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It is the purpose of this paper to study the behavior for
large \x — y\ of the Green Function, G(x, y\ of a random
walk, {Sn, n e N}9 having increments belonging to the domain
of attraction of a ^-dimensional stable law with characteristic
exponent a, 0 < a < min (d, 2). The main results are concerned
with the problem of finding conditions under which G(0, x) is
asymptotic to | x \d-«L(\ x |) where L is a function of slow
growth. The results, including those found in the discussion
of the discrete potential theory for such random walks, are
for the most part discrete analogs of theorems for transient
stable processes.

Throughout this paper the notation, definitions, and conventions
of [16] will be used. The position of the random walk at time n
will be denoted by Sn with SQ = 0. The independent identically
distributed random variables, Sk — Sfc_i, will be denoted by Xk. P will
refer to the measure on the underlying probability space.

φ(t) = E(eu'zi) = ίβ" χ i P{dω} .

Pn(x, y) = Pn(0, y-x) = P{Sn = y - x], n = 1, 2, . . . .

P(x, V) = Pi(x, V) and δ(x, y) = P0(x, y) .

G(χ, y) = Σ PΛx, y).

It follows either from Lemma 2-B or from T8.2 of [16] that for all
random walks considered in these pages, G(x, y) < °o for all x and y
in the state space.

The state space, R will always be {x: x — (xu x2, xd), xi is an
integer for each ί}. d-dimensional random walks are always assumed
to be genuinely d-dimensional as defined in D7.4 of [16]. Definitions
of aperiodic and strongly aperiodic are also found in [16] in D2.2 and
D5.1. The set {t eEd:t = (tu t2, . . . td), \ U \ ̂  π for each i} will be
denoted by C and the integration with respect to t of expressions
involving φ(t) will be over C unless otherwise indicated.

The main result takes the form:

THEOREM. Let {Sn, neN} be an aperiodic d-dimensional random
walk having increments Xu X2, X8, belonging to the domain of
attraction of a nondegenerate d-dimensional stable law with density
ga(x) and with characteristic exponent a, d/2 < a < min (d, 2). If
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^ — 0 where it exists, then

lim I x \dP(\ x |)G(0, x) = a

(1.1) '*H~
uniformly in ux = χ/\χ\ where P(y) = P{| J^ | >:?/}.

If ex > 1 or, in the case d = 1, ΐ / | /3 | < 1 (/S defined in (1.5)), then
(1.1) cαw 6β replaced by the slightly stronger

(1.2) lim M^( |a | )g(0>a) = χ uniformιy {n U

Under the assumptions of this theorem with d = 1, (1.1) was first
proven by Garsia and Lamperti, [5]. Their work is in the setting of
renewal theory so that they assume P{X1 ^ 0} = 0. However their
arguments handle the case when P{X, ^ 0}P{X1 ̂  0} > 0. In [5] a
lower bound for

lim nP(n)G(0,n)

is obtained by extracting an approximating Riemann sum which
approaches an integral as n becomes large. This approach is then
dropped in favor of a direct attack on

G(0, n) = (l/2τr)Γ e~int(l - φ(t))~ιdt .
J-π

We have used the approximating sum technique of [5] and estimated
the error terms which naturally arise. We have not tried to extend
to d > 1 those methods which were finally used in [5] to get their
result. The case d = 1 is cared for here with the same methods
which are used to handle d > 1.

Also in the case d = 1 and P{XX ^ 0} = 0, (1.1) can be obtained
for 0 < a < 1 as a corollary to a theorem of deBruijn and Erdos,
Theorem 3 of [1], However their result is obtained under the ad-
ditional assumption: P(0, n + l)P(0, n - 1) - P2(0, n) > 0 for all n ^ 2.
Under a monotone condition on P(0, x), one less stringent than this,
(1.1) is proven in our Corollary 3-A for 0 < a < 1. Corollary 3-B
contains results for d ^ 2 and 0 < a < 2.

Spitzer in P26.1, [16], obtained (1.2) in the case a = 2, d = 3,
EQXtl2) < oo, and E(Xt) = 0 with P(| α |) replaced by 1/M2. In the
case when E{X^) Φ 0 and when P(0, x) goes to 0 exponentially fast
as \x\—»°o, Ney and Spitzer, [11], have determined explicitly the
asymptotic behavior of the relativized Green function G(x, y)/G(0, y)^
x fixed, for arbitrary d. Using their result they obtain a "concrete
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realization" of the Martin boundary for this class of Markov chains.
In §4 there are found some potential theoretic corollaries to the
results of this paper.

When the mean is not 0, Doney, in [2], has determined the
asymptotic behavior of G(x, y) in the direction of the mean vector
under the assumption that there are [d/2] moments when d > 5 and
max (2, [(d + l)/2]) moments when 2 <^ d < 5.

Section 2 contains lemmas that determine which terms can be
ignored in the sum which defines \x \dP(\x |)(?(0, x). Following the
lead of [5] strong use is made of the Karamata Theorem which gives
the form of a function of slow growth. Specifically, if L(x) is a
measurable function of a real variable satisfying

Mm L{kx) = 1
*-~ L(x)

for every k > 0, then by [8],

(1.3) L(x) = C(x)expl\*[ε(f)/t]dt\ where C(x) has a finite

nonzero limit as x —• oo and lim e(t) = 0 .

Also in §2, and later in §3, we need the Levy Formula, [10], for the
characteristic function of a d-dimensional stable law, Ga(x), 0 < a <̂  2.

(1 .4) [eu"dGa(x) = e x p {iA-t - Λ\t {'[CM 11) + iCz

(a)(t)]

where A is a constant vector, A is a positive constant,

da)(t) = C{

2

a)(t/\ ί I) = - [ s g n (θ t) t a n (πa/2) \θ t/\t\ \«dH(θ)

for a Φ 1 ,

CJi^t ) - (2/π)[(θ t/\ t \)ln \θ-t\ dH(θ) ,

and H is a probability measure on the surface of the cί-dimensional
unit sphere. When d = 1 the above takes the form, [6],

(1.5) [eitxdGa(x) - e x p {iyt - Λ\t \a[l + iβ(t/\ t \)ω(t, a)]

where 7, A, and β are real constants, | β \ ^ 1, ω(ί, α) = tan {πaj2)
for α ^ 1, and ω(ί, 1) = (2/π)ln \ 11.

Section 5 contains examples which show that (1.1) does not hold
for a ^ d/2 unless additional conditions are imposed on P(0, x)y and
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which also show that the behavior of ga(%) for large x can also cause
trouble when a ^ (d — l)/2.

2* Negligible terms*

DEFINITION. Let P be a real nonincreasing function of a real
variable. The function P~ι is defined by P~\y) — inf {x: P(x) < y}.

LEMMA 2-A. Let X bea random vector with P(x) = P{\ X\ > x} > 0
/or αW x > 0. // /or cm?/ A; > 0

(2.1) lim P(x)/P(kx) = ka ,
X—»oo

ί/i-ew for any k > 0

(2.2) lim P-\x)IP-\kx) = /b1'* .
z->0

Proof. The right continuity of P together with (2.1) gives for
arbitrary ε > 0

- ε)' = lim P ( P 1 ^ ) < limlim
y P{P(y)[l - β]) ~ F̂ O P ί P - 1 ^ ) - l)

^ lim P(P~ι{y))jy ^ 1 and hence lim P{P-\y))ly = 1 .

To establish (2.2) assume that there exists a sequence {yn} with yn> 0
for all w and lim,,..̂  yΛ = 0, and 7 > 0 such that

Em P - ^ / P - 1 ^ * ) ^ (ft + 7)1/α .

Then

I/ft = \imP{P-\yn))IP{P-\kyn))
n-*oo

^ mP{P-\y%))IP{P-\y%)(k + 7)-1/α) = l/(ft + 7) .

But A: ̂  fe + 7 is impossible so that

ΈR klla .

A similar argument shows that

lim P-\y)IP-ι{ky) ^ kί/a

y-+0

and hence the lemma is proven.

LEMMA 2-B. Let {Sn, n e N} be a strongly aperiodic d-dimensional
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random walk having increments Xu X2, Xz, belonging to the domain
of attraction of a nondegenerate d-dimensional stable law, Ga(x),
with characteristic exponent a, 0 < a < min (d, 2). If P{\ x | > x} ~
P(x) then

(2.4) lim I x \dP(\ x\) Σ Pn(0, x) = 0 uniformly in x.
i2->°o n>RlPί\x[)

Proof. Denote by {B(n)} that sequence of constants such that
for suitably chosen vectors, {A(n)}y P{Sn < B(n){A(n) + x)} converges
to Ga(x) for each x = (xu x2, xd). From the proof of Theorem 4.2,
[14], it can be seen that B(n) can be taken to be P-^l/n).

It will be shown first that

(2.5) lim I x \dP(\ x\) Σ (B(n)) = 0 uniformly in x.

To this end we can assume H = 1 and, because P~ι is monotone, it
is enough to show

(2.6) lim I x \dP(\ x | )Γ (P"\lly))-ddy = 0 uniformly in x.
R-*oo JRIP(\X\)

Arguing as in (2.3) we get

(2.7) lim P-ι(P(x))/x = 1 .

This fact together with the change of variable, v = P(\x\)y, reduces
the proof of (2.6) to the establishment of

(2.8) lim ( T p~i(p(\χ\)) Ύdy = 0 uniformly in x.
}

 R-+~)λp-\P(\χ\)ly)\

Let J(v) = P-ι(l/v)/vιl\ By Lemma 2-A, lim,_ J(v)/J(kv) = 1 for
every k > 0. J is then a function of slow growth and hence J has
the form

J(v) = C(v) expl[\ε(t)/t]dt\

where C(v) and ε(ί) have the properties stated in (1.3). Now choose
ε > 0 so that d/a — dε > 1. For | x \ so large that | ε(t) \ ̂  ε and

x I)) ^ 2^ 2

C(v/P(\x\)) -
whenever t > 1/P(| x |) and ]/ > 1, we have

< Γ
L

< a^-ί
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The limit in (2.8) is obviously uniform over any finite x set and
hence we have the desired uniformity for all x.

We return to (2.4). The strongly aperiodic condition means that
for any ε > 0 there exists ρ(e) < 1 such that for all

We write

I Pw(0, x) I ^ (2π)~d\ e~itxφn(t)dt
JC

^ (2π)~d[(2π)dpn(ε) + J I ?>(*) N * ]

and remark that showing that for fixed ε > 0,

Iim I x \dP(\ x I) Σ ( I Φ(t) \%dt = 0 uniformly in x,
#-»<*> n>RlP(\x\) J l t l S e

proves the lemma. To accomplish this we modify an argument found
in the proof of Theorem 6.1 of [14]. Choose ε > 0 so small that
111 <Ξ; ε implies

2 α - ln\ψ(t)\ n < (2α -
In I φ(t/2)

This is possible by Theorem 4.3 of [14]. Then

\ I <p(t) I dί =

VII

Here k =

k

Σ
m=Q

and this

= k(n) is

Ja»<| ί |S2»+

together

[tJφ(t/B(n))\ dt +

chosen such that 2k

\g>(t/B(n))\ dtg Σ
1 m —

d \ exp {n(2a — η

with the fact that

k

< εj

0

Tin

L < , ι , ! e ϊ - + i l 9 ' ( ί / B ( Λ ) ) l " < i

3{n) ^ 2ft+1. But

\ι<!tιJφ(2"t/B(n))\»dt

\φ(t/B(n))\}dt,

Iim nln | φ(t/B(n)) | = — | ί |αCi

uniformly for 1 ^ 11 \ g 2, the fact that d(ί/| ί |) is bounded away
from 0 because Ga(x) is nondegenerate, and the fact that 2a — η > 1 + η
yields

I φ(t) \ndt ^ (B(n))-dM
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where M is a constant independent of n. An appeal to (2.5) com-
pletes the proof.

LEMMA 2-C. Let {Sn, neN}bea strongly aperiodic d-dimensίonal
random walk having increments Xu Xz, Xs belonging to the domain
of attraction of a nondegenerate d-dimensional stable law, Ga(x), with
characteristic exponent a, d/2 < a < min (d, 2). // E(Xj) = 0 where
it exists then

(2.9) lim I x \dP(\ x\) Σ P»(Q> χ) = ° uniformly in x.
e—0 »<e/P(|as|)

Here P(x) = P{\ X, \ > »}.

Proof. Case 1. d = 1. First we observe that

I φ(t + π/x) - φ(t) I ̂  ί 2dP{X, < y}
J\V\>\»\

(π\y\/\x\)dP{Xι <y}^ 2P(|*|) + (τr/1 x
l

If it can be shown that

(2.10) lim (1/1 x \)\lX\p(y)/P(\ x \))dy = [dy/y*
|»|-»oβ Jo Jo

then it will be possible to conclude that there exists a positive
constant M independent of both t and x such that for all x, x Φ 0,
and for all te[ — π, π],

(2.11) I φ(t + π/x) ~ φ(t) I ̂  MP{\ x |) .

To establish (2.10) let L(x) = P(x)x\ By Theorem 4.2 of [14],
lim^eo L(kx)/L(x) = 1 for every & > 0 and hence L is a function of
slow growth. Therefore

L(x) = C(α?) exp |Γ[e(ί)/ί]dί|

where C(x) and e(ί) have the properties stated in (1.3). Now choose
7 > 0 so that a + 7 < 1. For | x \ so large that | ε(t) \ ^ 7 and
\C(y\x\)/C(\x\) - 1| ^ 7 whenever ί > 7 | α | P ( | α | ) a n d 3/ > T-P(| a? |)
we have

(1/1 x \)\lX\p(y)/P(\ x \))dy = Γ(P(?/| ^ |)/P(| x \))dy
Jo Jo

^ 7 + Γ (P(i/| a? |)/P(| a? | ) ) # ^ 7 + (1 +
Jrp(i»|)

and also
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(1/1 x \)\M(P(y)/P(\ x \))dy ̂  [dy/y-r .
Jo Jr

7 can be made as small as we like. This proves (2.10), and hence
(2.11). (2.11) is stated and proved as Lemma 3.32 in [5] under the
additional assumption that P{Xι ^ 0} = 0. The above proof is the
same as that in [5] and is given here only for completeness and to
familiarize the reader with arguments involving functions of slow
growth. We now use (2.11) to get (2.9) when d = 1. For x > 0 and
x an integer,

'" e~itxφk(t)dt = —\\π

e

ivx(φk(v) - φ\v + π/x))dv
-* 2LJo

+ Γ e~ivxφk{v + π/x)dv - Γ e~ivxφ\v + π/x)dv\
Jπ-xlx J-π/x J

(v) - φk(v - π/x))dv1 ΓΓ°

±\ \ e-iv

2 L J — JΓ
+*IXe-iv*φk(v - π/x)dv

The above results from letting t — v + π/sc when ί > 0 and ί = v ~ πjx
when t < 0. From (2.12) for & > 0,

n<εlP(x)

(2.13) + Σ (αP(α)/4τr) 19M(ί) ~ 9%(ί + π/α?) |dί
Λ=Λ- LJO

(xP(x)/4π)(4π/x)(e/P(x))

where iSΓ will be fixed later. For any fixed j , S3- belongs to the
domain of attraction of a stable law with characteristic exponent a.
Hence P{\ Sj \ > x} = Ld(x)/xa where L5 is a function of slow growth
as x~>oo, a > 1/2 and therefore the first term on the right in
(2.13) is small for large x. The last term on the right in (2.13) is a
constant times ε. We will show that the second term on the right
in (2.13) can be made small for large x and small ε in a way much
like that used to prove Lemma 2-B

Σ xP(x)\ \ I φ'(t) - φ*(t + π/x) I dt

+ Γ \φn(t)-φ'(t-π/x)\dt\
(2.14) τj~ln rπ

 J

r>Γ I φ(t) - φ(t + ff/x) I Σ i Ψ"(t)

x I φ'-ι-*{t + π/x) I dt ^ 2MΓ + 2MI"
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where

[e/P(«)] fffn-1

Γ = Σ *P2(x) Σ I <Pk(t) I i φ- '- ' ί t + π/x) I dt
» = iV J<5 fc=0

and

[e/P(«)3 fδJB(w) n - 1

IΓ= Σ zP2(«) (δW)"1 Σ I <P*(t/B(n)) I
Λ=iV Jo k=0

x l ^ ί ί ί

Here 2?(w) = P~ι{Hln), 8 is chosen so that 0 < t < 2δ implies

2a —
In 1 φ(t)

In I φ(t/2)

and N is taken large enough and ε small enough to insure that
B(n)π/x < δ and nln \ <p(v/B(n)) | ^ - C\ v \a for some C > 0 uniformly
in 1? for 1 ^ i; ^ 2 + S whenever N tin ^ ε/P(x). Strong aperiodicity
together with 1/2 < a gives lim^^ Γ — 0. An argument like that
used in Lemma 2-B yields

Σ (5 5 ( W ) I <Pk(t/B(n)) I I ^ w - χ - f c ((ί + B(n)π/x)/B(n)) \ dt ^ nc'
fe=o Jo

where c' is some positive constant. xv times the exponential part of
a function of slow growth is eventually monotone for each v, v Φ 0.
Hence it is sufficient to replace /" by an integral and show it has
the desired behavior.

= lim

= l i m ( S

Passing to the limit under the integral can be justified by exploiting
the fact that J is a function of slow growth. Therefore given any
7 > 0 there exist ε > 0 and x0 > 0 such that

xP(x) Σ P (0,αO<7
w<e\.PU)

whenever ε < ε0 and a? Ξ> α?0. The limit in (2.9) is obviously uniform
in x for 0 ^ x ^ xQ. The estimates for negative x are handled as
above except in (2.12) the substitution required is t = v + π/x when
t < 0 and ί = v — 7r/# when £ > 0.

Case 2. d = 2,3. Let ί = (ίlf , ίd). For a > 1 if ^(XO = 0
then there exists a constant M > 0 such that for all £,
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dφ(t)

dtt

dφ(t)
dt,

To establish (2.15) we write

= I ( (e ί ί χi - l)XuP{dω}

ί ίΛΓi - l)XuP{dω}

ί '
Λ P{dω}

(2.16)
i /IeI

x [\\2yP(y/\t\)/P(l/\t\))dy

where X± = (X l l f •••, JSTlrf). An argument involving functions of slow
growth allows us to let 11 \ —• 0 under the integral in the right side
of (2.16) and this gives the desired result.

The following estimates are also required and can easily be shown
to be true.

There exists M' > 0 such that for all t and real r

(2.17)

(2.18)

and

(2.19)

Let

11-11 ( (e«χi - l)XHP{(ίω}

I ί (e ί ί χi - l)XHP{dω)
I J|Xil>i

- l)XlP{dω)

^ M'r2P(r)

^ ikί'rP(r)

^ M'r2P(r) .

Q(j) — {x — (ί»i, *2, , xa) e R: \ x \ 5Ξ | xs \ V d}.

We will show that (2.9) holds uniformly in x for x e Q(j) and since
R c Ui=i QU), this will prove the lemma. Integrating by parts and
applying (2.15), (2.17), (2.18), and (2.19) gives
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(2.20)

\.e-iixφn{t)dt

x (I i(eitXl — l)XuP{dώ)
\j \X\\^\Xj\

- l)XuP{dω}\\dt

l)X?άP{dω\

M'P(\ Xj \)\n I φ*~\t) \dt£E' + E"

, .

where

and

E' = 2M'P(\ xs \)\n I φn-\t) \ dt

E" = P(\ xj \)MM'n{n - 1)[ | φn
t \)dt .

Again using the fact that P(y)ya is a function of slow growth we
get that there exists M" > 0 such that for all

also for

111 ^ 1, P(B(n)l\ 11) g P(5W)

and lim nP(B(n)) — 1. Hence
n—>oβ

I» I'-Pfl * I) Σ P.(0, ») ^ I a;
n<β/P(|x|)

[e/P(l*l)]

+ Σ (^' + S

(2.21)
+ 1*1^(1 as | ) Γ [ " Σ " I U ( [2Aί'J

L n=N JteC—{<:|ί|^δ}

+ MM'M"(n - 1) I φn~\t) \]dt + W ? |

x ( ^ [2M'M" I φn-\tlB{ri))

+ 2MM'M" I φn-2(t/B(n)) \]dt\

where δ is small. Arguments like those found in the case where
d = 1 complete the proof. The critical term following the passage
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to the limit in | x | is I y1~dlady. For a > cZ/2, yγ-*ι« is integrable on

[0, ε] and hence (2.9) holds.

3* Proof of the theorem. We first prove the following lemma.

LEMMA 3-A. Let ga(Λ, x) be a probability density function on
Ed satisfying

txga{Λ, x)dx = exp {- A \t \a[CM 11) + iCP(t)]}

where Ci(ί/| ί |) and C{

2

a}(t) are defined in (1.4). Then there exists a
constant M = M(A) such that for all x,

(3.1) ga(Λ, x)^

Proof.

ga(A, x) = \g«(Λ/2, x - y)ga(Λ/2, y)dy

= \ ga(Λ/2, x - y)ga(Δ/2, y)
( 3 # 2 ) J|yl£l*l/2

+ ί ga{Λβ, % ~ V)gΛΛ/2, y)dy
J|y|>l*l/2

^ 2M* Σ P{\ Yi\>\x \l2V~d)

where M' is a uniform upper bound for ga(A/2, x) and Y = (Yl9Ys, Yd)
is a random vector with density ga(Λ/2, x). Each F,- has a one di-
mensional distribution function which is stable with characteristic
exponent a and hence by [6], p. 182, /, | x \aP{\ Yi \ > | x |} is asymp-
totically constant for each i. This proves the lemma.

Proof of the theorem. Initially we assume that the random walk
is strongly aperiodic. Under this additional assumption we first show
that the limit in (1.1) holds for fixed direction ux = x/\ x \. Let δ > 0
be given. By Lemmas 2-B, 2-C, and 3-A, ε can be chosen so small
and R so large that

(3.3) \x\dP(\x\) Σ Pn(0,x)<δ, \x\dP(\x\) Σ PΛ0,x)<δ,
n<ε/P({x\) n>RlP(\x\)

S Λ-l/α foo

ga{vux)vd~ι-adv = ga(v~llaux)v-d/adv < δ ,
0 JRand

ga{vux)vd-ι-adv = I ga(v-llaux)v-d/adv < δ .
" Jo
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The local limit theorem for d-dimensional lattice random vectors,
Theorem 6.1, [14], allows us to write

(3.4) P.(0, x) = (B(n))~d[Ga(x/B(n)) + e(n, x)]

where l im^^ e(n, x) — 0 uniformly in x. Also

lim (nP(\ x \))lla\ x \/B(n)
| * | - > o o

(3.5) = lim P-1(P(\x\))nlla/(P(\x\))-1IaP-1(l/ri)

= lim ^(V-Pd x I)) = i uniformly in n for
ι*ι->~ J(n)

Hence

i/(\\n
lim |α;| 4P(|a; |) Σ (B(n))-dga(\ x \uJB(n))

\\ [ / P ( | | ) ]
[R/P(\x\U

(3.6) = lim Σ g«(u.{nP(\x\))-1"')(nP(\x\))-i"P(\x\)

and

C Λ / P ( I I ) ]

(3.7) l im I x \dP(\ x\) Σ (B(n))~de{n, x) = 0 .
\x\-+ °° » = [e/P( l* | ) ]

From (3.3) through (3.7) it is possible to conclude that (1.1) holds
for fixed ux. The approximating sum technique used in the above
argument is due to [5] as was mentioned in § 1.

To show that the limit in (1.1) is actually uniform in ux requires
an additional argument. Set

[ / ( ) ]

F(r, u) = rdP(r) Σ (B{n))-dga(ru/B(n))
Λ = [e/P(r)]

where r is a real number and | u \ — 1. The estimates in (3.3) and
(3.7) hold uniformly in ux and hence showing that

S R

ga(vrlίau)vd/adv = h(u) uniformly in u
ε

will complete the proof of (1.1). If (3.8) did not hold uniformly in u
then there would exist ε0 > 0 and sequences {un} and {rn}, rn-^oo such
that for all n, \ F{rn, un) — h{un) \ > ε0. The unit sphere is compact
so that we can assume that there exists u0 with l im^^ | un — u0 \ = 0.
Then
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(3.9) ε0 < I F(rn, un) - h(u%) \ ^ \ F(rn, u%) - F(rn, u0) \

+ I F(rnf u0) — h(u0) I + I h(u0) — h(un) | holds for all n.

The uniform continuity of ga(x) together with the fact that

rΛP(r) Σ
n = ίε/P(r)}

is bounded in r gives lim^,* | F(rn, un) — F(rn, u0) | = 0. Clearly

lim I F(rn, u0) — h(u0) \ = 0 and lim | h(un) — h(u0) \ — 0 .
n-+oo n-+oo

(3.9) is, therefore, impossible. Thus we have (3.8), and hence (1.1)
in the case when the random walk is strongly aperiodic. To get
(1.1) in the case when the random walk is aperiodic but not strongly
aperiodic we make use of a technique found in p. 26.1, [16]. For
0 < v < 1, let P'(0, x) = i;P(0, x) and P'(0, 0) = 1 - v. Σ* -P'(0, x) - 1
because P(0, 0) = 0. P'(0, 0) > 0 implies that the random walk defined
by P'(0, x) is strongly aperiodic. Also G(0, x) = vG'(0, x), P'{\x \) =
vP(\x\),l- φ\t) - v(l - φ(t))f and

Here the prime indicates that the expression is defined in terms of
P'(0, x). Form the above it also follows that

v\ g'a(vux)vd-l-"dv = \ ga(vux)vd'-1'-adv .
Jo Jo

Hence | x \dP(\ x |)G(0, x) = | x \dP'(\ x |)G'(0, x) and this expression ap-
ga{vux)vd~ι-adv as | x \ —• oo uniformly in ux. v can be

0

taken arbitrarily close to 1 and therefore the proof of (1.1) is complete.
(1.2) follows immediately. If a > 1 then by Theorem 1, [17],

ga(x) > 0 for all x. In the case d = 1 since we are substracting no
sequence of constants from SJB(n),

7 = lim lim (Bin))-1 Σ ( xdP{Xk < x} = 0 .

When 7 = 0 a necessary and sufficient condition for there to be positive
probability on both (0, c>o) and (— oo, 0) is \β | < 1, [15]. In each of

the above cases a \ ga{vux)vd~ι~~adv is bounded away from 0 and that
Jo

is enough to give (1.2).
In the corollaries dealing with a ^ d/2 we require in addition that:

There exists K > 0 such that for all x e R
( 3 ' 1 0 ) x\dP(0,x)/P(\x\)^K.
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COROLLARY 3-A Let {Sn, neN} be an aperiodic one-dimensional
random walk having increments belonging to the domain of attraction
of a nondegenerate stable low with density ga(x). If (3.10) is satis-
fied then (1.1) holds for all a satisfying 1/4 < a < 1. If we assume
that

There exists p > 0 such that if \ x | Ξ> p then
(o.xl)

then (1.1) holds for all a satisfying 0 < a < 1.

Proof. We need only establish that (2.9) holds and in doing so
we may assume that the random walk is strongly aperiodic.

First we show that under (3.10) with 1/4 < a < 1, (2.13) can be
estimated in such a way as to yield (2.9). Applying to

\π\φn(t) - φn(t + π/x)\dt
Jo

first Holder's inequality with 2 > q > l/2a and then the Hausdorff-

Young inequality, [18], gives

I φ'(f) - φ"(t + π/x) \dt £ Π I φ(t) - φ(t + π/z) \pdt)

(S
^ ( Σ (KV2π P(\k I) 11 - e"^* |/| k \y\ι<>Γn{B(ri))-χι<>

G
t

where Γ and Γ are positive constants independent of x and n. A
similar estimate can be made on the integral over [ — π, 0] in (2.13).
These bounds applied to (2.13) give (2.9) and hence (1.1) for 1/4 < a < 1.

Under (3.11) P(| & |) ^ | a? | (P(0, 2x) + P(0, -2a;)) for all large | x \
and hence (3.11) implies (3.10). By taking d = 1 in the proof of
Corollary 3-B it can be seen that (3.11) gives Pn(0, x) ^ c | x I"1 for all
n ;> 1 and all α?, a? Φ 0. Here c is some constant. From this estimate,
(2.9), and hence (1.1), follows.

Under the additional assumption that ga(x) places positive proba-
bility on both sides of 0, it is possible to conclude (1.2) in the above
corollary.

The fact that for l / 4 < α < l / 2 (3.10) implies (1.1) is noted in [5].
We have modified their technique to get our result for 1/4 < a <: 1/2.

For any sequence a(x), x = (xl9x2, 9xd), denote by a(x; bh,bh, , bkj
the sequence a(x) with xkj fixed and equal to bk. for j = 1,2, , n. We
define the difference operator, Dky by Dk(a(x)) = a(x; xk) — a(x; xk + 1)
if %h ^ 0 and Dk(a(x)) = α(a?; a?fc) — a(x; xk — 1) if xk < 0. One of the
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conditions we will impose in higher dimensions, the one needed together
with (3.10) to justify d integrations by parts, reduces to (3.11) when
d = 1. Specifically:

There exists p > 0 such that for any x, \ x | ^ p,
( 8 * 1 8 ) A A Dd(P(0, x)) ^ 0.

(3.13) immediately implies that for any x, \ x | Ξ> p, and any set of
distinct integers, k19 k2, , kn, kn ^ d, DkJDk2 Dkn(P(0, x)) ̂  0. Also
to avoid the difficulty pointed out in Example 5-B we will require that

S CO

ga{vux)vd~ι~adv — 0 uniformly in ux .
N

One method for varifying conditions (3.13) and (3.14) is suggested by
the approach found in Example 5-C.

COROLLARY 3-B. For d ^> 2 let {Sn, neN} be an aperiodic d-
dimensional random walk having increments belonging to the domain
of attraction of a nondegenerate d-dimensional stable law with density
ga(x). Also let (3.10), (3.13), and (3.14) be satisfied. Then:

( I ) (1.1) holds for all a such that 0 < a < 1;
(II) (1.2) holds in the case when a — 1 and the random walk

is symmetric;
(III) (1.2) holds in the case when 1 < a < 2 and E(XX) = 0.

Proof. It is sufficient to prove the corollary for strongly aperiodic
random walk. Let Cs — {t e C: t{ Φ 0 for 1 <̂  i <̂  d, i Φ j}. It will be
shown that for v ^ d, d^φ^jdt^ exists on Cά except when v = d
and tj = 0. Also it will be shown that d integrations by parts in

the variable tό of ί e~itxφn(t)dt is possible. Let b(t3Ί v) = | Π&=i Uk \~Uv

where j = ix and iu\9 -•-,% are distinct integers. Finally it will be

shown that there exists some M > 0 which is independent of t such

that

(3.15) For v ^ a, v))

and such that

dφ(t)
(3.16) For 1 < a < 2,

dtj

When all of the above is accomplished then the usual change of
variables, tk = vk/B(ri), in each of the terms that arise in the d

integrations by parts together with the facts: I dt = 0; the right
JC-CA
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side of (3.15) is integrable in each tijc; and | x \aP(\ x |) is a function
of slow growth; gives | x \dPn(0, x) is bounded uniformly in n and x
for n^l and xeQ(j). From this, (2.9) follows. (3.14) and (2.9)
imply (1.1). As before, Theorem 1 of [17] then gives (1.2) when
1 < a < 2. The results of Theorem 1, [17], are not applicable when
a = 1 but the fact that for fixed ux, g^vu^ can be extended to a
function analytic in an open strip which includes the real v axis
means that gx(x) can not be identically 0 on a ray from 0. This is
enough to deduce (1.2) from (1.1) when a — 1.

We now turn to the proofs of the assertions made above. Let
a(x) be a sequence for which (3.13) holds. Let x be in R and let
bkl,bk2, ---,bkm be integers with the property that when the xk. are
replaced by the bk., i = 1,2, , m, then \x\> p. If ckί, ck2, , ckm

are integers such that ck. and bk. have the same sign and such that
I ck I > I bk. I for each i, i = 1, 2, , m, then

(3.17) Σ Σ eitxa{%) ,6»J Π (1 - e"i)

The proof of (3.17) proceeds by induction on m. We assume that
0 < bkl < ckl. If ckl < bkl < 0 then appropriate changes in sign must
be made in what follows.

'

Taking absolute values and applying (3.13) proves (3.17) for the case
m = 1. To complete the induction all we need do is observe that for
fixed vkl the sequences a(x; vkl) — a(x; vkl + 1) and a(x; ckl + 1) also
satisfy (3.13).

Next fix 16 Cj. Let C(N) = {x = (xu , xd) e R: \ x, \ ̂  N for
each i = 1, 2, . , d}. Applying (3.17) and (3.10) gives

Σ
xeC{M)-C(N)

e " χ P(0, x)

+ 2\d - 1) Π (1 -

Π (l - ««*)

x"jKP(xj)(x

k=l

— 1

whenever p < N < M. Hence for fixed ίx, , tj_lf tj+1, , td with

Π ί< Φ 0, Σ . . β« a;}P(0f x)
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converges uniformly in ts for each v, v <̂  d — 1. Therefore on Cs for
each integer

exists, is continuous in tA for —/7 <Ξ ί., <; 77, and

^-φ(t) = lim Σ β« (i»y)*P(0, a?) .
sC(N)

To justify the formula for the dth partial derivative we need to
alter slightly the preceeding estimates. Fix tlft2,- -,td so that
I Πfc=i(l - eitx) \Φθ. For p < N< M we have

Σ eitxxdjP(Of x)
= Nd

xeC(M)-C(N) k=A

Σ
xeC(M)~C(N)

, a;)

Σ Σ e«*P(0, x)
xeC{M)—C{N) k=l

< NdAdK

j=jyd

Nd

+ Σ ( d -

Π (1 - e"1)

Π (1 - em)
A : = l

N~dP(N)

Π (i - β«*) iV2)l/2)

as a consequence of (3.10), (3.17) and a change in the order of sum-
mation. We can write down a similar expression for the case when
Xj ^ 0. Therefore if

Π (1 - eitk) Φ 0

then ΣxeaN) euxjP(0, x) converges uniformly in ίy for 0 < ε ^ | ts \ ̂  Π
and hence we can write

= lim Σ e^iXjYPφ, x) .
N-*oo xeC(N)

In the estimates of the preceeding paragraph replacing d by v
and iV by δ(^ , v) and using familiar properties of functions of slow
growth gives

(3.18) There exists a constant M > 0 such that

sup
^b(

Σ eitxx$P(0, x) £ Mφ{th v)Y(P(l/b(tJ9 v)) .
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(3.18) combined with

Σ eitxx)P(09 x) K\xγ-dP(\x\)P(\x\

gives (3.15) except when a — 1 = v. In this special case (3.15) still
holds because the symmetry condition of (II) implies that

Σ cos (tx)XjP(0, x) = 0 .
xQC(b(t. ,ί))

To get (3.16) subtract 0 = ^*eR^jP(09x) from dφ(t)/dtj and estimate
as in Lemma 3-C by truncating at \t\~\ This completes the proof.

If ΣΛ(J) I & |d-P(0, B) < °°, where R(j) is any one of the regions
bounded by coordinate planes, and if either a Φ 1 or a — 1 and
Bin) = Q(n), then condition (3.13) can be removed from P(0, x) for
x G i2(i) without affecting either the proofs or the conclusions of the
previous corollaries.

In (I) of Corollary 3-B (1.2) may be concluded if it is known
that the limit probability measure is not carried on an open half-plane
which excludes the origin.

4* Potential theoretic corollaries. The Martin boundary for a
transient random walk can be constructed in the following way.
Assume (?(0, y) > 0 for each y eR. Identify each y eR with the
function G(x,y)/G(0,y). A sequence {yn},yneR, will be called Cauchy
if limw_»«, \yn\ = °° and for each xeR the sequence {G(x, yn)/G(0, yn)}
is Cauchy with respect to the usual metric on the real line, or if
there exist a y0 e R and an integer nf such that for all n ^ n', yn — y0.
Two Cauchy sequences {yn} and {vn} will be said to belong to the same
equivalence class of sequences if either l im^^ \yn\ = lim^oo | vn | = oo
and for each xeRlim^G(x, yn)IG(0, yn) = l i m , ^ G ( x , vn)/G(0, vn), or

yn = vn — yoeR for all sufficiently large n. Complete R in the usual
way to get R*. Each veR* — R = B can be identified with a function
F(x),xeRy satisfying ^yeE P{x,y)F(y) ^ F{x). Hence we have:

COROLLARY 4-A. Let {Sn, ne N} be a random walk having the
property that (1.2) holds. Then the construction described above gives
the one-point compactification of R. The point in B is identified
with the harmonic function F(x) = l,xeR.

The extreme harmonic functions for any random walk are always
exponentials, [4]. If E(XX) = 0 then a convexity argument shows
that in the case P(x, y) = P(0, y - x) the only exponential functions
satisfying ^yeRP(^,y)h(y) = h(x) are the constant functions. Hence if
a random walk with 1 < a < 2 and EiX,) = 0 satisfies those conditions
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given in this paper under which (1.2) holds, then ^ΣiX&RP{x,y)h{y) = h(x)
is impossible unless h is constant. Therefore in this case Corollary 4-A
contains as new information only the statement that B contains no
points identified with strictly subharmonic functions. A conjecture
found in [11] states that if E(X^) = 0, then B always consists of a
single point. Corollary 4-A provides additional supporting evidence
for this conjecture.

For a < 1 there exists random walks with nonconstant exponential
harmonic functions for which (1.1) holds. In the case d = 1 to impose
the condition | β | < 1 is to ask that there be so much probability in
the tails of P(0, x) that Σ*e*P(0, x)evx = oo for all v φ 0. Hence
here again the corollary yields as a new result only the statement that
for no sequence, {yΛ}, can G(x, yn)IGφ, yn) have a strictly subharmonic
limit.

[3] and [7] contain a complete discussion of the Martin boundary
for general Markov chains including theorems on the stochastic con-
vergence of G{x, Sn)/G(0, Sn).

If (1.2) holds and, in addition, if

(4.1) lim P(\ x |)| x \a = δ, 0 < b < oo
|χ|-»co

then G(x, y) is well enough behaved to permit the use of the Wiener
test.

COROLLARY 4-B. Let A be any infinite set and define An by
An = An{x e R: 2~{n+1) ^ G(0, x) < 2~n}. Let C(An) denote the capacity
of An as defined in D25.3, [16]. // (1.2) and (4.1) hold then A is
recurrent if and only if Σn=i C(An)2~n = oo.

Corollary 4-B is an immediate consequence of [9]. (4.1) will hold
if the normalizing constants, B(ri), can be taken to be Bnlla where
B is a constant. In this case G(x, y) behaves like \x — y \-{d-~a) for
large values of \x — y\, that is, like the Riesz kernel of order α,
a < min (d, 2). [9] also contains a paragraph which describes the
classical Wiener test in the theory of Brownian motion.

The following is the discrete version of a theorem of Port's, [12].
The assumptions made are those of our main theorem except we ask
only that 0 < a < min (d, 2). When a = 1 we do require that the
A(n) can be taken to be 0.

COROLLARY 4-C. Let B be any finite subset of R and set TB —
min {n: n ^ 1, Sn e B}. Then under the above assumptions we have
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(4.2) lim (B(n)Yn-ιP{n <TB<^} = P{TB = °o}C(B)ga(0)[(d/a)-1]-1 .
n—»oo

C(JB) is the capacity of B.

In the strongly aperiodic case a proof of (4.2) can be obtained
by writing out Port's proof, [12], in discrete notation. Techniques
found in our work are required only to get

lim {B{n))dn~ι Σ ^ ( 0 , x) = <7«(
n-*oo k>n

The local limit theorem of [13] can be used to prove (4.2) in the
case when the random walk is aperiodic but not strongly aperiodic.

The proof and conclusion in corollary 4-C carry over to the case
when d > 2 = a and also to the case when the random walk starts
at an arbitrary xeR.

5* Examples* EXAMPLE 5-A. For k an integer and k Φ 0 let

ίcln \k\l\k \ί+dl\ kΦ2n for some integer n.
f —

[c/\ k \dl2ln\ k I, k = 2n for some integer n.

Here d = 1, 2, or 3 and c is chosen such that Σ*Λ = 1- We have

(5.1) ^

so that the distribution function associated with {fk} belongs to the
domain of attraction of a stable law with characteristic exponent d/2.
The function of slow growth, a?d/2Σι*ι>*/*> ^s asymptotic to Dlnx
as x—^ oo. Needed in obtaining (5.1) is the fact that if E(m)—
{k: \k\ > m, k — 2n for some integer n) then

^ L ^ L Σ c/\kΓln\k\.
keE(m)

Now let {Sn, ne N} be a d-dimensional random walk with Sk — Sk^ =
χk = (Xkί, -• ,Xkd) where the components of Xk are also mutually
independent and P{Xki = j} = Λ, i = 1, , d. For this random walk
lίm^^oo I x \dP(\ x |)P(0, x) = v > 0 and hence (1.1) cannot possibly hold.
Similar constructions yield examples with a < d/2 where (1.1) does
not hold.

EXAMPLE 5-B. Let {Sn,ne N} be a random walk with increments
Sk — S*_ι = (Xjfci, , Xkd) composed of mutually independent symmetric,
components each belonging to the domain of attraction of a stable law
with characteristic exponent a, a ^ (d — l)/2 and a < 2. Along any
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coordinate axis ga(vv,x)vd~ι~a ~ vd~2~2a and hence along any such ray
ga(vux)vd~1'~a is not integrable. For such d and a, proving (2.9) is
therefore not enough to insure (1.1) or (1.2). Required in addition is
a bound like that in (3,1) but with a larger exponent on |a?|.

EXAMPLE 5-C. Let {SnfneN} be a d-dimensional random walk
with P(0, x) = b(a + \x\2)~{d+a)l2 where b > 0 and a > 0. (3.10) obviously
holds. Consider P(0, x) as a function defined over all of E{d) by the
above formula. dP(0, x)jdxιx2 xd does not change sign on any
region R(j) bounded by coordinate planes. Integrating each of the xk

over an interval of length 1 gives A A Dd(P(0, x)) ^ 0 and hence
(3.13) is satisfied. Next let A and B be spherical neighborhoods on
the d-dimensional unit sphere such that A and B have the same
radius. Set uΦ = #/)#); then

lim Σ P(Q,x) Σ P(Q, x) ^ i

and hence by Theorem 4.2 of [14] the characteristic function of the
associated limit law is exp{ — A \ T\a}, Λ> 0. This insures (3.14) and
hence Corollary 3-B can be applied to this example.

The above method can also be used to show that Corollary 3-B
is applicable when P(0, x) = Δga{x) where x e ΰ , A is a normalizing
constant, and

\ ~Λ\T|α}, A > 0 .

I would like to thank F. Spitzer, P. Erodos and H. Kesten for
their helpful suggestions and comments.
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