EXTREME POINTS AND DIMENSION THEORY

N. T. Peck

Abstract

The purpose of this paper is to characterize the topological dimension of a compact metric space X in terms of the extremal structure of the unit ball of the spaces $C\left(X, R_{n}\right)$, where R_{n} denotes Euclidean n-space with the usual Euclidean norm and $C\left(X, R_{n}\right)$ denotes the space of continuous maps of X into R_{n}, normed by the sup norm. The main results are that if $n \geqq 2$, the unit ball of $C\left(X, R_{n}\right)$ is always the closed convex hull of its extreme points, and that if the unit ball of $C\left(X, R_{n}\right)$ is actually equal to the convex hull of its extreme points, then the dimension of X is less than n. If n is even, the converse of the second assertion above is shown to be true, and with additional assumptions on X, the converse of the second assertion holds whether n is even or odd.

In the last half of the paper, the corresponding questions for the spaces $C(X, N)$ are studied, where N is an infinitedimensional strictly convex normed space and $C(X, N)$ is the space of continuous maps of X into N, again with the sup norm. Here it is established that the unit ball of $C(X, N)$ is always the convex hull of its extreme points.

We will be studying spaces $C(X, N)$, where N is either finitedimensional Euclidean space or an infinite-dimensional strictly convex normed space. If $|\mid$ is the norm on $N, C(X, N)$ is normed by $\|f\|=\sup _{x \in X}|f(x)|$. Let U_{N} denote the (closed) unit ball of $C(X, N)$ and let E_{N} denote the set of extreme points of U_{N}; then it is clear that E_{N} is the set of all continuous maps of X into the surface of the unit ball of N. In case N is n-dimensional Euclidean space, we let U_{N} be represented by U_{n}; similarly E_{N} will be represented by E_{n}. When no confusion can arise we will sometimes drop the subscript N on U_{N} and E_{N}.

It is to be emphasized that all the hypotheses on X are not always needed; we elaborate this in the remarks at the end of the paper.

A theorem in Bade [1] states that U_{1} is the closed convex hull of E_{1} if and only if X is totally disconnected. Phelps [6] proved that U_{2} is always the closed convex hull of E_{2}; a simpler proof was given by Sine [7]. Related results were obtained by Goodner [2] for the case $n=1$; here, compactness of X was not assumed.

1. Mappings into Euclidean spaces. We begin with

Theorem 1. If $n \geqq 2, U_{n}$ is equal to the closed convex hull of
E_{n}.
Proof. Our basic tool is the construction used by Sine in [7], with a suitable modification. By S_{n-1} we will mean the surface of the unit sphere in R_{n}. If α and β are (small) positive numbers and x_{0} is a point of S_{n-1}, let $B\left(x_{0}, \alpha\right)=\left\{z \in S_{n-1}:\left|z-x_{0}\right|<\alpha\right\}$ and let $W\left(x_{0}, \alpha, \beta\right)$ equal the convex hull of $\left(B\left(x_{0}, \alpha\right) \cup\left\{-\beta x_{0}\right\}\right)$. Any set of the form $W\left(x_{0}, \alpha, \beta\right)$ will be called a wedge; $-\beta x_{0}$ will be called the vertex of the wedge.

Now let f be in U_{n} and let $\varepsilon>0$. Let k be a positive integer such that $(1 / k)<\varepsilon$; it is not hard to see that wedges W_{1}, \cdots, W_{k} can be chosen so that the wedges W_{i} are pairwise disjoint outside the set $\left\{z \in R_{n}:|z| \leqq \varepsilon\right\}$. (Choose α_{i} relatively small in comparison with β_{i} if $\left.W_{i}=W\left(x_{i}, \alpha_{i}, \beta_{i}\right)\right)$. Let φ_{i} be the following retraction of the unit ball in R_{n} onto the unit ball with the (relative) interior of the wedge W_{i} removed: If z is in $W_{i}, \varphi_{i}(z)$ is obtained by projecting z parallel to x_{i} until it hits the boundary of W_{i}. If z is not in $W_{i}, \varphi_{i}(z)=z$. The number β_{i} can be chosen $<\varepsilon$; then $\left|\varphi_{i}(z)\right| \leqq \varepsilon$ if $|z| \leqq \varepsilon$.

We now estimate $\left|z-(1 / k) \sum_{i=1}^{k} \varphi_{i}(z)\right|$ for z in the unit ball of R_{n}. If $|z| \leqq \varepsilon$, then $\left|\varphi_{i}(z)\right| \leqq \varepsilon$ for each i, so

$$
\left|z-\frac{1}{k} \sum_{i=1}^{k} \varphi_{i}(z)\right| \leqq 2 \varepsilon ;
$$

if $\varepsilon<|z| \leqq 1, \varphi_{i}(z)=z$ for all but at most one i, so

$$
\left|z-\frac{1}{k} \sum_{i=1}^{k} \varphi_{i}(z)\right| \leqq \frac{2}{k}<2 \varepsilon .
$$

Hence $\left\|f-(1 / k) \sum_{i=1}^{k} \varphi_{i} \circ f\right\| \leqq 2 \varepsilon$.
If A is a subset of $S_{n-1}, n \geqq 2$, by a vector field on A we will mean a continuous function $\Phi: A \rightarrow S_{n-1}$ such that $\Phi(z)$ is perpendicular to z for all z in A. If n is even, define p on S_{n-1} by

$$
p\left(t_{1}, t_{2}, \cdots, t_{n-1}, t_{n}\right)=\left(t_{2},-t_{1}, \cdots, t_{n},-t_{n-1}\right) .
$$

Then p is a vector field on S_{n-1}.
If n is odd, $n \geqq 3$, and the complement of A in S_{n-1} contains at least one point, A admits a vector field. We see this as follows: clearly we may assume that the omitted point p_{0} is the "north pole" $(0,0, \cdots, 1)$. If $z \in S_{n-1}, z \neq p_{0}$, we define $P(z)$ to be the stereographic projection of z on the hyperplane $H=\left\{t_{n}=0\right\}$, where t_{n} is the $n^{\prime \text { th }}$ coordinate function: $P(z)$ is the intersection of the line through p_{0} and z with $H . \quad P$ is one-to-one and bicontinuous from $S_{n-1} \sim\left\{p_{0}\right\}$ onto H. Let T be a translation of H onto itself: $T(y)=y+y_{0}$, where y_{0}
is a nonzero element of H. Now let $Q(z)=\left(P^{-1} \circ T \circ P\right)(z)$ for $z \in S_{n-1} \sim$ $\left\{p_{0}\right\}$.

For each z in $S_{n-1} \sim\left\{p_{0}\right\}, Q(z)$ can be written uniquely as $\lambda z+V(z)$, where λ is a real number and $V(z)$ is an element of R_{n} which is perpendicular to z. If $V(z)=0$, then since $|Q(z)|=|z|=1$, we have $\lambda= \pm 1$. We cannot have that $\lambda=1$, since $Q(z) \neq z$ (T is fixed-point free); and if the vector y_{0} in the definition of T is small enough, $T(y)-y$ is uniformly small, so λ cannot equal -1 . Hence $V(z) \neq 0$, so if we define Φ by $\Phi(z)=(V(z) /|V(z)|), \Phi$ is the desired vector field. It is not hard to check that P has the properties claimed for it and that V is continuous, whence Φ is continuous.

For each i, let W_{i} be the wedge associated with $\varphi_{i} ; W_{i}$ is the convex hull of v_{i} and $B\left(x_{i}, \alpha_{i}\right)$, where v_{i} is the vertex of W_{i}. The preceding remarks imply that there is a vector field Φ_{i} on $S_{n-1} \sim$ $B\left(x_{i}, \alpha_{i}\right)$. Observe that for each $i, \varphi_{i} \circ f$ omits the origin and that $\varphi_{i}(f(x)) /\left|\varphi_{i}(f(x))\right|$ is never in $B\left(x_{i}, \alpha_{i}\right)$; hence we can define g_{i} and h_{i} on X by

$$
\begin{aligned}
& g_{i}(x)=\varphi_{i}(f(x))+\left(1-\left|\varphi_{i}(f(x))\right|^{2}\right)^{1 / 2} \Phi_{i}\left(\frac{\varphi_{i}(f(x))}{\left|\varphi_{i}(f(x))\right|}\right), \\
& h_{i}(x)=\varphi_{i}(f(x))-\left(1-\left|\varphi_{i}(f(x))\right|^{2}\right)^{1 / 2} \Phi_{i}\left(\frac{\varphi_{i}(f(x))}{\left|\varphi_{i}(f(x))\right|}\right) .
\end{aligned}
$$

Then g_{i} and h_{i} are in E_{n} and $\varphi_{i} \circ f=\left(g_{i}+h_{i} / 2\right)$; hence f is approximated within 2ε by a convex combination of elements of E_{n}. This completes the proof.

Let $\operatorname{dim} X$ denote the dimension of X as defined in Hurewicz and Wallman [3]. We continue with

Theorem 2. For $n \geqq 1$, suppose that U_{n} is equal to the convex hull of E_{n}. Then $\operatorname{dim} X<n$.

Proof. By Theorem VI. 4. of Hurewicz and Wallman, it suffices to prove the following: Let A be a closed subset of X. Then if f is a continuous map of A into S_{n-1}, there is an extension of f to a continuous map of X into S_{n-1}.

Hence, let A and f be as above. Using Tietze's theorem, we can extend f to a continuous \tilde{f} from X into the unit ball of R_{n}. If \tilde{f} is in the convex hull of E_{n}, there is a probability measure μ defined on the Borel subsets of U_{n} with $\mu\left(E_{n}\right)=1$ (μ has finite support, but we do not need this fact) such that $\Psi(\tilde{f})=\int_{E_{n}} \Psi(g) d \mu(g)$ for each continuous linear functional Ψ on $C\left(X, R_{n}\right)$. Let $\left\{x_{j}\right\}$ be a sequence dense in A and let $p_{j}=f\left(x_{j}\right)$. Define continuous linear functionals Ψ_{j} by

$$
\Psi_{j}(g)=\left\langle g\left(x_{j}\right), p_{j}\right\rangle \text { for } g \text { in } C\left(X, R_{n}\right) .
$$

(Here, \langle,$\rangle denotes the usual inner product.) Then for each j$ we have

$$
1=\Psi_{j}(\tilde{f})=\int_{E_{n}} \Psi_{j}(g) d \mu(g)
$$

If g is in E_{n} and $g\left(x_{j}\right) \neq p_{j}$, then $\Psi_{j}(g)<1$; since μ is a probability measure it must be the case that

$$
\mu\left\{g \in E_{n}: g\left(x_{j}\right) \neq p_{j}\right\}=0 .
$$

Hence, $\mu\left(\bigcup_{j=1}^{\infty}\left\{g \in E_{n}: g\left(x_{j}\right) \neq p_{j}\right\}\right)=0$; it follows that there is a g^{*} in E_{n} such that $g^{*}\left(x_{j}\right)=p_{j}=f\left(x_{j}\right)$ for all j. Since $\left\{x_{j}\right\}$ is dense in $A, g^{*}(x)=f(x)$ for all x in A. This g^{*} is the desired extension of f and the proof is complete.

We now show that in case n is even the converse of Theorem 2 holds, and that if $n=1$, something slightly weaker than the converse of Theorem 2 holds; we also give some related results. Before proceeding, we again note that if n is even, the function p on S_{n-1} defined by

$$
p\left(t_{1}, t_{2}, \cdots, t_{n-1}, t_{n}\right)=\left(t_{2},-t_{1}, \cdots, t_{n},-t_{n-1}\right)
$$

is a continuous map of S_{n-1} into S_{n-1} such that $p(z)$ is perpendicular to z for all z in S_{n-1}.

Theorem 3. If n is even and $\operatorname{dim} X<n, U_{n}$ is equal to the convex hull of E_{n}.

Proof. The containment one way is trivial. To show that U_{n} is contained in the convex hull of E_{n}, it suffices to show that U_{n} is in the convex hull of those elements of U_{n} which omit the origin; for if g is an element of U_{n} which omits the origin we can define f_{1} and f_{2} in E_{n} by

$$
\begin{aligned}
& f_{1}(x)=g(x)+\left(1-|g(x)|^{2}\right)^{1 / 2} p\left(\frac{g(x)}{|g(x)|}\right), \\
& f_{2}(x)=g(x)-\left(1-|g(x)|^{2}\right)^{1 / 2} p\left(\frac{g(x)}{|g(x)|}\right) .
\end{aligned}
$$

Plainly $g=f_{1}+f_{2} / 2$.
Hence suppose $\operatorname{dim} X<n$ and that f is in U_{n}. By Theorem VI. 1. of Hurewicz and Wallman, the origin is an unstable value of f; by Proposition B of the same section in Hurewicz and Wallman, there is a function h_{1} in U_{n} which omits the origin, such that
(1) If $|f(x)| \geqq(1 / 3)$, then $h_{1}(x)=f(x)$,
(2) If $|f(x)|<(1 / 3)$, then $\left|h_{1}(x)\right|<(1 / 3)$.

Put $h_{2}=2 f-h_{1}$; then h_{2} is in U_{n}.
Suppose $\left|h_{1}(x)\right|>3 \varepsilon>0$ for all x in X. Using the same results in Hurewicz and Wallman, we can choose g_{2} in U_{n} such that g_{2} omits the origin and such that
(3) If $\left|h_{2}(x)\right| \geqq \varepsilon$, then $g_{2}(x)=h_{2}(x)$,
(4) If $\left|h_{2}(x)\right|<\varepsilon$, then $\left|g_{2}(x)\right|<\varepsilon$.

Put $g_{1}=2 f-g_{2}$. Now it is easy to check that $\left\|g_{1}\right\| \leqq 1$ and $\left\|g_{2}\right\| \leqq 1$; moreover g_{1} omits the origin because $\left\|g_{1}-h_{1}\right\|=\left\|g_{2}-h_{2}\right\| \leqq 2 \varepsilon$. This completes the proof of Theorem 3.

For the case $n=1, \operatorname{dim} X=0$, we have a slightly weaker version of Theorem 3:

Theorem 4. If $\operatorname{dim} X=0$, then for every f in U_{1} there is a sequence $\left\{h_{i}\right\}$ of elements of E_{1} such that $f=\sum_{i=1}^{\infty}\left(1 / 2^{i+1}\right)\left(h_{2 i-1}+h_{2 i}\right)$, the convergence being norm convergence.

We first prove an auxiliary result:

Lemma 1. Assume that $\operatorname{dim} X=0$ and that f is in U_{1}. Then there are two elements h_{1}, h_{2} of E_{1} such that $\left\|f-(1 / 4)\left(h_{1}+h_{2}\right)\right\| \leqq 1 / 2$.

Proof. If h_{i} assumes only the two values $\pm 1, h_{i}=\chi_{A_{i}}-\chi_{\sim A_{i}}$, where A_{i} is an open-and-closed subset of X and χ_{T} denotes the characteristic function of the set T. If $\left\|f-(1 / 4)\left(h_{1}+h_{2}\right)\right\| \leqq 1 / 2$ we must have that $|f-(1 / 2)| \leqq 1 / 2$ on $A_{1} \cap A_{2},|f| \leqq 1 / 2$ on

$$
\left(A_{1} \sim A_{2}\right) \cup\left(A_{2} \sim A_{1}\right),
$$

and $|f+(1 / 2)| \leqq 1 / 2$ on $\left(\sim A_{1}\right) \cap\left(\sim A_{2}\right)$. Using the zero-dimensionality of X, we can find an open-and-closed set A_{1} containing $f^{-1}[1 / 2,1]$ and contained in $f^{-1}(0,1]$; we can then find an open-and-closed subset A_{2} containing $f^{-1}[0,1]$ and contained in $f^{-1}(-(1 / 2), 1]$. With this choice of A_{1} and $A_{2},\left\|f-(1 / 4)\left(h_{1}+h_{2}\right)\right\| \leqq 1 / 2$, and this completes the proof of the lemma.

Turning now to the proof of the theorem, we suppose that f is in U_{1}. By the lemma, there are elements h_{1}, h_{2} of E_{1} such that

$$
\left\|f-\frac{1}{4}\left(h_{1}+h_{2}\right)\right\| \leqq \frac{1}{2} .
$$

Assume that elements $h_{1}, h_{2}, \cdots, h_{2 j-1}, h_{2 j}$ of E_{1} have been found so that

$$
\left\|f-\sum_{i=1}^{j} \frac{1}{2^{i+1}}\left(h_{2 i-1}+h_{2 i}\right)\right\| \leqq \frac{1}{2^{j}}
$$

Let

$$
H_{j}=f-\sum_{i=1}^{j} \frac{1}{2^{i+1}}\left(h_{2 i-1}+h_{2 i}\right)
$$

Then $\left\|2^{j} H_{j}\right\| \leqq 1$; appealing to the lemma again, we find elements $h_{2 j+1}, h_{2 j+2}$ of E_{1} such that

$$
\left\|2^{j} H_{j}-\frac{1}{4}\left(h_{2 j+1}+h_{2 j+2}\right)\right\| \leqq \frac{1}{2}
$$

whence

$$
\left\|f-\sum_{i=1}^{j+1} \frac{1}{2^{i+1}}\left(h_{2 i-1}+h_{2 i}\right)\right\| \leqq \frac{1}{2^{j+1}}
$$

This completes the induction step and the proof of the theorem.
We now turn to the case that n is an odd integer, $n \geqq 3$; we would like to prove something like Theorem 3 for such n. The two key elements in the proof of Theorem 3 were the approximation of an f in U_{n} by a nowhere-vanishing g, and the fact that a nowherevanishing g can be written as the midpoint of two elements of E_{n}. The approximation is always possible, whether n is odd or even, provided $\operatorname{dim} X<n$; but the representation of a nonvanishing g in U_{n} as the midpoint of two elements of E_{n} is not always possible, even with $\operatorname{dim} X<n$. For example, if n is odd, let $X=(1 / 2) S_{n-1}$, the set of points in R_{n} at distance $1 / 2$ from the origin. Let f be the identity map of X into the unit ball of R_{n}. Then if $f=g_{1}+g_{2} / 2$, with g_{1}, g_{2} in E_{n}, it is easy to see that if

$$
h(z)=\frac{g_{1}\left(\frac{z}{2}\right)-\frac{z}{2}}{\left|g_{1}\left(\frac{z}{2}\right)-\frac{z}{2}\right|}
$$

for z in S_{n-1}, h is a vector field on S_{n-1}, which is an impossibility.
We do have the following partial result:

Proposition 1. Suppose that X is a compact metric space such that any two continuous maps of X into S_{n-1} are homotopic in $S_{n-1}(n \geqq 2)$. Then if g is an element of U_{n} which omits the origin, $g=h_{1}+h_{2} / 2$, with h_{1}, h_{2} in E_{n}.

Before we prove the proposition, we make the following observation (which must be in the literature):

Lemma 2. Let X be a compact space and let f, g be two continuous maps of X into $S_{n-1}, n \geqq 2$, such that $\|f-g\|<\sqrt{2}$. Then if there is a continuous g^{\prime} from X into S_{n-1} such that $g^{\prime}(x)$ is perpendicular to $g(x)$ for all x in X, there is a continuous f^{\prime} from X into S_{n-1} such that $f^{\prime}(x)$ is perpendicular to $f(x)$ for all x in X.

Proof of the lemma. For each x in X we can write $g^{\prime}(x)$ uniquely in the form $g^{\prime \prime}(x)+\lambda(x) f(x)$, where $g^{\prime \prime}(x)$ is perpendicular to $f(x)$ and $\lambda(x)$ is a scalar between -1 and 1 . It is easy to see that $g^{\prime \prime}$ is continuous as a function of x. If $g^{\prime \prime}(y)=0$ for some y, then $g^{\prime}(y)= \pm f(y)$; since $g(y)$ is perpendicular to $g^{\prime}(y)$ we have $|f(y)-g(y)|=\sqrt{2}$, a contradiction. The proof of the lemma is complete if we define $f^{\prime}(x)=\left(g^{\prime \prime}(x) /\left|g^{\prime \prime}(x)\right|\right)$ for x in X.

Proof of the proposition. Define h on X by $h(x)=(g(x) /|g(x)|)$; then h is a continuous map of X into S_{n-1}. By assumption, there are a constant map k of X into S_{n-1} and a continuous map q of $X \times[0,1]$ into S_{n-1} such that $q(x, 0)=k(x), q(x, 1)=h(x)$ for all x in X. Clearly there is a continuous map k^{\prime} of X into S_{n-1} such that $k^{\prime}(x)$ is perpendicular to $k(x)$ for all x in X. (Simply let k^{\prime} be another constant map, appropriately chosen.)

Let T be the set of all t in $[0,1]$ such that there is a continuous map g_{t}^{\prime} from X into S_{n-1} with $g_{t}^{\prime}(x)$ perpendicular to $q(x, t)$ for all x in X. The set T is nonempty, and by the lemma above, T is open and closed in [0, 1]. We conclude that there is a continuous h^{\prime} of X into S_{n-1} such that $h^{\prime}(x)$ is perpendicular to $h(x)$ for all x in X.

Now define h_{1} and h_{2} on X by

$$
\begin{aligned}
& h_{1}(x)=g(x)+\left(1-|g(x)|^{2}\right)^{1 / 2} h^{\prime}(x), \\
& h_{2}(x)=g(x)-\left(1-|g(x)|^{2}\right)^{1 / 2} h^{\prime}(x) .
\end{aligned}
$$

It follows that h_{1} and h_{2} are in E_{n} and that $g=h_{1}+h_{2} / 2$.
Combining Proposition 1 and the techniques used in the proof of Theorem 3, we obtain the following.

Corollary. If n is an integer $\geqq 3$ and if X is a compact metric space of dimension $<n$ such that any two continuous maps of X into S_{n-1} are homotopic in S_{n-1}, then U_{n} is the convex hull of E_{n}.

In particular, if $\operatorname{dim} X<n$ and X is contractible, then U_{n} is the convex hull of E_{n}. Hence if $n \geqq 3$ and $\operatorname{dim} X<n-1, U_{n}$ is the convex hull of E_{n}. (Use the cone over X; this has dimension $<n$ and is contractible.)
2. Mappings into infinite-dimensional spaces. We now wish to prove Theorem 3 in the case that the range space N is infinitedimensional. We assume from here on that X is a compact Hausdorff space (metrizability is no longer assumed) and that N is an infinitedimensional strictly convex normed space.

Theorem 5. Let X and N be as above. Then U_{N} is the convex hull of E_{N}.

We shall prove this in the same way that we proved Theorem 3: every element of U_{N} can be approximated by an element of U_{N} which omits the zero vector in N : every element of U_{N} which omits the origin is the midpoint of two elements of E_{N}. The first assertion is proved in Proposition 2 below; the second assertion is proved in Proposition 3.

Proposition 2. Let X and N be as above. Then if f is in U_{N} and ε is a positive number, there is g in U_{N} such that g omits the origin and $\|f-g\|<\varepsilon$.

Proof. The set $K=f(X)$ is compact, so by a result of Nagumo [4, Th. 2] there are points x_{1}, \cdots, x_{r} in the unit ball of N and a continuous map q of K into the convex hull of $\left\{x_{1}, \cdots, x_{r}\right\}$ such that $|q(z)-z|<\varepsilon / 3$ for z in K. If s is the number $1-(\varepsilon / 3),|s \cdot q(z)-z|<$ $2 \varepsilon / 3$ for z in K. Now let v be any element of the unit ball of N which is not in the linear span of $\left\{x_{1}, \cdots, x_{r}\right\}$. Finally if we define g on X by $g(x)=(\varepsilon / 3) v+s \cdot q(f(x)), g$ is a continuous map of X into the unit ball of N, g omits the origin, and $\|f-g\|<\varepsilon$.

Corollary. Let X and N satisfy the hypotheses of Proposition 2. Let f be an element of U_{N}. Then for every $\varepsilon>0$ there is a g in U_{N} such that g omits the origin, $|g(x)|<\varepsilon$ if $|f(x)|<\varepsilon, g(x)=$ $f(x)$ if $|f(x)| \geqq \varepsilon$.

Proof. The proof of Proposition B § 1 in chapter VI of Hurewicz and Wallman can be used without change, in conjunction with Proposition 2.

Now let N be an infinite-dimensional strictly convex normed space. Let B denote the closed unit ball of N and let S denote the boundary of B. Let X be a compact Hausdorff space and let g be a continuous map of X into $B \sim\{0\}$. We shall show that g is the midpoint of two continuous maps of X into S. To prove this, it is certainly enough to prove the following.

Proposition 3. Let N be an infinite-dimensional strictly convex normed space and let K be a compact subset of the unit ball of N such that K does not contain the origin. Then there are two continuous maps φ_{1} and φ_{2}, defined and continuous on K and assuming values in S, such that for each x in $K, x=\varphi_{1}(x)+\varphi_{2}(x) / 2$.

Proof. Let K satisfy the hypotheses of the proposition. Then if η is defined on K by $\eta(x)=(x /|x|), \eta$ is a continuous map of K into S. Since N is infinite-dimensional, S cannot be compact; hence there is a point z in $S \sim(\eta(K) \cup-\eta(K))$. We now define γ on $K \times[0,2]$ in the following way:

$$
\begin{array}{ll}
\gamma(x, t)=\frac{(1-t) \eta(x)+t z}{|(1-t) \eta(x)+t z|} & \text { for } 0 \leqq t \leqq 1 \\
\gamma(x, t)=\frac{(2-t) z+(t-1)(-\eta(x))}{|(2-t) z+(t-1)(-\eta(x))|} & \text { for } 1 \leqq t \leqq 2
\end{array}
$$

(Note that the norms in the denominators are never zero because of the way z was chosen.) It is clear that γ is continuous on $K \times[0,2]$ and that γ is a map of $K \times[0,2]$ into S.

Fix x in K; then it is easily verified that $|2 x-\gamma(x, 0)| \leqq 1$ and $|2 x-\gamma(x, 2)|>1$. It follows that there is at least one t in [0, 2] such that $|2 x-\gamma(x, t)|=1$.

We assert that there is at most one such t. Since this is an assertion about a two-dimensional subspace of N, our claim is equivalent to the following lemma, in which (1,0) plays the role of the point $\eta(x)$ and $(0,1) /|(0,1)|$ plays the role of the point z :

Lemma 3. Let || be any strictly convex norm on the XY-plane. Suppose that $|(1,0)|=1$ and that $0<r \leqq 1$. Then there is at most one point $\left(x_{1}, y_{1}\right)$ with $y_{1} \geqq 0$ such that

$$
\left|\left(x_{1}, y_{1}\right)\right|=\left|2(r, 0)-\left(x_{1}, y_{1}\right)\right|=1
$$

Proof. For a contradiction, we may assume there are two such points $q_{1}=\left(x_{1}, y_{1}\right)$ and $q_{2}=\left(x_{2}, y_{2}\right)$, with $y_{1}>y_{2}>0$. (It is immediate from strict convexity that $y_{1} \neq y_{2}$.) Let $(u, 0)$ denote the point of intersection of the x-axis and the line through q_{1} and q_{2}. Explicitly, $u=\left(y_{1}-y_{2}\right)^{-1}\left(y_{1} x_{2}-y_{2} x_{1}\right)$ and

$$
q_{2}=\lambda q_{1}+(1-\lambda)(u, 0), \quad \text { where } \quad \lambda=y_{2} / y_{1} \in(0,1)
$$

We also have

$$
q_{2}-2(r, 0)=\lambda\left[q_{1}-2(r, 0)\right]+(1-\lambda)(u-2 r, 0)
$$

We can obviously assume that neither the above-mentioned line nor its translate by $-2(r, 0)$ passes through the origin, so the strict convexity of the norm yields $|(u, 0)|>1$ and $|(u-2 r, 0)|>1$. These last two points are at most two units apart (since $0<r<1$), so we either have $u-2 r<u<-1$ or $1<u-2 r<u$. Neither of these is possible (a sketch clarifies this); in the first case, for instance, we would have q_{2} in the interior of the triangle defined by $q_{2}-2(r, 0), q_{1}$ and the origin, which would imply $\left|q_{2}\right|<1$. (In the second case, we would get $\left|q_{2}-2(r, 0)\right|<1$.)

Continuing with the proof of the theorem, we let $t(x)$ be the unique point in $[0,2]$ such that $|2 x-\gamma(x, t(x))|=1$. We now claim that t is continuous on K. If not, there are a point x_{0} in K and a sequence $\left\{x_{j}\right\}$ converging to x_{0} such that $\left|t\left(x_{j}\right)-t\left(x_{0}\right)\right|>\varepsilon>0$ for all j. Taking a subsequence, if necessary, we may assume that $\left\{t\left(x_{j}\right)\right\}$ converges to $t_{0} \neq t\left(x_{0}\right)$. Using the continuity of γ we find that

$$
\left|2 x_{0}-\gamma\left(x_{0}, t_{0}\right)\right|=\lim _{j}\left|2 x_{j}-\gamma\left(x_{j}, t\left(x_{j}\right)\right)\right|=1 ;
$$

this contradicts the uniqueness of $t\left(x_{0}\right)$ and the continuity of t is established. It is now clear how φ_{1} and φ_{2} are to be defined on K :

$$
\begin{aligned}
& \varphi_{1}(x)=\gamma(x, t(x)), \\
& \varphi_{2}(x)=2 x-\gamma(x, t(x)) .
\end{aligned}
$$

This completes the proof of the proposition.
Observe that a much simpler proof is available if N is complex linear. Indeed, if N is complex linear and if x is in the unit ball B of $N, x \neq 0$, define φ_{1} and φ_{2} by

$$
\begin{aligned}
& \varphi_{1}(x)=\left(1+\left(|x|^{-2}-1\right)^{1 / 2} i\right) \cdot x \\
& \varphi_{2}(x)=\left(1-\left(|x|^{-2}-1\right)^{1 / 2} i\right) \cdot x
\end{aligned}
$$

The modulus of each of the coefficients of x in the above expressions is $|x|^{-1}$, so it follows that for x in $B \sim\{0\},\left|\varphi_{1}(x)\right|=\left|\varphi_{2}(x)\right|=1$. Plainly, $x=\varphi_{1}(x)+\varphi_{2}(x) / 2$, and it is equally clear that φ_{1} and φ_{2} are continuous on $B \sim\{0\}$.

Combining the above proposition, the Corollary to Proposition 2, and the techniques of Theorem 3, we obtain Theorem 5.

We conclude with a question: what are necessary and sufficient conditions on the compact metric space X so that U_{n} is equal to the convex hull of E_{n}, if n is an odd integer $\geqq 3$?

Author's note. Since this paper was written, the results have been improved on in several ways. Professor Joram Lindenstrauss has communicated a proof that the conclusion of Theorem 1 holds for
the case of $C(X, N)$, where N is any finite-dimensional real vector space, normed in such a way that the extreme points of the unit ball of N form an arcwise connected set. In the proof of Theorem 3 compactness of X appears essential $\left(\left|h_{1}(x)\right|>3 \varepsilon>0\right.$ for all x in X), but Professor James L. Cornette has shown that compactness is unnecessary by modifying h_{1} slightly. A similar device is used by Professor John Cantwell in a paper to appear in the AMS Proceedings; in this paper Cantwell establishes the converse of our Theorem 2 for odd $n, n \geqq 3$, without any additional hypotheses on X. (He shows that for odd $n, n \geqq 3$, each element of U_{n} is in the convex hull of eight elements of E_{n} if $\operatorname{dim} X<n$.) For $n=1$ our Theorem 4 appears best possible, since convex combinations of elements of E_{1} assume only finitely many values and there are certainly zero-dimensional compact metric spaces admitting a continuous real-valued function which assumes infinitely many values.

Note that the proof of Theorem 1 shows that the theorem is really a statement about the normed space of all bounded continuous functions from a Hausdorff space X into $R_{n}, n \geqq 2$. Finally, we remark that the proof of Theorem 2 would have been simpler if \tilde{f} had been written explicitly as a convex combination of elements of E_{n}; the point here is that the weak form of "representability" of \tilde{f} used in the proof is enough to give the conclusion.

I would like to thank Professors R. H. Szczarba and J. D. Stafney for several helpful conversations, and Professor R. R. Phelps for several communications on the subject. I would also like to thank Professor R. C. Sine for showing me his unpublished manuscript [7]; and I am indebted to the referee for several helpful suggestions.

Bibliography

1. W. Bade, Functional Analysis Seminar Notes, University of California, Berkeley, 1957 (unpublished).
2. D. B. Goodner, The closed convex hull of certain extreme points, Proc. Amer. Math. Soc. 15 (1964), 256-258.
3. W. Hurewicz and H. Wallman, Dimension Theory, Princeton University Press, Princeton, 1941.
4. M. Nagumo, Degree of mapping in convex linear topological spaces, Amer. J. Math. 73 (1951), 497-511.
5. N. T. Peck, Representation of functions in $C(X)$ by means of extreme points, Proc. Amer. Math. Soc. 18 (1967), 133-135.
6. R. R. Phelps, Extreme points in function algebras, Duke Math. J. 32 (1965), 267277.
7. R. C. Sine, On a paper of Phelps, Proc. Amer. Math. Soc. 18 (1967), 484-486.

Received June 7, 1966, and in revised form March 10, 1967. This work was partially supported by the National Science Foundation under grant NSF-GP-3509.

Yale University

