Proof. The eigenvalues of P_{p} are 1 and the $p-1$ primitive p th roots of unity. Hence this is also true of P_{p}^{t} since ω^{t} is a primitive p th root of unity if ω is and $(t, p)=1$. Thus 1 is a simple eigenvalue of P_{p}^{t} and -1 is not an eigenvalue. Since $v_{p} P_{p}=v_{p}$, the last assertion is immediate.

Let $\bar{\alpha}$ denote the complex conjugate of α.
Lemma 2. Let

$$
\left(\begin{array}{cc}
\alpha & \bar{\beta} \\
\beta & \bar{\alpha}
\end{array}\right)\left(\begin{array}{ll}
x & \bar{y} \\
y & x
\end{array}\right)\left(\begin{array}{ll}
\bar{\alpha} & \bar{\beta} \\
\beta & \alpha
\end{array}\right)=\left(\begin{array}{ll}
x_{1} & \bar{y}_{1} \\
y_{1} & x_{1}
\end{array}\right)
$$

where α, β, y are complex numbers and x is a positive real number. Let $x^{2}-|y|^{2}=1$. If $|\alpha|^{2}-|\beta|^{2}=1$ then $x_{1}<x$ implies $|\beta|<|y|$ and $x_{1} \leqq x$ implies $|\beta| \leqq|y|$. If $|\alpha|^{2}-|\beta|^{2}=-1$ then $x_{1}<x$ implies $|\alpha|<|y|$ and $x_{1} \leqq x$ implies $|\alpha| \leqq|y|$.

Proof. The cases $\alpha=0$ or $\beta=0$ are easy. Let $\alpha \neq 0, \beta \neq 0$, $|\alpha|^{2}-|\beta|^{2}=1$. Now $|\alpha|^{2}+|\beta|^{2}=1+2|\beta|^{2}$, hence $x_{1}-x=2 x|\beta|^{2}+$ $y \bar{\alpha} \bar{\beta}+\bar{y} \alpha \beta<0$ if $x_{1}<x$. Hence $0<2 x|\beta|^{2}<-y \bar{\alpha} \bar{\beta}-\bar{y} \alpha \beta$. By the triangle inequality we get $2 x|\beta|^{2}<2|y||\alpha||\beta|$, hence $x^{2}|\beta|^{2}<|y|^{2}|\alpha|^{2}=$ $|y|^{2}\left(1+|\beta|^{2}\right)$, therefore $\left(x^{2}-|y|^{2}\right)|\beta|^{2}<|y|^{2}$, or $|\beta|<|y|$ as required. A similar computation holds when $x_{1} \leqq x$ or when $|\alpha|^{2}-|\beta|^{2}=-1$.

An $n \times n$ circulant is, by definition, a polynomial in P_{n}. It is also a group matrix for the cyclic group of order n. Since P_{n} is unitarily diagonable, given a circulant

$$
X=\sum_{i=0}^{n-1} x_{i} P_{n}^{i},
$$

there exists a unitary V, independent of X, such that $V X V^{*}=$ $\operatorname{diag}\left(\xi_{0}, \xi_{1}, \cdots, \xi_{n-1}\right)$ where

$$
\begin{equation*}
\xi_{i}=\sum_{j=0}^{n-1} x_{j} \omega^{i j}, \quad 0 \leqq j \leqq n-1 \tag{1}
\end{equation*}
$$

Here ω is a primitive nth root of unity. We make frequent use of this fact. If $Y=\left(Y_{i j}\right)$ is partitioned into blocks $Y_{i j}$ each of which is a circulant and if $W=V+V+\cdots+V(\dot{+}$ denotes direct sum $)$ then each of the blocks in $W Y W^{*}$ is diagonalized. One may find a permutation matrix Q for which $Q W Y W^{*} Q^{*}$ splits into a direct sum. In the computations of $\S \S 4-9$ some of the direct summands will again be circulants and so may themselves be unitarily diagonalized. In this manner we obtain the unitary U and the irreducible constituents of the group matrices of $\S \S 4-9$. We also use the fact that a circulant equation like $Z=X Y$ holds if and only if $\xi_{i}(Z)=\xi_{i}(X) \xi_{i}(Y)$ for all i.
3. The C-classes $\Phi_{r}+I_{j}$, where Φ_{r} does not represent one. Let Φ_{r} be an $r \times r$ pdsiu matrix (not necessarily a group matrix) such that $x \Phi_{r} x^{T} \neq 1$ for any integral vector x.

Theorem 4. The C-class of $\Phi_{r}+I_{j}$ does not contain any group matrix if there exists an odd prime divisor p of $r+j$ which does not divide r.

Proof. Let $n=r+j$. Since Φ_{r} does not represent one, it is easy to find all integral n-tuples x for which $x\left(\Phi_{r}+I_{j}\right) x^{T}=1$. The number of such x is exactly $2 j$. Suppose X is a group matrix for some group G, with X in the C-class of $\Phi_{r}+I_{j}$. Then G contains an element a of order p. Let H be the cyclic subgroup of G generated by a and let $g_{1} H, g_{2} H, \cdots, g_{k} H,(k=n / p)$, be the cosets of H in G. If we take the elements of G in the order $g_{1}, g_{1} a, g_{1} a^{2}, \cdots, g_{1} a^{p-1}, g_{2}, g_{2} a, g_{2} a^{2}, \cdots$, $g_{2} a^{p-1}, \cdots, g_{k}, g_{k} a, g_{k} a^{2}, \cdots, g_{k} a^{p-1}$, then the group matrix X partitions as $X=\left(X_{i j}\right)_{1 \leq i, j \leq k}$, where each $X_{i j}$ is a $p \times p$ circulant. If $Q=P_{p} \dot{+}$ $P_{p}+\cdots+P_{p}$ then $Q X Q^{T}=X$. Let $x=\left(x_{1}, x_{2}, \cdots, x_{k}\right)$ be a row n-tuple, where each x_{i} is a row p-tuple. If x is integral and $x X x^{T}=1$ then $\left(x Q^{\alpha}\right) X\left(x Q^{\alpha}\right)^{T}=1$ for $\alpha=0,1,2, \cdots, p-1$. If $x Q^{\alpha}=x Q^{\beta}$ for a pair α, β with $0 \leqq \beta<\alpha<p$ then $x Q^{\alpha-\beta}=x$. This implies $x_{i} P_{p}^{\alpha-\beta}=x_{i}$ for $1 \leqq i \leqq k$, and by Lemma $1, x_{i}=\lambda_{i} v_{p}, 1 \leqq i \leqq k$. Since x_{i} is integral, λ_{i} is an integer. Moreover, v_{p} is an eigenvector of P_{p}, hence of any $p \times p$ circulant, hence $v_{p} X_{i j}=r_{i j} v_{p}$. Here $r_{i j}$ is an integer (in fact the sum down any column of $X_{i j}$). Now

$$
\begin{aligned}
x X x^{T} & =\sum_{i, j=1}^{k} x_{i} X_{i j} x_{j}^{T} \\
& =\sum_{i, j=1}^{k} \lambda_{i} \lambda_{j} r_{i j} p \\
& \equiv 0(\bmod p)
\end{aligned}
$$

because $v_{p} v_{p}^{T}=p$. This contradicts $x X x^{T}=1$, hence $x Q^{\alpha}=x Q^{\beta}$ is impossible. If $x Q^{\alpha}=-x Q^{\beta}$ then $x Q^{\alpha-\beta}=-x$, so $x_{i} P_{p}^{\alpha-\beta}=-x_{i}, 1 \leqq$ $i \leqq k$. By Lemma 1 this implies $x_{i}=0$. Hence $x=0$, a clear falsehood. Thus $\pm x Q^{\alpha}$ for $0 \leqq \alpha<p$ are $2 p$ distinct integral solutions of $y X y^{T}=1$. If y is further solution then $\pm y Q^{\alpha}, 0 \leqq \alpha<p$ are also all different. If $\pm y Q^{\alpha}= \pm x Q^{\beta}$ then $y= \pm x Q^{\gamma}$, for some $\gamma, 0 \leqq \gamma<p$, and this contradicts the choice of y. Thus the integral vectors representing one come in nonoverlapping sets of $2 p$. We thus have $j \equiv 0(\bmod p)$. Since $r+j \equiv 0(\bmod p)$, we get $r \equiv 0(\bmod p)$, a contradiction.

Now let $\Phi_{n}($ for $n \equiv 0(\bmod 4), n>4)$ be the matrix on p .331 of [5]. Then it is known that Φ_{n} is pdsiu and Φ_{n} does not represent one. Representatives of the nonprincipal C-classes up to $n=13$ are $\Phi_{8}, \Phi_{8}+I_{j}$ for $1 \leqq j \leqq 5, \Phi_{12}, \Phi_{12}+I_{1}$.

Corollary. The only non principal $n \times n$ C-classes for $n \leqq 13$ that can contain a group matrix are the C-classes of Φ_{8} and Φ_{12}.
4. The dihedral group of order eight. The dihedral group of order $2 n$ is generated by two elements a, b with $a^{n}=b^{2}=1, b^{-1} a b=a^{-1}$. If we take the elements in the order $1, a, a^{2}, \cdots, a^{n-1}, b, b a, b a^{2}, \cdots, b a^{n-1}$, then the group matrix X has the form

$$
X=\left(\begin{array}{ll}
A & C \tag{2}\\
B & D
\end{array}\right)
$$

where A, B, C, D are $n \times n$ circulants and $C=B^{T}, D=A^{T}$. If $n=4$ and $A=x_{0} I+x_{1} P+x_{2} P^{2}+x_{3} P^{3}, B=x_{4} I+x_{5} P+x_{6} P^{2}+x_{7} P^{3}$, then there exists a unitary U such that $U X U^{*}=\left(\varepsilon_{1}\right)+\left(\varepsilon_{2}\right)+\left(\varepsilon_{3}\right)+\left(\varepsilon_{4}\right)+$ $X_{1}+X_{1}$ where:

$$
\frac{1}{2}\left[\begin{array}{l}
\varepsilon_{1} \tag{3}\\
\varepsilon_{2} \\
\varepsilon_{3} \\
\varepsilon_{4}
\end{array}\right]=\left[\begin{array}{rrrr}
\frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & \frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} \\
\frac{1}{2} & -\frac{1}{2} & \frac{1}{2} & -\frac{1}{2} \\
\frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} & \frac{1}{2}
\end{array}\right]\left[\begin{array}{c}
\eta_{1} \\
\eta_{2} \\
\eta_{3} \\
\eta_{4}
\end{array}\right]
$$

$$
\begin{gather*}
\eta_{1}=x_{0}+x_{2}, \eta_{2}=x_{1}+x_{3}, \eta_{3}=x_{4}+x_{6}, \eta_{4}=x_{5}+x_{7} \tag{4}\\
X_{1}=\left[\begin{array}{ll}
A_{X}+i B_{X} & C_{X}-i D_{x} \\
C_{x}+i D_{x} & A_{x}-i B_{X}
\end{array}\right] \tag{5}
\end{gather*}
$$

$$
\begin{equation*}
A_{x}=2 x_{0}-\eta_{1}, B_{x}=2 x_{1}-\eta_{2}, C_{x}=2 x_{4}-\eta_{3}, D_{x}=2 x_{5}-\eta_{4} \tag{6}
\end{equation*}
$$

For X to be $i u$ each of $\varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3}, \varepsilon_{4}$, det X_{1} must be ± 1 since each of these is a rational integer. Since the matrix in (3) is unitary,

$$
\begin{equation*}
\eta_{1}^{2}+\eta_{2}^{2}+\eta_{3}^{2}+\eta_{4}^{2}=\left(\left|\varepsilon_{1}\right|^{2}+\left|\varepsilon_{2}\right|^{2}+\left|\varepsilon_{3}\right|^{2}+\left|\varepsilon_{4}\right|^{2}\right) / 4=1 . \tag{7}
\end{equation*}
$$

Consequently as $\eta_{1}, \eta_{2}, \eta_{3}, \eta_{4}$ are rational integers, exactly one of $\eta_{1} \eta_{2}, \eta_{3}, \eta_{4}$ is ± 1, and the other three are zero. Thus exactly one of $A_{X}, B_{X}, C_{X}, D_{X}$ is odd, the other three are even. From $\operatorname{det} X_{1}= \pm 1$ we get $\operatorname{det} X_{1}=1$ if A_{x} or B_{x} is even, $\operatorname{det} X_{1}=-1$ if C_{x} or D_{x} is even. (Consider $A_{X}^{2}+B_{x}^{3}-C_{x}^{2}-D_{X}^{3}= \pm 1$ modulo 4.) Conversely if $A_{X}, B_{X}, C_{X}, D_{X}$ are integers, one even, three odd, with $A_{X}^{2}+B_{X}^{2}-$ $C_{X}^{2}-D_{X}^{2}= \pm 1$ we can use (3), (4), (5), (6) to construct an iu group matrix X. The pdsiu group matrices arise when $\varepsilon_{1}=\varepsilon_{2}=\varepsilon_{3}=\varepsilon_{4}=$ $\eta_{1}=1, A_{X}>0$.

Now let Y, Z be pdsiu group matrices. Then $Z=X Y X^{T}$ holds if and only if $U Z U^{*}=\left(U X U^{*}\right)\left(U Y U^{*}\right)\left(U X U^{*}\right)^{*}$; and this holds if and only if $Z_{1}=X_{1} Y_{1} X_{1}{ }^{*}$, and $\varepsilon_{\imath}(Z)=\varepsilon_{i}(X) \varepsilon_{i}(Y) \overline{\varepsilon_{i}(X)}$, for $i=1,2,3,4$. This last condition is satisfied since the $\varepsilon_{i}(X)$ are ± 1. Here, and henceforth, let $\rho_{1}, \rho_{2}, \rho_{3}, \rho_{4}$ stand for integers which may independently be ± 1. We now use a descent argument. We attempt to choose $A_{X}, B_{X}, C_{X}, D_{X}$ so that $A_{Z}<A_{Y}$. As in the proof of Lemma 2 , we have

$$
\begin{align*}
\left(A_{Z}-A_{Y}\right) / 2= & A_{Y}\left(C_{X}^{2}+D_{X}^{2}\right) \tag{8}\\
& +C_{Y}\left(A_{X} C_{X}-B_{X} D_{X}\right)+D_{Y}\left(A_{X} D_{X}+B_{X} C_{X}\right)
\end{align*}
$$

Put $A_{X}=\rho_{1}, B_{X}=2 \rho_{2}, C_{X}=2 \rho_{3}, D_{X}=0$. Then X is $i u$ and by (8) we can choose the signs $\rho_{1}, \rho_{2}, \rho_{3}$ so that $A_{Z}<A_{Y}$ if

$$
\begin{equation*}
2 A_{Y}-\left|C_{Y}\right|-2\left|D_{Y}\right|<0 \tag{9}
\end{equation*}
$$

Next take $A_{X}=\rho_{1}, B_{X}=2 \rho_{2}, C_{X}=0, D_{x}=2 \rho_{4}$. Then X is $i u$ and by (8) we may choose the signs $\rho_{1}, \rho_{2}, \rho_{4}$ so that $A_{Z}<A_{Y}$ if

$$
\begin{equation*}
2 A_{Y}-2\left|C_{Y}\right|-\left|D_{Y}\right|<0 \tag{10}
\end{equation*}
$$

Since $A_{Y}^{2}=1+C_{Y}^{2}+D_{Y}^{2}, A_{Y}>0$, (9) holds

$$
\begin{array}{ll}
\Leftrightarrow & 2 A_{Y}<\left|C_{Y}\right|+2\left|D_{Y}\right|, \\
\Leftrightarrow & 4 A_{Y}^{2}<C_{Y}^{2}+4\left|C_{Y} D_{Y}\right|+4 D_{Y}^{2}, \\
\Leftrightarrow & 4\left(1+C_{Y}^{2}+D_{Y}^{2}\right)<C_{Y}^{2}+4\left|C_{Y} D_{Y}\right|+4 D_{Y}^{2}, \\
\Leftrightarrow & 4+3 C_{Y}^{2}-4\left|C_{Y}\right|\left|D_{Y}\right|<0 . \tag{11}
\end{array}
$$

Similarly (10) holds if and only if

$$
\begin{equation*}
4+3 D_{Y}^{2}-4\left|C_{Y}\right|\left|D_{Y}\right|<0 \tag{12}
\end{equation*}
$$

Now the region in the positive quadrant of the C_{Y}, D_{Y} plane not satisfying either (11) or (12) is a region of infinite extent with a portion of two hyperbolas as part of the boundary. The only points in this region with even integral coordinates have either $C_{Y}=0$ or $D_{Y}=0$, or else $\left|C_{Y}\right|=\left|D_{Y}\right|=2$. Now if $C_{Y}=0$ we get from $A_{Y}^{2}=$ $1+C_{Y}^{2}+D_{Y}^{2}$ that $\left(A_{Y}-D_{Y}\right)\left(A_{Y}+D_{Y}\right)=1$, so $A_{Y}+C_{Y}=A_{Y}-C_{Y}=$ ± 1, hence $A_{Y}=1, D_{Y}=0$. Now $A_{Y}=1, C_{Y}=D_{Y}=0$ gives $Y=I_{8}$. Thus any pdsiu group matrix Y is in the same G-class as I_{8} or else in the G-class of a Y for which $C_{Y}= \pm 2, D_{Y}= \pm 2, A_{Y}=3$. That these last four possible Y are in the same G-class is seen as follows. Let T denote the $p d s i u$ group matrix with $A_{T}=3, C_{T}=2, D_{T}=2$. If $A_{X}=3, B_{X}=0, C_{X}=-2, D_{x}=-2$ then $Z=X T X^{T}$ has $A_{z}=3$, $B_{z}=0, C_{z}=-2, D_{z}=-2$. If $A_{X}=-2, B_{X}=-2, C_{X}=3, D_{x}=0$ then $Z=X T X^{T}$ has $A_{Z}=3, B_{Z}=0, C_{Z}=-2, D_{z}=2$. If $A_{x}=2$,
$B_{X}=-2, C_{X}=0, D_{x}=-3$ then $Z=X T X^{T}$ has $A_{Z}=3, B_{Z}=0, C_{Z}=2$, $D_{z}=-2$. Thus the G-class number is $\leqq 2$. If it were one there would be an X such that $X_{1} T_{1} X_{1}^{*}=I_{2}$. Lemma 2 then shows that if $\operatorname{det} X_{1}=1$ we have $C_{X}^{2}+D_{X}^{2}<C_{T}^{2}+D_{T}^{2}=8$ and if $\operatorname{det} X_{1}=-1$ then $A_{X}^{2}+B_{X}^{2}<8$. All possible $A_{X}, B_{X}, C_{X}, D_{X}$ are easily found and none work.
5. The other groups of order eight. The cyclic group of order eight is completely worked out in [4]. The G class number is two. The only pdsiu group matrix belonging to any of the remaining groups of order eight is I_{8}.
6. The cyclic group of order twelve. Let $X=x_{0} I_{12}+x_{1} P_{12}+$ $\cdots+x_{11} P_{12}$. Take $\omega=\left(3^{1 / 2}+i\right) / 2$ for the primitive root of unity of order twelve. Then for a unitary $U, U X U^{*}=\operatorname{diag}\left(\xi_{0}, \xi_{1}, \cdots, \xi_{11}\right)$ where (see (1)):

$$
\begin{align*}
& {\left[\begin{array}{rrrr}
1 / 2 & 1 / 2 & 1 / 2 & 1 / 2 \\
1 / 2 & i / 2 & -1 / 2 & -i / 2 \\
1 / 2 & -1 / 2 & 1 / 2 & -1 / 2 \\
1 / 2 & -i / 2 & -1 / 2 & i / 2
\end{array}\right]\left[\begin{array}{c}
\eta_{0} \\
\eta_{3} \\
\eta_{6} \\
\eta_{9}
\end{array}\right]=\frac{1}{2}\left[\begin{array}{l}
\xi_{0} \\
\xi_{3} \\
\xi_{6} \\
\xi_{9}
\end{array}\right] } \tag{13}\\
& \eta_{0}= x_{0}+x_{4}+x_{8}, \eta_{3}=x_{1}+x_{5}+x_{9}, \eta_{6}=x_{2}+x_{6}+x_{10}, \tag{14}\\
& \eta_{9}=x_{3}+x_{7}+x_{11}, \\
& \xi_{1}= {\left[2 x_{0}+x_{2}-x_{4}-2 x_{6}-x_{8}+x_{10}\right.} \\
&+i\left(x_{1}+2 x_{3}+x_{5}-x_{7}-2 x_{9}-x_{11}\right) \tag{15}\\
&\left.+3^{1 / 2}\left(x_{1}-x_{5}-x_{7}+x_{11}\right)+(-3)^{1 / 2}\left(x_{2}+x_{4}-x_{8}-x_{10}\right)\right] / 2 \\
& \xi_{2}= {\left[2 x_{0}+x_{1}-x_{2}-2 x_{3}-x_{4}+x_{5}+2 x_{6}+x_{7}-x_{8}-2 x_{9}\right.} \tag{16}\\
&\left.-x_{10}+x_{11}+(-3)^{1 / 2}\left(x_{1}+x_{2}-x_{4}-x_{5}+x_{7}+x_{8}-x_{10}-x_{11}\right)\right] / 2, \\
& \xi_{4}= {\left[2 x_{0}-x_{1}-x_{2}+2 x_{3}-x_{4}-x_{5}+2 x_{6}-x_{7}-x_{8}+2 x_{9}\right.} \\
&\left.-x_{10}-x_{11}+(-3)^{1 / 2}\left(x_{1}-x_{2}+x_{4}-x_{5}+x_{7}-x_{8}+x_{10}-x_{11}\right)\right] / 2
\end{align*}
$$

The remaining ξ_{i} are conjugate to one of $\xi_{1}, \xi_{2}, \xi_{4}$ in the field $R(\omega)$ of the 12 th root of unity. As $\xi_{0}, \cdots, \xi_{11}$ are algebraic integers, X is unimodular if and only if $\xi_{0}, \cdots, \xi_{11}$ are units. Since the matrix in (13) is unitary, $\eta_{0}^{2}+\eta_{3}^{2}+\eta_{6}^{2}+\eta_{9}^{2}=\left(\left|\xi_{0}\right|^{2}+\left|\xi_{3}\right|^{2}+\left|\xi_{6}\right|^{2}+\left|\xi_{9}\right|^{2}\right) / 4=1$ since $\xi_{0}, \xi_{3}, \xi_{6}, \xi_{9}$ are units in the Gaussian integers, hence roots of unity. As $\eta_{0}, \eta_{3}, \eta_{6}, \eta_{9}$ are rational integers, exactly one of $\eta_{0}, \eta_{3}, \eta_{6}, \eta_{9}$ is ± 1, the other three are zero. We now show that we can find a circulant W of the form $\pm P_{12}^{\alpha}$ so that in $X W$ we have

$$
\begin{equation*}
\eta_{0}=1=\xi_{0}=\xi_{3}=\xi_{6}=\xi_{9} \tag{18}
\end{equation*}
$$

and $\xi_{2}= \pm 1$. If, for $X, \eta_{0}= \pm 1$ then by (13), $\xi_{0}=\xi_{3}=\xi_{6}=\xi_{9}=\eta_{0}$ and for $X\left(\eta_{0} I_{12}\right)$, (18) is satisfied. If, for $X, \eta_{3}= \pm 1$, then by (13), $\xi_{0}=\eta_{3}, \xi_{3}=i \eta_{3}, \xi_{6}=-\eta_{3}, \xi_{9}=-i \eta_{3}$. Then, for $X\left(\eta_{3} P_{12}^{3}\right)$, (18) is satisfied. If, for $X, \eta_{6}= \pm 1$, then by (13), $\xi_{0}=\eta_{6}, \xi_{3}=-\eta_{6}, \xi_{6}=\eta_{6}, \xi_{9}=-\eta_{6}$. Then, for $X\left(\eta_{8} P_{12}^{2}\right)$, (18) is satisfied. If, for $X, \eta_{9}= \pm 1$, then by (13), $\xi_{0}=\eta_{9}, \xi_{3}=-i \eta_{9}, \xi_{6}=-\eta_{9}, \xi_{9}=i \eta_{9}$, and for $X\left(\eta_{9} P_{12}\right)$, (18) is satisfied. So now let X satisfy (18). For X, ξ_{2} is a unit in the field $R\left((-3)^{1 / 2}\right)$, hence ξ_{2} is a power of $\omega^{2}=\left(1+(-3)^{1 / 2}\right) / 2$. We can choose λ to be $-1,0$, or 1 , such that for $X P_{12}^{4 \lambda}$ we still have (18) and, moreover, $X P_{12}^{4 \lambda}$ has ξ_{2} equal to ω^{0} or ω^{6}; that is $\xi_{2}= \pm 1$. Thus we have achieved our claim. Note that ξ_{4} is also a unit in $R\left((-3)^{1 / 2}\right)$ and that the rational part of the numerator of ξ_{4} is congruent $(\bmod 2)$ to the rational part of the numerator of ξ_{2}. Since the only units in $R\left((-3)^{1 / 2}\right)$ are $\left(\pm 1 \pm(-3)^{1 / 2}\right) / 2$ or $\pm 2 / 2, \xi_{2}= \pm 1$ forces $\xi_{4}= \pm 1$.

We now construct the $p d s i u$ circulants X. These have all ξ_{i} real and positive, whence (18) holds. Symmetry implies $x_{11-j}=x_{1+j}$ for $0 \leqq j \leqq 4$. Then for the ξ_{i} to be positive units we require $\xi_{0}=\xi_{2}=$ $\xi_{3}=\xi_{4}=\xi_{6}=1$, hence:

$$
\begin{array}{r}
x_{0}+2 x_{1}+2 x_{2}+2 x_{3}+2 x_{4}+2 x_{5}+x_{6}=1, \\
x_{0}+x_{1}-x_{2}-2 x_{3}-x_{4}+x_{5}+x_{6}=1, \\
x_{0}-2 x_{2}+2 x_{4}-x_{6}=1, \\
x_{0}-x_{1}-x_{2}+2 x_{3}-x_{4}-x_{5}+x_{6}=1, \\
x_{0}-2 x_{1}+2 x_{2}-2 x_{3}+2 x_{4}-2 x_{5}+x_{6}=1 .
\end{array}
$$

Solving these simultaneously we get $x_{0}=1-2 x_{4}, x_{5}=-x_{1}, x_{3}=0$, $x_{2}=-x_{4}, x_{6}=2 x_{4}$. Then $\xi_{1}=1-6 x_{4}+(3)^{1 / 2}\left(2 x_{1}\right)$, and $\xi_{1} \xi_{5}=\left(1-6 x_{4}\right)^{2}-$ $3\left(2 x_{1}\right)^{2}=1$ if ξ_{1}, ξ_{5} are to be positive units. Hence ξ_{1} satisfies a Pell's equation, the fundamental solution of which is $2-3^{1 / 2}$. Now by induction one easily checks that all odd powers of $2-3^{1 / 2}$ have even rational part and all even powers have rational part $\equiv 1(\bmod 6)$ and even irrational part. Consequently all pdsiu circulants are powers of the circulant M for which $\eta_{0}=1=\xi_{0}=\xi_{3}=\xi_{6}=\xi_{9}=\xi_{2}=\xi_{4}, \xi_{1}=$ $\left(2-3^{1 / 2}\right)^{2}=7-4 \cdot 3^{1 / 2}$. Now $M^{2 \alpha}=M^{\alpha}\left(M^{\alpha}\right)^{T}$ is in the principal G-class and $M^{2 \alpha+1}=M^{\alpha} \cdot M \cdot\left(M^{\alpha}\right)^{T}$ is in the G-class of M. To show that the G-class number is two, we need only show that M is not in the principal G-class. If $M=X X^{T}$ for X an $i u$ circulant, then for any W of the form $W= \pm P_{12}^{\alpha}$ we have $M=(X W)(X W)^{T}$. Then by the remarks of the previous paragraph, we may, after changing $X W$ to X, assume that $M=X X^{T}$ where, for X, (18) holds and $\xi_{2}= \pm 1, \xi_{4}= \pm 1$. From (14) and (18) we get

$$
\left\{\begin{array}{l}
x_{0}+x_{4}+x_{8}=1, \tag{19}\\
x_{1}+x_{5}+x_{9}=0, \\
x_{2}+x_{6}+x_{10}=0, \\
x_{3}+x_{7}+x_{11}=0 .
\end{array}\right.
$$

From $\xi_{2}= \pm 1$ we get

$$
\left\{\begin{array}{l}
2 x_{0}+x_{1}-x_{2}-2 x_{3}-x_{4}+x_{5}+2 x_{6}+x_{7}-x_{8} \tag{20}\\
\quad-2 x_{9}-x_{10}+x_{11}=2 \rho_{1}, \\
x_{1}+x_{2}-x_{4}-x_{5}+x_{7}+x_{8}-x_{10}-x_{11}=0,
\end{array}\right.
$$

and from $\xi_{4}= \pm 1$:

$$
\left\{\begin{array}{c}
2 x_{0}-x_{1}-x_{2}+2 x_{3}-x_{4}-x_{5}+2 x_{6}-x_{7}-x_{8} \tag{21}\\
\quad+2 x_{9}-x_{10}-x_{11}=2 \rho_{2}, \\
x_{1}-x_{2}+x_{4}-x_{5}+x_{7}-x_{8}+x_{10}-x_{11}=0
\end{array}\right.
$$

Solving (19), (20), (21) simultaneously and remembering that the variables are integers, we get $\rho_{1}=\rho_{2}=1, x_{1}=-x_{7}, x_{2}=x_{0}+x_{4}-1$, $x_{3}=x_{5}-x_{7}, x_{6}=1-x_{0}, x_{8}=1-x_{0}-x_{4}, x_{9}=x_{7}-x_{5}, x_{10}=-x_{4}, x_{11}=$ $-x_{5}$. Then for $M=X X^{T}$ we must have $7-4.3^{1 / 2}=\xi_{1} \bar{\xi}_{1}$. Using (15) this becomes

$$
\begin{gather*}
\left(3 x_{0}-2\right)^{2}+3\left(x_{5}+x_{7}\right)^{2}+9\left(x_{5}-x_{7}\right)^{2}+3\left(x_{0}+2 x_{4}-1\right)^{2}=7 \tag{22}\\
\quad-2\left(x_{5}+x_{7}\right)\left(3 x_{0}-2\right)+6\left(x_{5}-x_{7}\right)\left(x_{0}+2 x_{4}-1\right)=-4 \tag{23}
\end{gather*}
$$

From (22) we first obtain $x_{5}=x_{7}$, then $x_{5}=x_{7}=0$. But then we contradict (23). Hence the G-class number is two.
7. The alternating group of order twelve. This group is generated by elements a, b, c with $a^{2}=b^{2}=c^{3}=1, a b=b a, a c=c a b$, $b c=c a$. The irreducible constituents of the group matrix X are most easily computed if we take the group elements in the order, $1, a, b, a b, c, c a, c b, c a b, c^{2}, c^{2} a, c^{2} b, c^{2} a b$. Then the group matrix partitions into 4×4 blocks each of which has the structure of

$$
N=\left[\begin{array}{llll}
\alpha & \beta & \gamma & \delta \\
\beta & \alpha & \delta & \gamma \\
\gamma & \delta & \alpha & \beta \\
\delta & \gamma & \beta & \alpha
\end{array}\right]
$$

If V denotes the unitary matrix of (3), then $V N V^{*}=\operatorname{diag}(\alpha+\beta+$ $\gamma+\delta, \alpha+\beta-\gamma-\delta, \alpha-\beta+\gamma-\delta, \alpha-\beta-\gamma+\delta)$. Thus each block in X can be diagonalized. After the same permutation of rows and
columns, the group matrix splits up into a direct sum of four 3×3 blocks, of which one is a circulant and may be diagonalized. Let $\left(x_{0}, x_{1}, \cdots, x_{11}\right)^{T}$ be the first column of X.

Let $\quad \eta_{1}=x_{0}+x_{1}+x_{2}+x_{3}, \eta_{2}=x_{4}+x_{5}+x_{6}+x_{7}, \eta_{3}=x_{8}+x_{9}+$ $x_{10}+x_{11}, a_{11}=x_{2}+x_{3}, a_{22}=x_{1}+x_{3}, a_{33}=x_{1}+x_{2}, a_{12}=x_{9}+x_{11}, a_{23}=$ $x_{9}+x_{10}, a_{31}=x_{10}+x_{11}, a_{13}=x_{5}+x_{6}, a_{21}=x_{6}+x_{7}, a_{32}=x_{5}+x_{7}$. Also now let $\omega=\left(-1+(-3)^{1 / 2}\right) / 2$. Define $\varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3}, A_{\bar{X}}$ by:

$$
\begin{align*}
& {\left[\begin{array}{ccc}
3^{-1 / 2} & 3^{-1 / 2} & 3^{-1 / 2} \\
3^{-1 / 2} & \omega 3^{-1 / 2} & \omega^{2} 3^{-1 / 2} \\
3^{-1 / 2} & \omega^{2} 3^{-1 / 2} & \omega 3^{-1 / 2}
\end{array}\right]\left[\begin{array}{l}
\eta_{1} \\
\eta_{2} \\
\eta_{3}
\end{array}\right]=3^{-1 / 2}\left[\begin{array}{l}
\varepsilon_{1} \\
\varepsilon_{2} \\
\varepsilon_{3}
\end{array}\right],} \tag{24}\\
& A_{X}=\left[\begin{array}{lll}
\eta_{1}-2 a_{11} & \eta_{3}-2 a_{12} & \eta_{2}-2 a_{13} \\
\eta_{2}-2 a_{21} & \eta_{1}-2 a_{22} & \eta_{3}-2 a_{23} \\
\eta_{3}-2 a_{31} & \eta_{2}-2 a_{32} & \eta_{1}-2 a_{33}
\end{array}\right] .
\end{align*}
$$

Then there exists a unitary U such that $U X U^{*}=\left(\varepsilon_{1}\right)+\left(\varepsilon_{2}\right)+\left(\varepsilon_{3}\right)+$ $A_{\bar{X}}+A_{X}+A_{\bar{X}}$. Moreover X is unimodular if and only if $\operatorname{det} A_{\bar{X}}=$ ± 1 and $\varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3}$ are units in $R(\omega)$. Thus $\varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3}$ have to be roots of unity and since the matrix in (24) is unitary, this forces $\eta_{1}^{2}+\eta_{2}^{2}+$ $\eta_{3}^{2}=\left(\left|\varepsilon_{1}\right|^{2}+\left|\varepsilon_{2}\right|^{2}+\left|\varepsilon_{3}\right|^{2}\right) / 3=1$. Thus exactly one of $\eta_{1}, \eta_{2}, \eta_{3}$ is ± 1, the other two are zero. Note that $a_{11}=x_{2}+x_{3}, a_{22}=x_{1}+x_{3}, a_{33}=$ $x_{1}+x_{2}$, possess an integral solution x_{1}, x_{2}, x_{3} if and only if $a_{11}+a_{22}+$ $a_{33} \equiv 0(\bmod 2)$; a similar remark holds for a_{12}, a_{23}, a_{31}; and for a_{13}, a_{21}, a_{32}. Thus X is $i u$ if and only if A_{X} is $i u$ and exactly two of $\eta_{1}, \eta_{2}, \eta_{3}$ are zero and one is ± 1, and $a_{11}+a_{22}+a_{33} \equiv a_{12}+a_{23}+a_{31} \equiv a_{13}+a_{21}+$ $a_{32} \equiv 0(\bmod 2)$. The pdsiu X arise when $\varepsilon_{1}=\varepsilon_{2}=\varepsilon_{3}=1, \eta_{1}=1, \eta_{2}=$ $\eta_{3}=0, A_{X}$ is pdsiu.

Now if Y, Z are pdsiu group matrices we have $Z=X Y X^{T}$ if and only if $A_{Z}=A_{X} A_{Y} A_{X}^{T}$ and $\varepsilon_{i}(z)=\varepsilon_{i}(X) \varepsilon_{i}(Y) \overline{\varepsilon_{i}(X), i=1,2,3 \text {. This }}$ last condition is met since $\varepsilon_{i}(X) \overline{\varepsilon_{i}(X)}=1$ because $\varepsilon_{i}(X)$ is a root of unity. The fact that A_{T} is $p d$ siu and the fact that the C-class number is one at $n=3$ implies that $A_{T}=W W^{T}$ for some $i u W$. Here W need not be an A_{X}. Consider $W \bmod 2 . \quad$ Since $\bmod 2, A_{Y} \equiv I_{3}, W(\bmod 2)$ is orthogonal. Hence, $\bmod 2, W$ is a permutation matrix. We may find a 3×3 permutation matrix Q such that, $\bmod 2, W Q \equiv I_{3}$. We can do more. If we permit Q to be a generalized permutation matrix (nonzero entries are ± 1) we can force $W Q \equiv I_{3}(\bmod 2)$ and each diagonal element of $W Q$ is $\equiv 1(\bmod 4)$. Changing notation and letting $W Q$ be W, we have $A_{Y}=W W^{T}$ where now W is $i u$ and $(\bmod 4)$ has 1 in each diagonal position and $(\bmod 4)$ has 0 or 2 in each off-diagonal position. Now one can write down all 64 matrices $W(\bmod 4)$ of this type and determine those for which $W W^{T}$ has the structure (mod 4)
of an A_{Y}. It turns out that the W matrices $(\bmod 4)$ with this property are precisely the W matrices with an even number of twos $(\bmod 4)$ off the main diagonal. Certain of these acceptable W already have the structure $(\bmod 4)$ of an A_{Y}. When this is so, Y is in the principal G-class. For all those acceptable W not $(\bmod 4)$ of the form of an A_{X}, it turns out that $W T$, where

$$
T=\left[\begin{array}{lll}
1 & 2 & 2 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

is an A_{X}. Let $H=T^{-1}\left(T^{-1}\right)^{T}$. Then $A_{Y}=(W T) H(W T)^{T}=A_{X} H A_{X}^{T}$ where $A_{X}=W T$. Moreover, H is an A_{z}. Thus Y is in the same G-class as Z, where $A_{Z}=H$. Is Z in the principal G-class? If so $H=A_{X} A_{X}^{T}$ for some X. But it is easy to find all integral B for which $H=B B^{T}$; none is $(\bmod 4)$ an A_{X}. Hence the G-class number is two.
8. The dihedral group of order twelve. As is $\S 4$ the group matrix may be taken to have the form (2) with $C=B^{T}, D=A^{T}$. Let $A=x_{0} I_{6}+x_{1} P_{6}+\cdots+x_{5} P_{6}^{5}, B=x_{6} I_{6}+x_{7} P_{6}+\cdots+x_{11} P_{6}^{5} . \quad$ There exists a unitary U such that $U X U^{*}=\left(\varepsilon_{1}\right)+\left(\varepsilon_{2}\right)+\left(\varepsilon_{3}\right)+\left(\varepsilon_{4}\right)+X_{1}+$ $X_{1}+X_{2}+X_{2}$ where: if $\eta_{1}=x_{0}+x_{2}+x_{4}, \eta_{2}=x_{1}+x_{3}+x_{5}, \eta_{3}=x_{6}+$ $x_{8}+x_{10}, \eta_{4}=x_{7}+x_{9}+x_{11}$, and if $a=x_{0}+x_{3}, b=x_{1}+x_{4}, \alpha=x_{0}-x_{3}$, $\beta=x_{4}-x_{1}, c=x_{6}+x_{9}, d=x_{7}+x_{10}, \gamma=x_{6}-x_{9}, \delta=x_{10}-x_{7}$, then (3) holds, and, in addition,

$$
X_{1}=\left[\begin{array}{cc}
X_{1,1} & \bar{X}_{1,2} \tag{25}\\
X_{1,1} & \bar{X}_{1,2}
\end{array}\right], \quad X_{2}=\left[\begin{array}{cc}
X_{2,1} & \bar{X}_{2,2} \\
X_{2,2} & \bar{X}_{2,1}
\end{array}\right]
$$

where

$$
\left\{\begin{array}{l}
X_{1,1}=\left(3 \alpha-\eta_{1}-\eta_{2}+(-3)^{1 / 2}\left(a+2 b-\eta_{1}-\eta_{2}\right)\right) / 2, \tag{26}\\
X_{1,2}=\left(3 c-\eta_{3}-\eta_{4}+(-3)^{1 / 2}\left(c+2 d-\eta_{3}-\eta_{4}\right)\right) / 2, \\
X_{2,1}=\left(3 \alpha-\eta_{1}+\eta_{2}+(-3)^{1 / 2}\left(\eta_{1}-\eta_{2}-\alpha-2 \beta\right)\right) / 2, \\
X_{2,2}=\left(3 \gamma-\eta_{3}+\eta_{4}+(-3)^{1 / 2}\left(\eta_{3}-\eta_{4}-\gamma-2 \delta\right)\right) / 2 .
\end{array}\right.
$$

Note that x_{0}, \cdots, x_{11} are integers if and only if $\alpha \equiv \alpha, b \equiv \beta, c \equiv \gamma$, $d \equiv \delta(\bmod 2)$. As $\varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3}, \varepsilon_{4}$, det X_{1}, det X_{2} are rational integers, X is unimodular if and only if $\varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3}, \varepsilon_{4}$, det X_{1}, det X_{2} are each ± 1. Hence, as with the dihedral group of order eight, exactly one of $\eta_{1}, \eta_{2}, \eta_{3}, \eta_{4}$ is ± 1 and the other three are zero. By considering the formulas for $\operatorname{det} X_{1}$ and $\operatorname{det} X_{2}(\bmod 3)$, we find $\operatorname{det} X_{1}=\operatorname{det} X_{2}=1$ if η_{1} or η_{2} is ± 1, and $\operatorname{det} X_{1}=\operatorname{det} X_{2}=-1$ if η_{3} or η_{4} is ± 1. The $p d s i u$ group matrices arise when $\eta_{1}=1$ and $X_{1,1}$ and $X_{2,1}$ are real and positive. If η_{1} or η_{2} is ± 1 we let $X_{1,1}=\left(A_{X}+(-3)^{1 / 2} B_{X}\right) / 2, X_{1,2}=\left(C_{X}+(-3)^{1 / 2} D_{X}\right) / 2$,
$X_{2,1}=\left(\mathfrak{N}_{X}+(-3)^{1 / 2} \mathfrak{B}_{X}\right) / 2, X_{2,2}=\left(\mathfrak{C}_{X}+(-3)^{1 / 2} \mathfrak{D}_{X}\right) / 2$; and if η_{3} or η_{4} is ± 1 we let $X_{1,1}=\left(C_{X}+(-3)^{1 / 2} D_{X}\right) / 2, X_{1,2}=\left(A_{X}+(-3)^{1 / 2} B_{X}\right) / 2, X_{2,1}=$ $\left(\mathfrak{C}_{x}+(-3)^{1 / 2} \mathfrak{D}_{x}\right) / 2, X_{2,2}=\left(\mathfrak{A}_{x}+(-3)^{1 / 2} \mathfrak{B}_{x}\right) / 2$.

Now let Z, Y are pdsiu group matrices; then $Z=X Y X^{r}$ holds if and only if $\varepsilon_{i}(Z)=\varepsilon_{i}(X) \varepsilon_{i}(Y) \overline{\varepsilon_{i}(X)}$ for $i=1,2,3,4, Z_{1}=X_{1} Y_{1} X_{1}^{*}$, $Z_{2}=X_{2} Y_{2} X_{2}^{*}$. The first of these conditions need not concern us as $\varepsilon_{i}(X)$ is always to be ± 1. We proceed to show that, given Y, we can choose X iu such that $Z_{2}=I_{2}$. If $Y_{2}=I_{2}$ we have nothing to do. Otherwise we compute as in Lemma 2 that

$$
\begin{align*}
2\left(A_{Z}-A_{Y}\right)= & A_{Y}\left(C_{X}^{2}+3 D_{X}^{2}\right) \tag{27}\\
& +C_{Y}\left(A_{X} C_{X}-3 B_{X} D_{X}\right)+3 D_{Y}\left(A_{X} D_{X}+B_{X} C_{X}\right), \\
2\left(\mathfrak{A}_{Z}-\mathfrak{H}_{Y}\right)= & \mathfrak{A}_{Y}\left(\mathfrak{C}_{X}^{2}+3 \mathfrak{D}_{X}^{2}\right) \\
& +\mathfrak{C}_{Y}\left(\mathfrak{H}_{X} \mathfrak{S}_{X}-3 \mathfrak{B}_{X} \mathfrak{D}_{X}\right)+3 \mathfrak{D}_{Y}\left(\mathfrak{A}_{X} \mathfrak{D}_{X}+\mathfrak{B}_{X} \mathfrak{S}_{X}\right) .
\end{align*}
$$

We now assign special values to the quantities entering into X. If we put $\eta_{1}=-\rho_{1}, \eta_{2}=\eta_{3}=\eta_{4}=0, a=\alpha=\rho_{1}, b=\beta=-\rho_{1}, c=\gamma=\rho_{2}$, $d=\delta=-\rho_{2}$ then we get $A_{x}=\mathfrak{A}_{x}=4 \rho_{1}, B_{x}=\mathfrak{B}_{x}=0, C_{x}=\mathfrak{C}_{x}=3 \rho_{2}$ $D_{X}=-\rho_{2}, \mathfrak{D}_{X}=\rho_{2}$. For this iuX, $\mathfrak{H}_{Z}-\mathfrak{H}_{Y}<0$ will hold if

$$
\begin{equation*}
\mathfrak{A}_{Y}+\rho_{1} \rho_{2} \mathfrak{C}_{Y}+\rho_{1} \rho_{2} \mathfrak{D}_{Y}<0 \tag{29}
\end{equation*}
$$

Next we put $\eta_{1}=\rho_{1}, \eta_{2}=\eta_{3}=\eta_{4}=0, a=\alpha=\rho_{1}, b=\beta=\rho_{2}, c=\gamma=\rho_{3}$, $d=\delta=-\rho_{3}$. Then $A_{x}=\mathfrak{A}_{x}=2 \rho_{1}, B_{x}=2 \rho_{2}, \mathfrak{B}_{x}=-2 \rho_{2}, C_{x}=\mathfrak{C}_{x}=3 \rho_{3}$, $D_{x}=-\rho_{2}, D_{X}=-\rho_{3}, \mathfrak{D}_{X}=\rho_{3}$. For this $i u X, \mathfrak{A}_{Z}-\mathfrak{A}_{Y}<0$ will hold if

$$
12 \mathfrak{U}_{Y}+\mathfrak{C}_{Y}\left(6 \rho_{1} \rho_{3}+6 \rho_{2} \rho_{3}\right)+3 \mathfrak{D}_{Y}\left(2 \rho_{1} \rho_{3}-6 \rho_{2} \rho_{3}\right)<0 .
$$

If $\rho_{1}=\rho_{2}$ this becomes

$$
\begin{equation*}
\mathfrak{A}_{Y}+\rho_{1} \rho_{3} \mathfrak{E}_{Y}-\rho_{1} \rho_{3} \mathfrak{D}_{Y}<0 \tag{30}
\end{equation*}
$$

and if $\rho_{1}=-\rho_{2}$ this becomes

$$
\begin{equation*}
\mathfrak{U}_{Y}+2 \rho_{1} \rho_{3} \mathfrak{D}_{Y}<0 \tag{31}
\end{equation*}
$$

Choosing the signs $\rho_{1}, \rho_{2}, \rho_{3}$ suitably, (29) and (30) becomes

$$
\begin{equation*}
\mathfrak{A}_{Y}-\left|\mathfrak{S}_{Y}\right|-\left|\mathfrak{D}_{Y}\right|<0 \tag{32}
\end{equation*}
$$

and (31) becomes

$$
\begin{equation*}
\mathfrak{A}_{T}-2\left|\mathfrak{D}_{Y}\right|<0 \tag{33}
\end{equation*}
$$

So we can make $\mathfrak{A}_{Z}<\mathfrak{A}_{T}$ if $\mathfrak{A}_{F}, \mathfrak{C}_{Y}, \mathfrak{D}_{Y}$ satisfy either (32) or (33). As in § 4, the facts that $\mathfrak{U}_{T}>0$ and $\mathfrak{H}_{T}^{2}=4+\mathfrak{C}_{Y}^{2}+3 \mathfrak{D}_{T}^{2}$ show that (32) and (33) are equivalent to

$$
\begin{equation*}
2+\left|\mathfrak{D}_{Y}\right|^{2}-\left|\mathfrak{C}_{Y}\right|\left|\mathfrak{D}_{Y}\right|<0 \tag{34}
\end{equation*}
$$

$$
\begin{equation*}
4+\left|\mathfrak{C}_{Y}\right|^{2}-\left|\mathfrak{D}_{Y}\right|^{2}<0 \tag{35}
\end{equation*}
$$

respectively.
Now the region in the positive quadrant of the $\mathfrak{\Im}_{Y}, \mathfrak{D}_{Y}$ plane satisfying neither (34) nor (35) is a region of infinite extent with hyperbolas as part of the boundary. Remembering that $\mathfrak{C}_{Y} \equiv 0(\bmod 3)$, we find several points $\left(\left|\mathfrak{C}_{Y}\right|,\left|\mathfrak{D}_{Y}\right|\right)$ in our region: $\left(\left|\mathfrak{C}_{Y}\right|,\left|\mathfrak{D}_{Y}\right|\right)=(0,2)$, $(3,1),(3,2)$ and points with $\left|\mathfrak{C}_{Y}\right|=\left|\mathfrak{D}_{Y}\right|$ and points with $\mathfrak{D}_{Y}=0$. The points $(0,2),(3,1),(3,2)$ give $\mathfrak{A}_{T}=4$ or 5 and this can be rejected on the grounds that a pdsiu Y has $\mathfrak{B}_{Y}=0, \eta_{1}=1$ and then $A_{Y}=4$ or 5 give a nonintegral α, β. The cases in which $\mathfrak{D}_{Y}=0$ or $\left|\mathfrak{C}_{Y}\right|=\left|\mathfrak{D}_{Y}\right|$ are rejected by showing that $\mathfrak{I}_{Y}^{2}=4+\mathfrak{C}_{Y}^{2}+3 \mathfrak{D}_{Y}^{2}$ does not give a positive integral \mathfrak{A}_{Y}, except if $\mathfrak{C}_{Y}=\mathfrak{D}_{Y}=0, \mathfrak{R}_{Y}=2$. When $\mathfrak{C}_{Y}=\mathfrak{D}_{Y}=0$, $A_{Y}=2$, we have $Y_{2}=I_{2}$. Thus we have shown that if $Y_{2} \neq I_{2}$ then we can find an $i u X$ so that $\mathfrak{N}_{Z}<\mathfrak{N}_{r}$. Since $\mathfrak{\Re}_{Z}>0$, eventually this descent halts and then $Z_{2}=I_{2}$.

Thus assume $Y_{2}=I_{2}$. Our next goal is, using only X for which $X_{2} X_{2}{ }^{*}=I_{2}$, to make $A_{Z}<A_{Y}$. Notice that $Y_{2}=I_{2}$ and $\eta_{1}=1$ implies that the parameters $\alpha, \beta, \gamma, \delta$ of Y_{2} are $\alpha=1, \beta=\gamma=\delta=0$. Thus the parameters a, b, c, d of Y satisfy $a \equiv 1, b \equiv c \equiv d \equiv 0(\bmod 2)$. Hence $C_{Y} \equiv 0(\bmod 6)$ and $D_{Y} \equiv c \equiv-c \equiv C_{Y}(\bmod 4)$. We next determine those X for which $X_{2} X_{2}^{*}=I_{2}$. By Lemma 2 these X must have $\mathfrak{C}_{X}=\mathfrak{D}_{X}=0$, so that $\mathfrak{H}_{x}^{2}+3 \mathfrak{B}_{x}^{2}=4, \mathfrak{N}_{x}= \pm 2, \mathfrak{B}_{x}=0$, or $\mathfrak{A}_{x}=$ $\pm 1, \mathfrak{V}_{x}= \pm 1$. It is then easy to determine the parameters $\alpha, \beta, \gamma, \delta$ of X. We find that if η_{1} or η_{2} is ± 1 then $\gamma=\delta=0$ and not both α, β are odd; and if η_{3} or η_{4} is ± 1 then $\alpha=\beta=0$ and not both γ, δ are odd. So in X the parameters a, b, c, d are restricted by: both c, d are even and not both a, b are odd in the cases when η_{1} or η_{2} is ± 1; and both a, b are even and not both c, d are odd in the cases when η_{3} or η_{4} is ± 1. In particular if we put $\eta_{1}=-\rho_{1}, \alpha=0, \beta=-\left(\rho_{1}+\rho_{2}\right) / 2$, $\gamma=0, \delta=0$, or if we put $\eta_{1}=\rho_{1}, \alpha=\rho_{1}, \beta=\gamma=\delta=0$, then $X_{2} X_{2}^{*}=I_{2}$.

We now seek X for which $A_{Z}<A_{Y}$ and $X_{2} X_{2}^{*}=I_{2}$. To this end we give special values to the parameters in X. Put $\eta_{1}=\rho_{1}, \eta_{2}=\eta_{3}=$ $\eta_{4}=0, a=\rho_{1}, \alpha=\rho_{1}, b=-2 \rho_{2}, \beta=0, \gamma=c=0, d=2 \rho_{4}, \delta=0$. Then $A_{X}=2 \rho_{1}, B_{X}=-4 \rho_{2}, C_{X}=0, D_{X}=4 \rho_{4}, X$ is $i u$ and $X_{2} X_{2}^{*}=I_{2}$. From (27) we find that the signs $\rho_{1}, \rho_{2}, \rho_{4}$ can be chosen to make $A_{Z}<A_{Y}$ if

$$
\begin{equation*}
2 A_{Y}-2\left|C_{Y}\right|-\left|D_{Y}\right|<0 . \tag{36}
\end{equation*}
$$

Next set $\eta_{1}=-\rho_{1}, a=-2 \rho_{1}, \alpha=0, b=\left(\rho_{1}-3 \rho_{2}\right) / 2, \beta=-\left(\rho_{1}+\rho_{2}\right) / 2$, $\gamma=c=0, d=2 \rho_{4}, \delta=0$. Then $A_{X}=-5 \rho_{1}, B_{X}=-3 \rho_{2}, C_{X}=0, D_{X}=$ $4 \rho_{4}, X$ is $i u$ and $X_{2} X_{2}^{*}=I_{2}$. Then from (27) we can choose the signs $\rho_{1}, \rho_{2}, \rho_{4}$ so that $A_{Z}<A_{F}$ if

$$
\begin{equation*}
4 A_{Y}-3\left|C_{Y}\right|-5\left|D_{Y}\right|<0 \tag{37}
\end{equation*}
$$

Finally we set $\eta_{1}=-\rho_{1}, a=2 \rho_{1}, \alpha=0, b=\left(\rho_{2}-3 \rho_{1}\right) / 2, \beta=-\left(\rho_{1}+\rho_{2}\right) / 2$, $c=\gamma=0, d=2 \rho_{4}, \delta=0$. Then $A_{X}=7 \rho_{1}, B_{X}=\rho_{2}, C_{X}=0, D_{X}=4 \rho_{4}$. We can, using (27), choose the signs $\rho_{1}, \rho_{2}, \rho_{4}$ so that $A_{Z}<A_{Y}$ if

$$
\begin{equation*}
4 A_{Y}-\left|C_{Y}\right|-7\left|D_{Y}\right|<0 \tag{38}
\end{equation*}
$$

Using $A_{Y}>0, A_{T}^{2}=4+C_{Y}^{2}+3 D_{Y}^{2}$, we find that (36), (37), (38) are equivalent to

$$
\begin{gather*}
16+11 D_{Y}^{2}-4\left|C_{Y}\right|\left|D_{Y}\right|<0 \tag{39}\\
64+7 C_{Y}^{2}+23 D_{Y}^{2}-30\left|C_{Y}\right|\left|D_{Y}\right|<0 \tag{40}\\
64+15 C_{Y}^{3}-D_{Y}^{3}-14\left|C_{Y}\right|\left|D_{Y}\right|<0 \tag{41}
\end{gather*}
$$

respectively.
Now the region in the positive quadrant of the C_{Y}, D_{Y} plane not satisfying any of (39), (40), (41) is a region of infinite extent with a portion of three hyperbolas as part of the boundary. In this region the only points $\left(\left|C_{Y}\right|,\left|D_{Y}\right|\right)$ with $C_{Y} \equiv 0(\bmod 6), C_{Y} \equiv D_{Y}(\bmod 4)$ are $(0,4),(6,2),(0,8),(12,4)$, together with points for which $\left|C_{Y}\right|=\left|D_{Y}\right|$ or for which $D_{Y}=0$. We can reject $(0,4)$ and $(6,2)$ since, using $A_{T}^{2}=$ $4+C_{Y}^{3}+3 D_{Y}^{2}$, they give nonintegral A_{r}. Now $\left|C_{Y}\right|=\left|D_{Y}\right|$ gives $A_{Y}^{2}=4+4 D_{Y}^{2}$, so $\left(A_{Y}-2 D_{Y}\right)\left(A_{Y}+2 D_{Y}\right)=4$. This gives a finite number of possibilities of which only $C_{Y}=D_{Y}=0, A_{Y}=2$ is acceptable. Similarly $D_{Y}=0$ leads only to $C_{Y}=D_{Y}=0, A_{Y}=2$. Now $A_{Y}=2$, $C_{Y}=D_{Y}=0$ gives $Y_{1}=I_{2}$. Thus, subject to the constraint that $Z_{2}=Y_{2}=I_{2}$ we have found $i u X$ so that in $Z=X Y X^{T}$ we have $A_{Z}<A_{r}$. Since this descent must eventually stop, we have shown that any pdsiu group matrix is in the G class of I_{12} or the G-class of a group matrix Y for which $Y_{2}=I_{2}, A_{Y}=14,\left(C_{Y}, D_{Y}\right)=(0, \pm 8)$ or $(\pm 12, \pm 4)$. Let now Y be the pdsiu group matrix for which $Y_{2}=I_{2}$, $A_{Y}=14, C_{Y}=0, D_{Y}=8$. We now exhibit iu X for which $Z=X Y X^{r}$ has $Z_{2}=I_{2}, A_{Z}=14,\left(C_{Z}, D_{Z}\right)=(0,-8)$ or $(\pm 12, \pm 4)$.

First put $\eta_{1}=-\rho_{1}, \alpha=0, \alpha=0, b=-\left(\rho_{1}+\rho_{2}\right) / 2, \beta=-\left(\rho_{1}+\rho_{2}\right) / 2$, $c=\gamma=0, d=\delta=0$. Then $A_{X}=\rho_{1}, B_{X}=-\rho_{2}, C_{X}=D_{X}=0, X_{2} X_{2}^{*}=I_{2}$, and $A_{z}=14, C_{z}=-12 \rho_{1} \rho_{2}, D_{z}=-4$. Next put $\eta_{1}=-\rho_{1}, a=2 \rho_{1}$, $\alpha=0, b=\left(\rho_{2}-3 \rho_{1}\right) / 2, \beta=-\left(\rho_{1}+\rho_{2}\right) / 2, c=0, \gamma=0, d=-2 \rho_{1}, \delta=0$. Then $A_{X}=7 \rho_{1}, B_{X}=\rho_{2}, C_{X}=0, D_{X}=-4 \rho_{1}, X_{2} X_{2}^{*}=I_{2}, A_{Z}=14, C_{Z}=0$, $D_{z}=-8$. Finally put $\eta_{3}=-\rho_{1}, a=\alpha=b=\beta=c=\gamma=0, d=\delta=$ $-\left(\rho_{1}+\rho_{2}\right) / 2$. Then $A_{X}=\rho_{1}, B_{X}=-\rho_{2}, C_{x}=D_{x}=0, \mathfrak{n}_{x}=\rho_{1}, \mathfrak{B}_{x}=\rho_{2}$, $\mathfrak{c}_{X}=\mathfrak{D}_{x}=0$. Moreover $X_{2} X_{2}^{*}=I_{2}$ and $Z_{1}=X_{1} Y_{1} X_{1}^{*}$ has $A_{Z}=14$, $C_{Z}=-12 \rho_{1} \rho_{2}, D_{Z}=4$.

We have thus established that the G-class number is at most two. If it were one there would be an X for which $X_{1} Y_{1} X_{1}^{*}=I_{2}$ and $X_{2} X_{2}^{*}=I_{2}$. The second condition forces (as previously noted): $\gamma=\delta=0$ or $\alpha=\beta=0$. In turn these as before, $C_{X} \equiv 0(\bmod 6), C_{X} \equiv D_{X}(\bmod 4)$. Then Lemma 2 shows that $C_{x}^{2}+3 D_{X}^{2}<C_{Y}^{2}+3 D_{Y}^{2}=192$. Using $A_{X}^{2}+3 B_{x}^{2}=4+C_{X}^{2}+3 D_{X}^{2}$, all possible values of $A_{X}, B_{X}, C_{X}, D_{X}$ are easily found and tested in (27). In all cases $A_{Z}-A_{Y} \geqq 0$. Thus we have proved that the G-class number is precisely two.
9. The group $a^{4}=1, b^{3}=1, a^{-1} b a=b^{2}$, of order twelve. If we take the group elements in the order $1, b, b^{2}, a, a b, a b^{2}, a^{2}, a^{2} b, a^{2} b^{2}, a^{3}, a^{3} b, a^{3} b^{2}$, then the group matrix X partitions into blocks which are 3×3 circulants. Let $\left(x_{0}, x_{1}, \cdots, x_{11}\right)^{T}$ be the first column of X. We compute the irreducible representations as indicated in 82 . At one point it is necessary to make use of the following fact:

$$
2^{-1 / 2}\left[\begin{array}{cc}
I_{2} & I_{2} \\
I_{2} & -I_{2}
\end{array}\right]\left[\begin{array}{cc}
A & B \\
B & A
\end{array}\right] 2^{-1 / 2}\left[\begin{array}{cc}
I_{2} & I_{2} \\
I_{2} & -I_{2}
\end{array}\right]=\left[\begin{array}{cc}
A+B & 0 \\
0 & A-B
\end{array}\right]
$$

if A, B are 2×2 matrices. Thus we find a unitary U such that $U X U^{*}=\left(\varepsilon_{1}\right)+\left(\varepsilon_{4}\right)+\left(\varepsilon_{2}\right)+\left(\varepsilon_{3}\right)+X_{1}+X_{1}+X_{2}+X_{2}$. Here, if $\eta_{1}=$ $x_{0}+x_{1}+x_{2}, \eta_{2}=x_{6}+x_{7},+x_{8}, \eta_{3}=x_{3}+x_{4}+x_{5}, \eta_{4}=x_{9}+x_{10}+x_{11}$, then:

$$
\left[\begin{array}{rrrr}
1 / 2 & 1 / 2 & 1 / 2 & 1 / 2 \tag{42}\\
1 / 2 & i / 2 & -1 / 2 & -i / 2 \\
1 / 2 & -1 / 2 & 1 / 2 & -1 / 2 \\
1 / 2 & -i / 2 & -1 / 2 & i / 2
\end{array}\right]\left[\begin{array}{l}
\eta_{0} \\
\eta_{4} \\
\eta_{2} \\
\eta_{3}
\end{array}\right]=\frac{1}{2}\left[\begin{array}{l}
\varepsilon_{1} \\
\varepsilon_{4} \\
\varepsilon_{2} \\
\varepsilon_{3}
\end{array}\right] .
$$

The matrix X_{1} is described by (25) and (26) where $a=x_{0}+x_{6}, b=x_{2}+x_{8}$, $c=x_{3}+x_{9}, d=x_{5}+x_{11} . \quad X_{2}$ is described by

$$
X_{2}=\left[\begin{array}{rr}
X_{2,1} & -\bar{X}_{2,2} \\
X_{2,2} & \bar{X}_{2,1}
\end{array}\right]
$$

with $X_{2,1}, X_{2,2}$ given by (26); $\alpha=x_{0}-x_{6}, \beta=x_{2}-x_{8}, \gamma=x_{3}-x_{9}$, $\delta=x_{5}-x_{11}$.

As before, for integral $x_{0}, x_{1}, \cdots, x_{11}$ we must have $a \equiv \alpha, b \equiv \beta$, $c \equiv \gamma, d \equiv \delta(\bmod 2)$. Here $\varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3}, \varepsilon_{4}$, $\operatorname{det} X_{1}$, $\operatorname{det} X_{2}$ are algebraic integers and must be units if X is to be $i u$. Since the ε_{i} are Gaussian integers, this forces the ε_{i} to be roots of unity. Because the matrix in (42) is unitary, this forces exactly one η_{i} to be ± 1, the others to be zero. Now in fact $\operatorname{det} X_{1}$, $\operatorname{det} X_{2}$ are rational integers and $\operatorname{det} X_{2}>0$. Thus det $X_{1}= \pm 1$ (+1 if η_{1} or η_{2} is $\pm 1,-1$ if η_{3} or η_{4} is ± 1) and $\operatorname{det} X_{2}=1$. The $p d s i u \quad X$ arise when $\eta_{1}=1, \varepsilon_{1}=\varepsilon_{2}=\varepsilon_{3}=\varepsilon_{4}=1$, $\operatorname{det} X_{1}=1, X_{1,1}>0, X_{2,1}>0$. From $\operatorname{det} X_{2}=1$ we get $\left|X_{2,1}\right|^{2}+\left|X_{2,2}\right|^{2}=1$.

Each of $\left|X_{2,1}\right|^{2},\left|X_{2,2}\right|^{2}$ is a rational integer so either $X_{2,1}=0$ or $X_{2,2}=0$. When X is $p d s i u, X_{2,1}$ is thus a positive unit in the field of $R\left((-3)^{1 / 2}\right)$, hence $X_{2,1}=1$ and hence $X_{2}=I_{2}$. But always if X is just $i u$ we have $X_{2} X_{2}^{*}=I_{2}$. We show $X_{2,2}=0$ when η_{1} or η_{2} is ± 1; and $X_{2,1}=0$ when η_{3} or η_{4} is ± 1. If we had η_{1} or η_{2} equal to ± 1 and $X_{2,1}=0$ we would have $3 \alpha-\eta_{1}+\eta_{2}=0$, which is not true for any integer α. Similarly if η_{3} or η_{4} is ± 1 then $X_{2,2}=0$ is absurd. From this point on the discussion is almost word for word the same as the discussion in $\S 8$. We introduce $A_{X}, B_{X}, C_{X}, D_{X}, \mathfrak{Y}_{x}, \mathfrak{B}_{x}, \mathfrak{C}_{X}, \mathfrak{D}_{x}$ as in $\S 8$. We have just established that $\mathfrak{C}_{x}=\mathfrak{D}_{x}=0$ and that $Y_{2}=I_{2}$ if Y is pdsiu. We now carry on from the point in $\S 8$ at which we assumed $Y_{2}=I_{2}$. The conclusion we reach is that the G-class number is two.
10. The noncyclic abelian group of order twelve. By Theorem 2 the only $p d s i u$ group matrix for this group is I_{12}.
11. Summary. Let Φ_{n} be the matrix on p. 331 of [5].

Theorem 5. For all groups G of order $n \leqq 13$, the G-class number is one, except for the cyclic groups of orders 8 and 12, the dihedral groups of orders 8 and 12, the alternating group A_{4}, and the remaining nonabelian group of order twelve. In each of these exceptional cases the G-class number is two and the nonprincipal G-class is contained in the C-class of Φ_{n}.

Acknowledgement. I have benefited from discussions of this problem with Dr. O. Taussky. In particular, through Dr. Taussky, I was aware of prior unpublished work of M. Kneser and E. C. Dade who computed the G-class number for the cyclic group of order nine (Kneser) and for a number of cyclic groups of prime order (Dade).

References

1. G. Higman, The units of group rings, Proc. London Math. Soc. 46 (1940), 231-248.
2. M. Kneser, Klassenzahlen definiter Quadratischer Formen, Archiv der Math. 8 (1957), 241-250.
3. M. Newman, Circulant quadratic forms, Report of the Institute in the theory of numbers, Boulder, Colorado (1959), 189-193.
4. M. Newman and O. Taussky, Classes of definite unimodular circulants, Canad. Math. J. 9 (1956), 71-73.
5. O. T. O'Meara, Introduction to quadratic forms, Academic Press, New York, 1963.
6. O. Taussky, Matrices of rational integers, Bull. Amer. Math. Soc. 66 (1960), 327-345.
7. R. C. Thompson, Normal matrices and the normal basis in abelian number fields, Pacific J. Math. 12 (1962), 1115-1124.
8. R. C. Thompson Unimodular group matrices with rational integers as elements, Pacific J. Math. 14 (1964), 719-726.

The University of California, Santa Barbara

