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REPRODUCING KERNELS IN SEPARABLE
HILBERT SPACES

HAYRI KOREZLIOGLU

A theorem on the existence of a reproducing kernel in a
separable Hubert space of functions is proved. As an appli-
cation of this theorem, a method of interpolation of the func-
tions in a separable Hubert space with a reproducing kernel
is given. This method is used to construct the elements of
the Hubert space generated by a second order stochastic
process, in case this space is separable.

Theorems 2,3 and 4 of this paper, which were motivated by
Parzen's work [2], [3], were originally proved in somewhat different
form in collaboration with J. Ricatte [4]. In this paper it will be
shown that these three theorems are the consequences of a more
general statement given in what follows as Theorem 1.

1. Preliminaries* Let ξ> be a Hubert space of real or complex
functions defined on an arbitrary set T. The scalar product of any
ordered pair of functions /, g in ξ> will be denoted by <(/, gy and the
norm of a function fetg by | | / | | . A two variable function undefined
on the product set T x T = T2 is the reproducing kernel of ξ), if it
satisfies the following two conditions:

(A) K(t, )e§,vteT.
(B) </,J5Γ(t, •)> = /(*), Vie Γ and v/e©.

The last property is called reproduction property of K1.

K is self-reproducing, i.e. K(tyτ) = <ϋΓ(ί, ),K(τ, •)>. It is posi-
tive-semi-definite, i.e.

2

Σ , v*e JciNΓ.

(where C is the set of complex numbers, / an arbitrary finite subset
of the set N of positive integers and λ, the conjugate of λy). In
particular, K has the Hermitian symmetry (K(tt τ) = K(τ, ί), yt, τ e T)
and

0 ^ \\K(t, ) l l 2 - K(t,t)< oo,γteT .

If ξ> has a reproducing kernel, this kernel is always unique, for
if K and K' were two distinct reproducing kernels of £>, their repro-
duction property would imply

1 For a more general and detailed presentation of the Theory of Reproducing
Kernels, see the article by Aronzajn [1].
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K(t, τ) = ζK(t, •), K'(τ, •)> = <K'(τ, •), K(t, •)> = K'(τ, t) = # ' ( * , τ) .

The weak convergence (consequently the strong convergence) of
a sequence {/J c § to a function /eξ> implies its pointwise conver-
gence to the same function /, for

lim/n(ί) - lim<Λ, K(t, •)> = </, K(t, •)> - /(*) .

If a topology is defined on T, then the continuity of K with
respect to the product topology on T2 implies the continuity of each
function in ξ>. This is the consequence of the Schwarz inequality
applied to (B):

\f(t) - f(t0) |2 - | < / , K(t, •) - K(t09 )>l2

ί, t) - K(t, t0) - K(t0, t) + JSΓ(ί0, ί0)] .

Given a finite and positive-semi-definite function K on T2, there
exists a uniquely defined Hubert space of functions on T, whose re-
producing kernel is K (Moore's Theorem). This space is obtained in
the following way: Let Lκ be the linear set generated by {K(t, •)»
te T,} i.e. the set of all finite linear combinations

Let a scalar product of any ordered pair of elements f,geLκ be de-
fined by

where

/ = Σ *<K(ti, •), 9 = Σ

This scalar product induces a norm on Lκ, so that L^ is a pre-
Hilbert space. Obviously

At) - </, ΛΓ(t, •)> , Vί e T and v/e ^ .

If {fn} is a Cauchy sequence in Lκ, then {/Λ} converges everywhere to
a function /, for

^ \\fm - A\\2 K(tft) .

If the norm of / i s defined by | | / | | = lim^β ||/»||, the space obtained
by the adjunction to Lκ of pointwise limits of Cauchy sequences in
Lκ is a Hubert space and K reproduces all functions of this space.
The space generated by {K(t, ),te T} will be denoted by !QK.

Let ξ> be any Hubert space whose reproducing kernel is K. Then
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the class {K(t, ),te T} is a basis for ©, so that φ coincides with φ x .
Consequently, if a closed subspace ξ> of a Hubert space ή of functions
on T has a reproducing kernel K, then for any function h e Ij, the
scalar product ζh,K(t, •)> gives the projection of /& onto £>. Also, if
^ is a closed subspace of ξ> ,̂ then the reproducing kernel of £f is
the projection K{t, •) of K(t, •) onto ^ .

2* The case of separable Hubert spaces* The following theorem
gives a necessary and sufficient condition for a separable Hubert space
of functions to have a reproducing kernel.

THEOREM 1. Let ξ> be a separable Hilbert space of functions
defined on T and let {β̂ } be a countable class of linearly independent
functions in ξ> forming a basis for ξ>. Let {Kn} be the sequence
defined by

(1) Kn(t, τ) = Σ Ut) Ίijneά(τ)

where ( T ^ J ^ , ^ is the inverse of the matrix «^, e^)^^^.

(CΊ) If VteT,{Kn(t,t)} converges as n—>oof then any Cauchy

sequence {Σ?=i a%,iei} ^ ^ converges everywhere on T.

(C2) //, moreover, pointwise limits of such Cauchy sequences
coincide with their limits in norm,

then K(t, r) — lim^^ Kn(t, τ), which exists Vt,τ e T, is the reproducing
kernel of ξ?.

Conversely, if ξ> has a reproducing kernel K, then the conditions
d and C2 are fulfilled and vt,τ e T, K(t, τ) = lim^oo Kn(t, τ).

Proof. To avoid all trivialities, ξ> can be supposed to be infinite
dimensional.

Sufficiency of Cλ and C2. Consequences of C1# Let ξ>Λ be the
subspace generated by {e{, 1 ^ i <* n}. Kn{t, •) is obviously an element
of φΛ and it reproduces all functions in ξ>. Moreover, &n c φ m for
m > n. Then Kn(t, •) is the projection of Km(t, •) onto ξ>w. Conse-
quently, the relations

( 2 ) <Km{t, •), £ΓΛ(r, •)> - KΛt, τ),m>n,

( 3 ) || jKΓm(ί, •) - Kn(t, •) ||2 - JSΓm(ί, t) - ίΓ.(ί, t),m>n,

hold. By the last relation, it can be seen t h a t {Kn(t, t)} is an increasing
sequence which converges by hypothesis, so t h a t {Kn(t, •)} is a Cauchy
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sequence in φ for every te T. Let K(t, •) be the limit of this sequence.
For a given function /eξ>, the function /„ defined by

(4) fn(t) = </, JΓ.(«, •)> - Σ βau. βy(t)f A = </, β,>

is the projection of / onto ξ>n. Thus, the relations

(7) H λ l l ^ l l Λ l l ^ l l / I L m>n.

hold. Consequently, {||/1[} is a nondecreasing sequence bounded by 11 /11,
therefore it converges. Then, according to (6), {fn} is a Cauchy
sequence in ξ>.

Let us suppose that

8 ) Λ = Σ

is a sequence converging to /. Since /„£§„, the relation

</, /.> = </-/„+ Λ, /•> = <Λ, /«>

holds. Then, limn-<»</„,/„> = limκ^M</,/„> = | |/ | | 2 , and according to

0 <S Km | | Λ - /. II2 = l i m ( | | Λ II2 - < Λ , Λ > - < / . , Λ > + I I Λ II2)

Consequently, \\mn^J\\fn\\ = | | / | | . Then the relation (5) shows that
{/J converges to / in norm.

Since the strong convergence of {/„} implies its weak convergence,
one has

= </, K(t, •)> = flr(ί) .

Thus, {/„} converges everywhere. From this, it is easy to see that
any Cauchy sequence of the type (8) also converges everywhere. In
fact,

Λ(ί) - fΛt) = </ - Λ, ί.(ί, •)>

By applying the Schwarz inequality and taking into account the fact
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that Kn(t, t) < K(t, t), one can write

|Λ(«) ~ /•(«) I2 ^ 1 1 / - f«\\zKn(t, ί) ^ | | / - Λ II2K(t, t) .

Since {/Λ} converges t o / in norm, it is seen that lim^^l fn(t) — fn(t) \ = JO.
Finally, the inequality

I g(t) - fn(t) i £ I g(t) - fn{t) I + |Λ(«) - /•(*) I

shows that {/„(£)} converges to the same limit g(t) as {/„(£)}•

Consequences of C2. In case the pointwise limit and the limit in
norm of Cauchy sequences of the type (8) coincide, then by (9) the
reproduction property g(t) = fit) = </, K(t, •)> is obtained. Also, the
sequence {Kn(t, τ)} converges to K(t, τ), vί, τ e T. Hence, K{t, τ) =
lim^oo Kn(t, τ) is the reproducing kernel of ξ>.

Necessity of Ĉ  and C2. Suppose that ξ> possesses a reproducing
kernel K. The relation (3) which is still valid, together with the
relation

|| K{t, .) - Kn{t, •) ||2 = K{t, t) - Kuit, t) ,

obtained from (5) by replacing /(•) by JBΓ(ί, •)> imply that

ίΓn(t, t) < JSΓ ί̂, ί) < JBΓ(ί, ί) for m > n .

Thus, {Kn(t,t)} is an increasing sequence bounded by K(t,t) < oo.
Hence, it converges, so that the condition d is fulfilled. On the
other hand, since § possesses a reproducing kernel, the condition C2

is automatically fulfilled.
Consequently, lim^oo Kn(t, τ) is a reproducing kernel of ξ>. Repro-

ducing kernel being always unique, one has JSΓ(ί, τ) = lim^oo Knit, τ).

REMARK. If only the condition d holds, then the space ξ> can
be made isomorphic to a Hubert space whose reproducing kernel is
Γ(f,r) - <JSΓ(ί, ) , ^ ( ^ •)> with Kit, •) as the strong limit of {KJjt, •)}
in φ. In fact, any Cauchy sequence of the type (8) converging to
/ 6 ξ> converges everywhere in Γ to a function g. As in the theorem
of Moore, if the set of all linear combinations of the functions {ej is
completed by the adjunction of pointwise limits of Cauchy sequences
of this set with respect to the topology of ξ>, and if the limit of the
norms for each sequence is assigned as the norm of the pointwise
limit of the sequence, then a Hubert space ξ>Γ is obtained. The re-
producing kernel of ξ>Γ turns out to be Γ. This latter space is obviously
isomorphic to ξ>. This isomorphism can be represented by
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g(t) = </, K(t, •)>, Vί e T, fe ξ> and 0 e £>Γ .

It can be proved also, that the class of functions {K(t, ),te T}
generates ξ>, in the sense that it is a basis for £>, that is, any func-
tion / e § for which </, K(t, •)> = 0 for all ί e Γ , has its norm equal
to zero. In fact, let / be such a function. Then the function g e ξ>Γ

corresponding to / in the isomorphism between ξ> and § Γ is the null
function in φΓ. Consequently, its norm and the norm of / equal zero.

It is worth mentionning that in view of this remark and the
following theorem, there exists a countable subset S of T such that
K = Γ on both S x T and T x S.

In what follows, a separable Hubert space IQK of functions on
T, with reproducing kernel K, will be considered. Since the class
{K(tf ),teT} generates ξ)^, there exists a countable subset S of T
such that {iφί, ),ίiG S,ieN} is a class of linearly independent func-
tions forming a basis for ίgKm The matrix ( 7 ^ ) 1 ^ , ^ will denote the
inverseof the matrix (K(ti9 ίj))î »,î « a n ( i £w will denote {̂ ,ί2, ,tn}aS.

THEOREM 2. For any function / e § x , ίfee sequence of functions
defined by

(10) Λ( ) =

converges to f, as n—> 00, (δoίA m norm and everywhere).

Proof. To prove the theorem, it suffices to replace ê  by ( )
in the preceding theorem. Then Kn(t, r) becomes

(11) ίΓ (ί, τ) = Σ ^(«, tfrunKifii, τ)

and the function (4) reduces to (10).
Notice that Kn coincides with K on Sn x T and T x Sn, and con-

sequently, fn = fon Sn. According to the second part of Theorem 1,
Kn(t, •) converges to K(t, •) in norm and everywhere, and the first
part of the proof of the same theorem shows that the sequence (10)
converges to / in norm and everywhere.

So, it appears that fn gives an approximation of / in norm and
everywhere in terms of the values taken by / on the finite subset
Sn of S.

COROLLARY. The scalar product of any pair of functions /, g e&κ

is given by
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(12) </, g> = Mm Σ ΛtihuMi)

Consequently, the norm of any function fe&K is given by

(13) ll/H2 = lim.Σ/(ί i )7 < i ./(ίi).
n—>oo i , j = l

THEOREM 3.1 Let f be an arbitrary function defined on T, such

that

(14) lim ± AtjΎunΆtj) < oo,«., tj e S, vi, j e N .

Then the sequence of functions defined by

(15) /.(•) = Σ Λί,)7iίlJΓ(ίί, •)

is a Cauchy sequence in $QK, whose limit / ' coincides with f on S.

Proof. The relation

l l / - Λ I I 2 = l i / . l l 2 - I I Λ I I 2 , m > n

holds for the sequence (15), with

ll/.llf= t J

It is then seen that | | / % | | 2 is a nondecreasing sequence converging to
(14), so that {fn} is a Cauchy sequence in ξ>κ. Let / ' be its limit.
Since f'etQκ, according to Theorem 2, the sequence

fn(ti) - Σ fiQy^Kit^ .)

is also a Cauchy sequence converging to / ' and therefore {fn — fζ\
converges to the null function in tgκ. Since the relation

II f ?' I!2

II J m Jm ||

i! ( / . - Λ ) - ( / . - fc) ii2 = I I / - /; ii2 - ιι/» - fi i i 2 , m > n
holds, one has

o g | | / . - / : ιι^ Mm | | / . -/ ; n = o

so that VTO e N, || / , - / ; || = 0. Consequently vί e T and yn e N, fn(t) =
/:(«). In particular vi ^ », /(ί4) = /.(ί{) = /:(ί4) = /'(ί4). Thus, /(ί) =
/'(ί), all t e S.

1 This extension was suggested to the author by Professor H. L. Royden.



312 H. KOREZLIOGLU

It follows from the last theorem that the set ^ of all functions
satisfying the condition (14) is a Hubert space in which the scalar
product of / by g is given by

(16) lim Σ f(ti)yiing(h) , *<, h e S, Vi, i e JSΓ.

In this space all the functions coinciding on S belong to the same
equivalence class defined by the relation

/ - ff « l im Σ [/(«i) - ^ m U m ) - 0(*i)l = 0 .

In particular, the function fe JS^ and the function / ' e fQκ correspond-
ing to / as the limit of the sequence (15) are equivalent.

3* Hilbert Space generated by a second order random process*
Let (Ω, Σ, P) be a probability space, where Ω is a sample space, Σ is
the σ-algebra generated by a class of subsets of Ω and P a proba-
bility measure defined on Σ. Let {Xt, t e T} be a class of complex
valued random variables defined on Ω and measurable with respect to
Σ. The symbol E will denote the mathematical expectation with respect
to the probability measure P. It will be supposed that yt e T, E(Xt) = 0
and E(\ Xt |2) < oo. The covariance function E(XtXτ) of thus defined
second order stochastic process will be denoted by K(t, τ).

Let Lx be the linear set of all finite linear combinations

A scalar product on Lx can be defined for any ordered pair of elements

by the bilinear form

which induces, for any element Y e Lx, a norm whose square is defined
by

The Hilbert space which is the closure of Lx in the topology induced
by this norm will be denoted by IQZ and will be said to be generated
by the process {Xu t e T}.

The theorem of Moore says that there exists a uniquely defined
Hilbert space !QK of functions on T, admitting K as its reproducing



REPRODUCING KERNELS IN SEPARABLE HILBERT SPACES 313

kernel. The construction of !QX and of !QK shows that these two
spaces are isomorphic if K is the covariance function of {Xt1te T}.
Under this isomorphism, the random variable Xt corresponds obviously
to K(ty •), Consequently, the two spaces are simultaneously separable
and if {K(ti9 •), ί< € S} is a basis for £>κ in the sense given in Theorem
1, then {Xu, tt e S} is a basis for ξ>x.

Given an element Z in ξ>x, the element fz in ίQκ corresponding to
Z is given by

Mt) = <fz, K(t, φ = E(ZXt) .

For separable Qκ (or equίvalently ξ>x) the following- theorem gives a
representation of the element of &x corresponding to any given func-
tion / in ξ)Km The symbols have exactly the same meaning as in the
two preceding theorems.

THEOREM 4. For any function fe&κ, the stochastic element
X(f) e θx corresponding to f under the isomorphism between ξ)κ and
$$X9 is given by the limit in the quadratic mean of

(17) X{fn) = Σ f(ti)ΊijnXtj

as n —> co #

Proof. By replacing X{tj) by K(tjt •) in (17), it is seen that X(fn)
is the element of ξ>z corresponding to (10). Since {fn} is a Cauchy
sequence in !QK converging to /. Then {X(fn)} is a Cauchy sequence
converging to X(f).

In view of the analogy between (12) and (17), the element X(f)
can be represented, following Parzen, as </(•), X(.})>. But this is not
really a scalar product because, almost surely, X(.} does not belong to

The author would like to thank Professor H. L. Royden, who
visited METU in 1966, for helpful discussions.
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