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CLASSES OF DEFINITE GROUP MATRICES

R. C. THOMPSON

Two positive definite symmetric n x n matrices A, B with
integer elements and determinant one are said to be congruent
if there exists an integral C such that B = CACT {Cτ is the
transpose of C). This is an equivalence relation. The number
of equivalence classes, C-classes, is finite and is known for all
n ^ 16. Let G be a finite group of order n and let Y, Z be
two positive definite symmetric group matrices for G with
integral elements and determinant one. If an integral group
matrix X for G exists such that Z = XYXT then Z, Y are
said to be G-congruent. G congruence is an equivalence re-
lation. In this paper the interlinking of the G-classes with
the C-classes is determined for all groups of order n ^ 13.
The principal result is that the G-class number is two for
certain groups of orders eight or twelve and is one for all
other groups of order n ^ 13.

Let G be a finite group with elements gu g2, , gn. Let xu x2, , xn

be variables and let X be an n x n matrix whose (i, j) element is xk

where k is determined by gk = g^gj1. We say X is a group matrix
for G. In this paper we study group matrices which have rational
integers as elements. We call a matrix M integral if its elements are
rational integers, unimodular if the determinant of M — detΛf = ± 1 ,
symmetric if M — Mτ where Mτ is the transpose of M. We let Λf *
denote the complex conjugate of Mτ. The words positive, definite,
symmetric, integral, unimodular are abbreviated as p, d, s, i, u, re-
spectively. We say pdsίu matrices M and Mx are congruent if M1 —
UMUT for some iuU. Congruence is an equivalence relation on the
set of n x n pdsiu matrices. The number of equivalence classes
(briefly: C-classes) is finite and in fact [2] is one for 1 ^ n ^ 7, two
for 8 ^ n ^ 11, and three for n — 12, 13. If G is a finite group we
say pdsiu group matrices M and M1 are G-congruent if M1 = UMUT

for some in group matrix U for G. Since sums, products, inverses,
and transposes of group matrices for G are still group matrices for
G, G congruence is an equivalence relation on the set of pdsiu group
matrices for G. Not much is known about the equivalence classes
(briefly: G-classes). In this paper we find all G-classes and determine
their relationship with the C-classes for all groups of order n ^ 13;
we also get a little information for n > 13. Our interest in this
problem stems from the following Theorem 1, proved in [8].
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176 R. C. THOMPSON

THEOREM 1. If a pdsίu group matrix M for G is in the principal
C-class then M is in the principal G-class, when G is solvable.

The principal class is, of course, the class containing In, the n x n
identity matrix.

One may ask: are there any pdsiu group matrices for G, other
than the identity?

THEOREM 2. There exist pdsiu group matrices for G in addition
to the identity precisely when G is not any of the following types of
groups:

( i ) the direct product of cyclic groups of orders two and/or four;
(ii) the direct product of cyclic groups of orders two and/or three;
(iii) the quaternion group or the direct product of the quaternion

group with cyclic groups of order two.

Proof. Combining the discussion on p. 340 of [6] with Theorem
11 of [1] shows that an iu group matrix for G exists which is not
a permutation matrix or the negative of a permutation matrix precisely
when G is not any of the groups (i), (ii), (iii). If M is an iu group
matrix for G, not a permutation matrix or the negative of a permutation
matrix, then MMT is a pdsiu group matrix for G and not the identity
since the (i, i) element of MMT is the sum of squares of the integers
in row i of M.

Concerning the finiteness of the G-class number, only the following
fact is known.

THEOREM 3. The G class number is finite if G is abelian.

Proof. This follows from the argument of [3], making use of
Lemma 2 of [7].

2* Two lemmas. Let P = Pn be the n X n companion matrix
of the polynomial \n — 1. Let v = vn = (1, 1, , 1) be the row w-tuple
in which each entry is one.

LEMMA 1. Let p be an odd prime and let t be an integer prime
to p. Then λ = 1 is a simple eigenvalue of P£, λ = —1 is not an
eigenvalue, and vp spans the eigenspace of Pp belonging to λ = 1.

Proof. The eigenvalues of Pv are 1 and the p — 1 primitive pth
roots of unity. Hence this is also true of Pj since ωt is a primitive
pth root of unity if ω is and (ί, p) = 1. Thus 1 is a simple eigenvalue
of Pp and — 1 is not an eigenvalue. Since vpPp — vp, the last assertion
is immediate.
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Let ά denote the complex conjugate of a.

LEMMA 2. Let

oc β\lx y\la β

β a)\y x)\β a

where α , β, y are complex numbers and x is a positive real number.

Let x2 - \ y |2 = 1. If \ a |2 - | β \2 = 1 then x, < x implies \β\ <\y\

and xx S % implies \ β | ^ | y |. If \ a |2 — | β \2 = — 1 then xx<x implies

\a\ < IV I fl^ xx^x implies \a\ ^ \y\.

Proof. The cases a — 0 or /5 = 0 are easy. Let a Φ 0, β Φ 0,

- \β\2 = 1. Now | α | 2 + |/3| 2 = 1 + 2|/3| 2, hence x,-x = 2x\β\2 +

+ yaβ < 0 if xι < x. Hence 0 < 2x \ β |2 < —yaβ — ^ / 3 . By the

t r i a n g l e i n e q u a l i t y w e g e t 2 x \ β \ 2 < 2 \ y \ \ a \ \ β \ , h e n c e x 2 \ β \ 2 < \ y \ 2 \ a \ 2 ~

\y | 2 (1 + i/S|2), therefore (#2 — |̂ /12) | / 3 | 2 < |τ/|2, or |/3| < | i/ | as required.

A similar computation holds when xx ^ x or when a 2 — \β\2 = — 1.

An w x π circulant is, by definition, a polynomial in P Λ . I t is

also a group matrix for the cyclic group of order n. Since Pn is

unitarily diagonable, given a circulant

n-L
Λ7~ ^"1 ,γ ~pi

there exists a unitary F, independent of X, such that FXF* —
diag (fo, ξu , ί̂ î) where

w - l

( Λ \ t — V r r/)̂  0 < '̂ < Ύ) — 1

Here α> is a primitive wth root of unity. We make frequent use of
this fact. If Y = (Yiά) is partitioned into blocks Yi3- each of which
is a circulant and if W=V + V+- -+V(+ denotes direct sum)
then each of the blocks in WYlf* is diagonalized. One may find a
permutation matrix Q for which QWYW*Q* splits into a direct sum.
In the computations of §§ 4-9 some of the direct summands will again
be circulants and so may themselves be unitarily diagonalized. In this
manner we obtain the unitary U and the irreducible constituents of
the group matrices of §§ 4-9. We also use the fact that a circulant
equation like Z = XY holds if and only if ζ^Z) = ξ^X^^Y) for all i.

3* The C-classes Φr + Ijy where Φr does not represent one*
Let Φr be an r x r pdsiu matrix (not necessarily a group matrix) such
that xΦrx

τ Φ 1 for any integral vector x.
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THEOREM 4. The C-class of Φr + I3 does not contain any group
matrix if there exists an odd prime divisor p of r + j which does
not divide r.

Proof. Let n = r + j . Since Φr does not represent one, it is easy
to find all integral ^-tuples x for which x(Φr + I3)xτ — 1. The number
of such x is exactly 2j. Suppose X is a group matrix for some group
G, with X in the C-class of Φr + I3. Then G contains an element a
of order p. Let H be the cyclic subgroup of G generated by a and
let gjl, g2H, , gkH, (k = n/p), be the cosets of H in G. If we take
the elements of G in the order gu gxa, g±a2, , gfo**1, g2j g2a, g2a

2, ,
g2a

v~x, , gk, gka, gka
2, , gka

v~λ, then the group matrix X partitions
as X — (Xij)i^i,j<Lk, where each Xi3 is a p x p circulant. If Q = Pp +
Pp + + Pp t h e n QXQT = X L e t x = (xu x 2 , ••-, x k ) b e a r o w
^-tuple, where each xi is a row p-tuple. If x is integral and xXxτ — 1
then (xQa)X(xQa)τ = 1 for α: = 0, 1, 2, , p - 1. If α;Qα = xQ^ for
a pair α, /3 with 0 ^ /3 < a < p then ^Qα~β = x. This implies XiP"~β = Xι
for 1 ^ i ^ it, and by Lemma 1, xi — λ^p, 1 ^ i ^ ϋ. Since α̂  is
integral, \ is an integer. Moreover, vp is an eigenvector of Pp, hence
of any p x p circulant, hence vvXi3 — ri3 vp. Here ri3 is an integer
(in fact the sum down any column of Xi3). Now

xXxτ = Σ XiXuX?

because v ^ = p. This contradicts ^XxΓ — 1, hence xQa = xQβ is
impossible. If xQa = -xQβ then xQa~β = —x, so XiP«~β = -xiy 1 ^

i ^ k. By Lemma 1 this implies # { = 0. Hence x = 0, a clear
falsehood. Thus ±xQ α for 0 <̂  α: < p are 2p distinct integral solutions
of yXyτ = 1. If 7/ is further solution then ±yQa, 0 ^ a < p are also
all different. If ±yQa = ±xQβ then ?/ = ±xQ\ for some 7, 0 g 7 < p,
and this contradicts the choice of y. Thus the integral vectors
representing one come in nonoverlapping sets of 2p. We thus have
j = 0 (mod p). Since r + j ΞΞ 0 (mod p), we get r ΞΞ 0 (mod p), a contra-
diction.

Now let Φn (for ?i ΞΞ 0 (mod 4), n > 4) be the matrix on p. 331 of
[5]. Then it is known that Φn is pdsiu and Φn does not represent
one. Representatives of the nonprincipal C-classes up to n = 13 are
Φ8, Φ8 + I, for 1 ^ j ^ 5, Φ12, <£12 + /1#
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COROLLARY. The only non principal n x n C-classes for n g 13
that can contain a group matrix are the C-classes of Φ8 and Φ12.

4* The dihedral group of order eight* The dihedral group of
order 2n is generated by two elements α, δ with an = b2 = 1, b^ab = or1.

If we take the elements in the order 1, a, a2,
then the group matrix X has the form

, an~\ 6, ba, ba2, , ban~

( 2 )
A C

B D

where A, B, C, D are n x n circulants and C = Bτ, D = Aτ. If n — 4
and A = xol + x,P + x2P

2 + x,P\ B = xj + x5P + x6P2 + xΊP\ then
there exists a unitary U such that UXU* — (εx) + (e2) + (εs) + (ε4) +
Xi + Xi where:

( 3 )
1
2

c
£ 1

c
c '2

c
C 4

" 1
2

1
2

1
2

1
2

1
2

1
2

1
2

_ 1
2

1
2

_ 1
2

1
2

_ 1
2

1
2

_ 1
2

1
2

1
2

( 4 )

( 5 )

( 6 )

ηL =.•

Λ.x =

a:,, 7/., =

ι ~

TJly JD% : = ^iZJi •

a ; β , >y4 =

CΣ - %

For X to be in each of ε^ ε2, ε3, ε4, det Xx must be ± 1 since each
of these is a rational integer. Since the matrix in (3) is unitary,

( 7 ) m + rj\ ε 3 1 2

Consequently as ηu η2, ηZi η± are rational integers, exactly one of
ViV^iV'^Vi i s ±1> a n ( i tlie other three are zero. Thus exactly one of
Ax, Bx, Cz, Dx is odd, the other three are even. From det Xλ = ± 1
we get detXi = 1 if Ax or Bx is even, det XL — —1 if Cx or D z is
even. (Consider Ax + Bx — Cx — Dx = ± 1 modulo 4.) Conversely if
Ax, Bx, Cx, Dz are integers, one even, three odd, with AΣ + BX —
Cx — Dx — ± 1 we can use (3), (4), (5), (6) to construct an in group
matrix X. The pdsiu group matrices arise when εj. = ε2 = ε3 = ε4 =
7]x = 1, Ax > 0.
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Now let Y, Z be pdsiu group matrices. Then Z — XYXT holds
if and only if UZU* = (UXU*)(UYU*)(UXU*)*; and this holds if
and only if Zλ = XιY1X1*3 and ε%(Z) = eί(X)εi(Y)eXX)1 for i = 1, 2, 3, 4.
This last condition is satisfied since the ε^X) are ± 1 . Here, and
henceforth, let pu p2, p2, pά stand for integers which may independently
be ± 1 . We now use a descent argument. We attempt to choose
Ax, Bx, Cx, Dx so that Az < Aγ. As in the proof of Lemma 2, we
have

(A
z
 - A

r
)/2 = A

Y
(C

X
 + Dl)

( }
 + C

Y
(A

X
C
X
 - B

X
D
X
) + D

Y
(A

X
D
X
 + B

X
C
X
) .

Put Ax = pu Bx = 2ρ2j Cx = 2ρ3, Dx = 0. Then X is iu and by (8)
we can choose the signs pu p2, p2 so that Az < Aγ if

( 9 ) 2AY - I CY I - 2 I Dγ | < 0 .

Next take Ax = |01? Bx = 2p2, Cx = 0, Dx = 2^. Then X is w and by
(8) we may choose the signs pi9 p2, p4 so that Az < AF if

(10) 2AY - 2 I CY I - ID F | < 0 .

Since A^ = 1 + C\ + DYi Aγ > 0, (9) holds

(11)

Similarly

(12)

(10)

<=» 4AY < Cγ +
~ 4(1 + Cγ + J

«• 4 + 3C^ - 4

holds if and only

4 + 3Dr -

4 |

Or)

| C

if

4 |

Cγl

<

Y 11

CY +

Dy\ <

\DY

4 CYi

CO.

< 0 .

Now the region in the positive quadrant of the CF, Dγ plane not
satisfying either (11) or (12) is a region of infinite extent with a
portion of two hyperbolas as part of the boundary. The only points
in this region with even integral coordinates have either Cγ ~ 0 or
Dγ = 0, or else | Cγ \ = \ Dγ \ = 2. Now if Cγ = 0 we get from Aγ =
1 + CF + Dγ that (AF - Dy)(Ar + i)F) = 1, so AF + CF = Aγ ~ Cγ =
± 1 , hence .AF = 1, D F = 0. Now Aγ = 1, Cγ -= JDF = 0 gives Y - /8.
Thus any pdsiu group matrix Y is in the same G-class as I8 or else
in the G-class of a Y for which Cγ --= ± 2 , Dγ = ±2, Aγ = 3. That
these last four possible Y are in the same G-class is seen as follows.
Let T denote the pdsiu group matrix with Aτ — 3, Cτ — 2, Dτ — 2.
If Ax = 3, Bx = 0, Cx = - 2 , D x - - 2 then ^ = XTX2T has Az = 3,
β z = 0, C, = - 2 , Z?z = - 2 . If Ax - - 2 , 5 X - - 2 , C x = 3, Dx = 0
then Z = XTXT has ^ = 3, Bz - 0, C z - - 2 , D z = 2. If i4^ - 2,
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Bx = - 2 , Cx = 0, Dx = - 3 then Z = XTXT has Az = 3,BZ = 0, Cz = 2,
Dz — — 2. Thus the G-class number is ^ 2 . If it were one there
would be an X such that X^X? = /2. Lemma 2 then shows that if
det Xx = 1 we have C2

X + DJ- < Oτ + DJ = 8 and if det X, = - 1 then
4̂.χ + -B* < 8β All possible Ax, Bx, CXj Dx are easily found and none

work.

5* The other groups of order eight* The cyclic group of order
eight is completely worked out in [4]. The G class number is two.
The only pdsiu group matrix belonging to any of the remaining groups
of order eight is 78β

6* The cyclic group of order twelve* Let X = xjn + xλP12 +
• + xuPn. Take ω = (31/2 + ί)/2 for the primitive root of unity of
order twelve. Then for a unitary U, UXU* = diag (f0, fi, , in) where
(see (1)):

(13)

(14)

1/2
1/2

1/2

1/2

1/2
i/2

-1/2

-i/2

1/2
-1/2

1/2

-1/2

1/2
-i/2

-1/2

i/2

y°

η
t

1
2

ξ
s

ξ

X8, 7J3 = 9y Ύ]G = X2

(15) + i(Xχ + 2x 3 + a?5 — x7

+ 3 1 / 2 ( ^ - x5 - x7 + a?n

f2 = [2x0 + x1 — x2 — 2x3 —
(16)

(17)

— x 1 0

+ x 5 + 2xG

x2 — x± — x5

: [ZJCU/Q IA/I ί^2 i £iX"3, X^ X§ ~\

*̂ 10 ' ^11 i \ " / \ ^1 «̂ 2 ~Γ X4

α;4 - α?8 - a? 1 0 ) l/2 ,

x7 — x8 — 2x9

x7 + x8 — x10 — xn)]/2 ,

Xγ ~

Xγ X% \ X\Q

The remaining ^ are conjugate to one of ξL, ξ2, ξ4 in the field R(ω) of
the 12th root of unity. As f0, •• , ί n are algebraic integers, X is
unimodular if and only if f0, , ξn are units. Since the matrix in
(13) is unitary, rj\ + η\ + η\+ ηl = (| f01

2 + | ξ, |2 + | ί61
2 + | ί91

2)/4 = 1
since ί0, f3, ί6) fo a r ^ units in the Gaussian integers, hence roots of unity.
As Tj^rj^Tj^ η9 are rational integers, exactly one of η0, ^3, ^6, VQ is ± 1 ,
the other three are zero. We now show that we can find a circulant
W of the form ± P * so that in XW we have

(18) 7J0 — 1 — ξ 0 = ξ 3 = <J6 =
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and ξ2 = ± 1 . If, for X, η0 = ± 1 then by (13), ξ0 = ξ8 = ί6 = f9 = 7?0

and for X(η0I12), (18) is satisfied. If, for X, ̂  = ± 1 , then by (13),
ίo = ^3, ί3 = ί)?3, ίβ = —^3, ί9 = — i)?3. Then, for X(η3P?2), (18) is satisfied.
If, for X, % = ± 1 , then by (13), ξ0 = 3?β, f3 = - ^ β , ί6 = %, ί9 = ~7}6.
Then, for X(%Pk), (18) is satisfied. If, for X, η9 = ± 1 , then by (13),
ίo = ^9, ί3 = — ift, ίβ = - % , ί9 = ^%, and for X()79PI2), (18) is satisfied.
So now let X satisfy (18). For X, f2 is a unit in the field i2((-3)1/2),
hence f2 is a power of ω2 — (1 + (—3)1/2)/2. We can choose λ to be
— 1, 0, or 1, such that for XPi4

2

λ we still have (18) and, moreover,
XPi2

λ has ζ2 equal to ω° or α>6; that is ζ2= ± 1 . Thus we have achieved
our claim. Note that ζ4 is also a unit in JS(( — 3)1/2) and that the
rational part of the numerator of ί4 is congruent (mod 2) to the rational
part of the numerator of ξ2. Since the only units in R(( — 3)1/2) are
( ± 1 ± (-3)^2)/2 or ±2/2, ξ2 - ± 1 forces £4 - ± 1 .

We now construct the pdsίu circulants X. These have all ξ{ real
and positive, whence (18) holds. Symmetry implies xn_3 = χ1+j for
0 ^ i ^ 4. Then for the ξ{ to be positive units we require ξ0 — ξ2 —
f3 = f4 = fβ = 1, hence:

ί̂o + 2Xχ + 2x2 + 2xs + 2a;4 + 2x5 + x6 = 1 ,

ίίy0 - p Clyi X 2 ώ X β X 4 - p ^ / 5 - p Λ/6

 : = z 1 ,

Λ/0 ^Jί^ 2 ~τ~ ΛX^ • XQ 'Z=- JL ,

x0 — xx — x2 + 2^3 — x4 — xδ + xβ = 1 ,

XQ £IX\ ~χ~ ZJ»V2 /ύtλ/Q ~γ~ ΔiJO^ Zjtvg —p tΛ/g J. .

Solving these simultaneously we get x0 — 1 — 2α?4, x5 = — £clf x3 = 0,
£2 = -a?4, a;6 = 2x,. Then fx = 1 - 6x4 + (3)1/2(2α;1), and ξ^ = (1 - 6^4)

2 -
3(2x!)2 = 1 if ίi, ί5 are to be positive units. Hence & satisfies a PelΓs
equation, the fundamental solution of which is 2 — 31/2. Now by
induction one easily checks that all odd powers of 2 — 31/2 have even
rational part and all even powers have rational part = 1 (mod 6) and
even irrational part. Consequently all pdsiu circulants are powers of
the circulant M for which rjQ = 1 = f0 = f3 = fβ = f9 = f2 = f4, fi =
(2 - 31/2)2 = 7 - 4 31/2. Now M2a = Ma(Ma)τ is in the principal G-class
and M2a+1 = Ma M-(Ma)τ is in the G-class of M. To show that the
G-class number is two, we need only show that M is not in the principal
G-class. If M = XXT for X an in circulant, then for any W of the
form W = ±P1% we have M = (XW)(XW)T. Then by the remarks
of the previous paragraph, we may, after changing XW to X, assume
that M = XXΓ where, for X, (18) holds and ξz= ± 1 , ί4 = ± 1 . From
(14) and (18) we get
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(19)

From £2 -

(20)

and from

(21)

= ±1

2x0

f 4 =

(2x0

J
X -

we

+ X

f- x 2

± 1 :

/yi

- x 2

get

1 X<l

- x t -

i - ί»2

+ a > 4 -

# 0

X X

x 2

-X

+

- X

+ :
+ '.

2x

,+

2x3

; +

K4 + X8

Λyg "|"^ ivq

γ _1_ /y

v7 + xn

-χ< +

rγ . 1 /y

a; — x

= 1 ,

= o ,

= 0 .

χ5 +

- 2a;9

^5 +

+ 2x9

O/γ» I /y» /y»
ώJiA/β Π^ t ^ 7 ι,l/g

#10 ~Γ #11 = =

, - Xn = 0 ,

2x0 -x7-xs

• l̂O ^ 1 1 —

— x = 0 .

2/?2

Solving (19), (20), (21) simultaneously and remembering t h a t the
variables are integers, we get px = p2 — 1, xL — — x7, x2 = x0 + x4 — 1,

-a?β. Then for M = X X y we must have 7 - 4.31/2 = S£lm Using (15)
this becomes

(22)

(23)

0 - 2)2 + S(x5

3a;0 - 2) + 6(x5 -

0 + 2x4 - I)2 = 7 ,

x4 - 1) = - 4 .

From (22) we first obtain xδ = x7, then xb — x7 — 0. But then we
contradict (23). Hence the G-class number is two.

7* The alternating group of order twelve* This group is
generated by elements α, δ, c with α2 = δ2 = c3 = 1, ab = ba, ac = cαδ,
δc = cα. The irreducible constituents of the group matrix X are most
easily computed if we take the group elements in the order,
1, α, δ, ab, c, ca, cb, cab, c2, c2a, c2b, c2ab. Then the group matrix partitions
into 4 x 4 blocks each of which has the structure of

N =

a β 7 δ"

β a δ y

y δ a β

δ 7 /3 α:_

If V denotes the unitary matrix of (3), then VNV* — diag (a + β +
7 + 5 , a + β - y - δ, a - β + j - δ, a - β - 7 + δ). Thus each block
in X can be diagonalized. After the same permutation of rows and
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columns, the group matrix splits up into a direct sum of four 3 x 3
blocks, of which one is a circulant and may be diagonalized. Let
(x0, xl9 , xn)

τ be the first column of X.

Let x2
7]2 = x5 + x

> $12

$32 ~~

by:

$23 =

~~ ^ 5 ~Γ

. _ — XQ ~\- o>

rβ -\- X d = X 4- X Π. -z=. X -\- X Π. — ζv> I

JJQ - p tΛ/ioj W/31 — Λ/j_Q Π"̂  «^llj WΊ3 — «Λ/5 Π~ «̂ 6> ^ 2 1 — *^6 ~t"

now let ω = ( - 1 + (-3)1/2)/2. Define εly ε2, ε3,
-g-l/2 3-I/2 3-I/2-

(24) 3~1/2 ω 3 - 1 / 2 o / 3 - 1 / 2 η2 = 3~1/2

7i — 2 α n 573 — 2 α 1 2 ~η2 — 2α 1 3 "

y2 — 2 α 2 1 77i — 2 α 2 2 773 — 2 α 2 3

73 — 2 α 3 1 η2 — 2 α 3 2 τjL — 2 α 3 3 _

Then there exists a unitary U such that UXU* = (ε^ + (ε2) + (ε3) +
•̂x + Ax + Ax. Moreover X is unimodular if and only if det Ax =

± 1 and εu ε2, ε3 are units in R(ω). Thus ε1? ε2, ε3 have to be roots of
unity and since the matrix in (24) is unitary, this forces η\ + Ύ]\ +

= (I εx |
2 + I ε 2 1 2 + | ε

2)/3 = 1. Thus exactly one of ηu η2, ηz is ± 1 ,
the other two are zero. Note that an — x2+ x2, a22 — xx + x3, α33 =
x1 + x2, possess an integral solution xu x2y xz if and only if an + α22 +
α33 ΞΞ 0(mod2); a similar remark holds for a12, α23, α31; and for α13, $21, $32.
Thus X is in if and only if Ax is w and exactly two of Ύ)uτ)2, rjz are
zero and one is ± 1 , and an + $22 + $33 =Ξ a12 + α23 + $31 = $13 + $2i +
α32 = 0(mod 2). The pdsiu X arise when ε± — ε2 = ε3 = 1, rjγ = 1, ^2 =
773 = 0, A x is pdsiu.

Now if Y, Z are pdsiu group matrices we have Z — XYXT if
and only if Az = AXAYAX and ε^z) = ^(X)^(T)^(X), ΐ = 1, 2, 3. This
last condition is met since ei(X)εi(X) — 1 because εt(X) is a root of
unity. The fact that Aτ is pdsiu and the fact that the C-class number
is one at n — 3 implies that Ar — WWT for some iu W. Here W
need not be an Ax. Consider W mod 2. Since mod 2, Aγ = I3, W (mod 2)
is orthogonal. Hence, mod 2, W is a permutation matrix. We may
find a 3 x 3 permutation matrix Q such that, mod 2, WQ = /3. We
can do more. If we permit Q to be a generalized permutation matrix
(nonzero entries are ± 1) we can force WQ = /3 (mod 2) and each
diagonal element of WQ is = l ( m o d 4 ) . Changing notation and letting
WQ be W, we have Aγ = WWT where now W is iu and (mod 4) has
1 in each diagonal position and (mod 4) has 0 or 2 in each off-diagonal
position. Now one can write down all 64 matrices W (mod 4) of this
type and determine those for which WWT has the structure (mod 4)
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1
0

0

2
1

0

2
0

1

of an AYm It turns out that the W matrices (mod 4) with this property
are precisely the W matrices with an even number of twos (mod 4)
off the main diagonal. Certain of these acceptable W already have
the structure (mod 4) of an Aγ. When this is so, Y is in the principal
G-class. For all those acceptable W not (mod 4) of the form of an
AXf it turns out that WT, where

rp

is an Ax. Let H - T^T^f. Then Aγ = (WT)H(WTf = AXHAZ

where Ax = WT. Moreover, H is an Az. Thus Y is in the same
G-class as Z, where Az — H. Is Z in the principal G-class? If so
H — AXAX for some X. But it is easy to find all integral B for which
H = BBT; none is (mod 4) an Ax. Hence the G-class number is two.

8* The dihedral group of order twelve. As is § 4 the group
matrix may be taken to have the form (2) with C = Bτ, D — Aτ. Let
A = xj6 + xJP* + + x6PΪ, B = xj6 + x7Pβ + + xuPS. There
exists a unitary U such that UXU* = (e,) + (ε2) + (e3) + (ε4) + X1 +
X1 + X2 + X2 w h e r e : i f ηx = xQ + x2 + x 4 , η2 = %ι + %3 + » 6ι % = ^6 +
^s + «io, ^4 = ^7 + χ9 + χiu a n d if a = x Q + x 3 , b = x ^ x 4 , a = xQ - x 3 ,
β = Xt — x l 9 c = Xo+ x9,d = x 7 + x m 7 = xG — x 9 , S = x 1 0 — a;7, t h e n (3)
holds, and, in addition,

(25)

where

(26)

XU1 = (3α

-aΓi.2 = (3c

X2>1 = (3α

lX2,2 = (3τ

A9.9 -Λ.O

2b - ft - ft))/2

ft - α - 2/3))/2

ft - 7 - 2δ))/2 .

Note that x0, , ίcn are integers if and only if a == α:, δ Ξ /3, c = 7,
d = δ (mod 2). As ε^ ε2, ε3, ε4, det X1? det X2 are rational integers, X
is unimodular if and only if ely ε2, ε3, ε4, det Xu det X2 are each ± 1 .
Hence, as with the dihedral group of order eight, exactly one of
V^V^V^V^ ^s ± 1 a n d the other three are zero. By considering the
formulas for det Xx and det X2 (mod 3), we find det Xx = det X2 = 1 if
ft or rj2 is ± 1 , and det Xλ = det X2 = — 1 if ft or ft is ± 1 . The pdsiu
group matrices arise when ft = 1 and JSΓlfl and X2)1 are real and positive.
If ft or ft is ± 1 we let JSΓM = ( ^ + ( - 3 ) 1 ^ ) / 2 , Xlf2 = ( C x + (
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•X..1 = Φx + (-3)«ιS8x)/2, X2,2 = (<εx + (-3)1' ϊS)x)/2; and if η, or ^ is
±1 we let Xul = (Cx + (Sy'Wx)/2, XlΛ = (Ax + (-^Bx)/2, XM =
(<£x + {-Syκ<S>z)l2, X2,2 = (3tx + (-3)ι'2S3x)/2.

Now let Z, Y are pdsiu group matrices; then Z — XYXT holds if
and only if ε (Z) = εi(X)εί(Y)ίJT) for i = 1, 2, 3, 4, Z, =
J£2 — X2Y2X*. The first of these conditions need not concern us as
ε^(X) is always to be ± 1 . We proceed to show that, given Y, we
can choose Xiu such that Z2 = I2. If Y2 = I2 we have nothing to do.
Otherwise we compute as in Lemma 2 that

2(AZ - AY) = ^ Γ ( C i + 32)i)

+ C r (^ l x C x - 3BXZ)X) + WY(AXDX + 5 X C X ) ,

2(31, - 2ίF) = §t r(Kx + 3®x)

We now assign special values to the quantities entering into X. If
we put ηx = -pu η2 = τj3 = η, = 0, a = α = ft, 6 = /9 = - f t , c = 7 = ft,
d = δ = - f t then we get ^4X = Sίx = 4ft, 5 X = S9X = 0, C x = © x = 3ft
Z)x — - ^2> ® χ = ft. For this m l , Sί̂  - SIF < 0 will hold if

(29) SlF + ^OiftKr + Pift®^ < 0 .

Next we put η1 = ft, η2 = η2 = 974 = 0, a = a = ft, b = β = ft, c = 7 = ft,
d = 5 = - f t . Then A x = §IX = 2ft, Bx = 2ft, S5X = -2ft, C x = S x = 3ft,
Dx = -p29Dz= - f t , ® x = ft. For this m l , Sίz - Str < 0 will hold if

12SίF + Krie^.ft + 6ftft) + 3®F(2ftft ~ 6ftft) < 0 .

If ft — ft this becomes

(30) 3lΓ + ftft(£F - ^2ft®F < 0 ,

and if ft = —ft this becomes

(31) SίF + 2ftft®F < 0 .

Choosing the signs ft, ft, ft suitably, (29) and (30) becomes

(32) 3 I F - | K F | - | 3 > F | < 0 ,

and (31) becomes

(33) 2ίF - 2 I ® F | < 0 .

So we can make 2IZ < SίF if 9IF, EF, ® F satisfy either (32) or (33).
As in § 4, the facts that %γ > 0 and 2ί2

F = 4 + K2

F + 3®F show that
(32) and (33) are equivalent to

(34) 2 + | ® r | 2 - | £ F | | ® F | < 0 ,
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(35) 4 + | (£F |2 - | ® F |2 < 0 ,

respectively.
Now the region in the positive quadrant of the (£F, S)F plane

satisfying neither (34) nor (35) is a region of infinite extent with
hyperbolas as part of the boundary. Remembering that E 7 Ξ 0 (mod 3),
we find several points (| EF |, | ® F |) in our region: (| (£F |, | ® F |) = (0, 2),
(3, 1), (3, 2) and points with | &F | = | ® F | and points with ® F = 0. The
points (0, 2), (3, 1), (3, 2) give §IF = 4 or 5 and this can be rejected on
the grounds that a pdsίu Y has 33F — 0, rj1 — 1 and then Aγ = 4 or 5
give a nonintegral a, β. The cases in which ® F = 0 or | (£F | = | ® F |
are rejected by showing that 2IF — 4 + (£F + 3®F does not give a
positive integral SίF, except if (£F = ® F = 0, 2IF = 2. When (£F = ® F = 0,
Aγ — 2, we have Y2 — I2. Thus we have shown that if Y2 φ I2 then
we can find an in X so that ΪU < 9ϊ r. Since 21 z > 0, eventually this
descent halts and then Z2 = L.

Thus assume Y2 — I2. Our next goal is, using only X for which
X2X2* = J2, to make Az < Aγ. Notice that Y"2 = I2 and ηx = l implies
that the parameters a, β, 7, δ of Y2 are α = 1, /9 = 7 = δ = 0. Thus
the parameters α, 6, c,d of Y satisfy α = = l , 6 = c = c £ = 0 (mod 2).
Hence C Γ Ξ 0 (mod 6) and flrΞCΞ — c = CF (mod 4). We next de-
termine those X for which X2-̂ 2* = •£>. By Lemma 2 these X must
have Kx = ® x - 0, so that Wx + 333^ = 4, §ίx = ± 2 , S3X = 0, or §IX =•
± 1 , S3X = ± 1 . It is then easy to determine the parameters a, β, 7, δ
of X. We find that if ηι or )?2 is ± 1 then 7 = δ — 0 and not both
α, /3 are odd; and if ΎJZ or τ̂ 4 is ± 1 then a = β — 0 and not both 7, δ
are odd. So in X the parameters α, 6, c, d are restricted by: both c, d
are even and not both α, 6 are odd in the cases when rj1 or η2 is ± 1 ;
and both α, 6 are even and not both c, d are odd in the cases when
)73 or )?4 is ± 1 . In particular if we put ηι = —p1,a = 0,β=—(p1+ p2)/2,
7 — 0, δ — 0, or if we put ηx — pu a — pu β = 7 — δ = 0, then X2X2* = I2.

We now seek X for which ^U < Aγ and X2X2* = I2. To this end
we give special values to the parameters in X. Put η1 = pu η2 — τj3 —
η± = 0, α = pl9 a = ^^ 6 = —2^2, β = 0, 7 = c = 0, d = 2^4, δ = 0. Then
Ax — 2pu Bx = —4:p2i Cx — 0, Dx = 4^4, X is in and X2X2* = I2. From
(27) we find that the signs pu ρ2j p4 can be chosen to make Az < Aτ if

(36) 2AY - 2 I CF I - I Όγ \ < 0 .

Next set η, = -pua= -2p19 a=0,b^=(ρί- 3p2)/2, β= -(p!+ ρ2)/2,

7 - c - 0, d = 2ft, δ = 0. Then Ax = -5ft, 5 X - -3ft, C x = 0, Dx -
4ft, X is in and X2X2* ~ /2. Then from (27) we can choose the signs
pu P2, ft so that Az < Ar if
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(37) 4AY- 3 | C r | - 5\DY\ < 0 .

Finally we set η^— — ft, α = 2ft, a=Q,b = (p2 — 3ft)/2, β - — (ft + ^>2)/2,
c = 7 - 0, d = 2ft, δ = 0. Then Ax = 7ft, Bx = ft, Cx = Q,DX = 4ft.
We can, using (27), choose the signs ft, ft, ft so that Az < Aγ if

(38) 4 A F - \CY\ - 7 | J D F | < 0 .

Using ^4F > 0, A\ = 4 + C2

F + 3D F , we find that (36), (37), (38) are
equivalent to

(39)

(40)

(41)

respectively.

64 4

64-

16 + 11DJ- - 4

- 7C2

r + 2Wr -

{- i$σr - D\ -

\Cr

30

14 |

IIA

\Cr\

cΓ\

r\ < C

\Dr\

\DΓ\-

< o
< o

Now the region in the positive quadrant of the CF, Dγ plane not
satisfying any of (39), (40), (41) is a region of infinite extent with a
portion of three hyperbolas as part of the boundary. In this region
the only points (\CT\, \DY\) with Cγ = 0 (mod 6), Cγ = Dγ (mod 4) are
(0, 4), (6, 2), (0, 8), (12, 4), together with points for which | Cγ | = | Dγ \
or for #which Dγ = 0. We can reject (0, 4) and (6, 2) since, using Aγ —
4 + Cγ + 3J9F, they give nonintegral Aγ. Now | Cγ \ = \ Dγ \ gives
Aγ = 4 + 4Z>F, so (Aγ - 2DY)(AY + 2Z>F) = 4. This gives a finite
number of possibilities of which only Cγ — Dγ = 0, Aγ — 2 is acceptable.
Similarly Dγ = 0 leads only to Cγ — Dγ = 0, Aγ = 2. Now Aγ = 2,
CF = D F = 0 gives Yi = J2. Thus, subject to the constraint that
Z2 = Y2 = /2 we have found w X so that in Z = XYXT we have
Az < -AF. Since this descent must eventually stop, we have shown
that any pdsiu group matrix is in the G class of I12 or the Gr-class of
a group matrix Y for which Y2 = I2, Aγ = 14, (CF, Dγ) — (0, ±8) or
(±12, ±4). Let now Y be the pdsit& group matrix for which Y2 — I2y

Aγ = 14, Cγ = 0, Dγ = 8. We now exhibit in X for which Z = XYXT

has Z2 = I2, Az = 14, (Cz, JDZ) = (0, - 8 ) or (±12, ±4).

First put η, = - f t , α = 0, α: = 05 h = - ( f t + ft)/2, β = - ( f t + ft)/2,
c = 7 = 0, d = δ = 0. Then Ax = ft, ΰ x = - f t , C x = D x = 0, X2X2* = /2,
and Az — 14, C z = — 12ftft, Dz — —4. Next put ^ = —ft, α = 2ft,
α = 0, 6 = (ft - 3^t)/2, /9 = - ( f t + ft)/2, c = 0, 7 = 0, d = -2ft, δ = 0.
Then ^ x = 7ft, Bx = ft, C x - 0, Dx - -4ft, X,X* - 12, Az - 14, Cz = 0,
J9^ — —8. Finally put ηz = —ft, α = « = δ — β — c — y — 0, d — d —
-( f t + ft)/2. Then ^ x = ft, 5 X - - f t , C x - D x - 0, 3tx = ft, 35X - ft,
(£χ = ® x = 0. Moreover X2X* = J2 and Z, = X^X? has ^ = 14,

A,= 4.



CLASSES OF DEFINITE GROUP MATRICES 189

We have thus established that the G-class number is at most two.
If it were one there would be an X for which — I2 and
X2X2* = I2. The second condition forces (as previously noted): 7 = δ = 0
or a — β — 0. In turn these as before, Cx = 0 (mod 6), Cx ~ Dx (mod 4).
Then Lemma 2 shows that Cx + W\ < C\ + %D\ = 192. Using
Ax + Wx = 4 + Ci + 3Z?i, all possible values of AX9 Bx, Cx, Dx are
easily found and tested in (27). In all cases Az — Aγ ^ 0. Thus we
have proved that the G-class number is precisely two.

9* The group α4 = 1, ¥ — 1, or^α = 62, of order twelve* If we
take the group elements in the order 1,6,δ2, α, <x&, α&2, α2, α26, α262, α3, α36, aΨ,
then the group matrix X partitions into blocks which are 3 x 3
circulants. Let (x0, xίy , xn)

τ be the first column of X. We compute
the irreducible representations as indicated in § 2. At one point it is
necessary to make use of the following fact:

2-1/2

-IΛB A\ \L -L
Ά + B

0

0

A-B

if A, B are 2 x 2 matrices. Thus we find a unitary U such that

UXU* =
x0 + α?± +

(42)

+ (ej 4- (ε2) + (ε3) + X, +
/2 — *^6 ~~Γ «̂ 7> ~Γ «^8ί V 3 — 3 •"

1/2 1/2 1/2 1/2

1/2 i/2 -1/2 -ΐ/2

1/2 -1/2 1/2 -1/2

_l/2 -i/2 -1/2 i/2

+ X2. Here, if Vl -

4 = 9̂ + 1̂0 + #u, then:

The matrix X1 is described by (25) and (26) where a — x0

c = x3 + x9t d — x6 + xn. X2 is described by
• Xβy 0 X2 Γ

Z2 ) 1, X2, given by (26); a — x0 — xG, /3 = x2 ~ xti, 7 — x3 ~with
3 = χ5 - xn.

As before, for integral xQ, xL, , xn we must have a = a,b = β,
c = j y d = 8 (mod 2). Here ε3, ε2, ε3, ε4, det X1? det X2 are algebraic inte-
gers and must be units if X is to be in. Since the εi are Gaussian
integers, this forces the et to be roots of unity. Because the matrix
in (42) is unitary, this forces exactly one rji to be ± 1 , the others to
be zero. Now in fact det Xlt det X2 are rational integers and det X2 > 0.
Thus det XL = ± 1 ( + 1 if rjλ or η2 is ± 1 , —1 if ηz or ^4 is ±1) and
det X2 — 1. % The pdsiu X arise when η1 — 1, εL = ε2 — ε3 — ε4 — 1,
det Xx = 1, Xltl > 0, X2>1 > 0. From det X2 = 1 we get | X2)11

2 + | X2,21
2 = 1.
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Each of I X2Λ |2, | X2t21
2 is a rational integer so either X2tl = 0 or X,2 — 0.

When X is pdsiu, X2Λ is thus a positive unit in the field of R{{ — 3)1/2),
hence X2fl = 1 and hence X2 = /2. But always if X is just iu we have
X^Xf = JΓ2. We show X>,2 — 0 when rjι or η2 is ± 1 ; and X2>1 = 0 when
5?3 or ηA is ± 1 . If we had η1 or ̂ 2 equal to ± 1 and X2Λ = 0 we would
have 3α — rj1 + τ?2 = 0, which is not true for any integer a. Similarly
if τj3 or 7̂4 is ± 1 then X2f2 = 0 is absurd. From this point on the
discussion is almost word for word the same as the discussion in § 8.
We introduce AX,BX,CX,DX, %x, S3X, (£x, ® x as in § 8. We have just
established that (£x = ® x = 0 and that Y2 = I2 if Y is pdsiu. We
now carry on from the point in § 8 at which we assumed Y2 ~ I2.
The conclusion we reach is that the G-class number is two.

10* The lioncyclic abeliaii group of order twelve* By Theorem
2 the only pdsiu group matrix for this group is I12.

11Φ Summary* Let Φn be the matrix on p. 331 of [5].

THEOREM 5. For all groups G of order n :g 13, the G-class
number is one, except for the cyclic groups of orders 8 and 12, the
dihedral groups of orders 8 and 12, the alternating group A^ and
the remaining nonabelian group of order twelve. In each of these
exceptional cases the G-class number is two and the nonprincipal
G-class is contained in the C-class of Φn.

Acknowledgement. I have benefited from discussions of this problem
with Dr. 0. Taussky. In particular, through Dr. Taussky, I was
aware of prior unpublished work of M. Kneser and E. C. Dade who
computed the G-class number for the cyclic group of order nine (Kneser)
and for a number of cyclic groups of prime order (Dade).
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