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MEROMORPHIC MINIMAL SURFACES

E. F. BECKENBACH AND G. A. HUTCHISON

Meromorphic minimal surfaces are defined in this paper,
and some of their differential-geometric properties are noted.
The first fundamental theorem of Nevanlinna for meromorphic
functions of a complex variable is extended so as to apply to
these surfaces, as is the Ahlfors-Shimizu spherical version of
this theorem. For these results, the classical proximity and
enumerative functions of complex-variable theory are gener-
alized, and a new visibility function is introduced. Convexity
properties of some of these functions are established.

For plane meromorphic maps, the visibility function vanishes
at all points on the plane but is positive at all other points of
space. In general, in the present development, the sum of
the enumerative function and the visibility function corresponds
to the enumerative function in the classical theory.

Let a surface S be given by
(1) S:x; = x;(u,v) , i=1,23.

Then S is said to be given in terms of isothermal parameters (u,v)
if and only if the representation (1) is such that

(2) BE=G=wv, F=0,
where
o s S r-HENE). o~ 5

Such an isothermal representation is conformal, or angle-preserving,
except at points where \(u, v) = 0.

According to a theorem of Weierstrass [13, p. 27], a necessary
and sufficient condition that a surface S, given in terms of isothermal
parameters, be minimal is that the coordinate functions be harmonic,
that is, that for all (u, v) € D the functions z;(u, v), 7 = 1, 2, 3, satisfy
the equation

(4) Ax,-(u, ,U) =0 ’

where 4 denotes the Laplace operator,

(5) 4=2 4

Then in any simply connected part of D, the functions given by (1)
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are the real parts of analytic functions of a complex variable,
(6) x; = Bfi(w), w=u+ 1,

and (2) is equivalent to

(7) S [2L®) [~ o

g=1 dw

If, in an isothermal representation (1) of a minimal surface S, one
of the coordinate functions is identically zero, say x.(u,v) = 0, then
the map lies on a plane, and either

xy(w, v) + 1@(u, v)  or @y (u, v) + @ (u, v)

is an analytic function of the complex variable w = w + iw. Then
x,(u, v) and x,(u, v) are said to form a couple of conjugate harmonic
Sfunctions. By analogy, the coordinate functions (1) of any minimal
surface S in isothermal representation are called a triple of conjugate
harmonic functions [7]. The generalization to p-tuples of conjugate
harmonie functions z;(uw,v), 7 =1,2, .-+, t, as isothermal coordinate
functions of a minimal surface S in g-dimensional Euclidean space, is
rather direct and will not be pursued further in this paper.

The analogy here indicated between analytic functions of a complex
variable and isothermal representations of minimal surfaces has often
been noted, and since the time of Weierstrass it has served as a
guiding principle in the study of minimal surfaces. It is the purpose
of the present paper, as announced earlier [6], to pursue this analogy
in the direction of the classical Nevanlinna theory [10] of meromorphic
functions of a complex variable. Applications [4] to rational minimal
surfaces and a generalization [2, 3] of the second fundamental theorem
of Nevanlinna to meromorphic minimal surfaces will appear elsewhere.

2. Meromorphic minimal surfaces. Let the real-valued func-
tion x(w,v) be harmonic for (u,v) in a deleted circular neighborhood
Z2*(P,) of a point P,: (u,, v,), that is, for (u, v) satisfying

0< (U — )+ (v—12v)<e.

Then «(u, v) can be represented [12] in Z/.*(P,) by a series of the form
(8) a(u, v) = clog r + ki r*(a, cos kO + b, sin k6) ,

where (7, §) are polar coordinates with pole P,:

1 By request, the results of this paper will be summarized elsewhere for minimal
surfaces in p-dimensional Euclidean space, # = 2.
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U — U, = rcoséd, v—1v,=7rsind.

The constant b, is arbitrary; throughout this paper, we shall assume
that it has been assigned the value 0,

(9) b, =0.

Otherwise, the constants ¢, a,(k =0, =1, &2, .-.), and b, (k = %1,
+2, ...) are uniquely determined by the function x(u, v).
We then have, for w = w — w, = (¥ + ) — (U, + v,),

x(u, v) = Plclog v + f(w)], ® = r(cos @ + isind) ,
where

f@) = 3 (@ — ib)o*

is an analytic function of @ in Z*(P,).
By (7), three such functions,

x;(u, v) = ¢;logr
(10) +, i (@, cOS kO + b, sin k6)
= Plec;log o + fi(w)], ij=1,2,3,
harmonie in Z*(P,), are a triple of conjugate harmonic functions there
if and only if

1) z [cjarl + M] ~0.

dw
Now
filw) = kgw (@;, — tb;)@* ,
so that
(12) ot + @O S (i o
dw S

where for 7 =1,2,3 we have

(13) Qo = Cj Bio=0.
and
'(14) aj,k = ka,-,k y ,8]',], == kbj,k y k = il, _—t2, see

By (11) and (12), then, the functions (10) are a triple of conjugate
harmonic functions in Z*(P,) if and only if
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8 ad ks . .
,~§ k=z_°° lzZ_ (@;; — 1Bi1) (@4t — 1B )0* 2 =0,

Accordingly, the functions (10) are a triple of conjugate harmonié
functions in Z/*(P,) if and only if

i i (@0 — 18,001 — 1Bj,6—) = 0

15" j=1

for all k,k =0, +1, +2, ..., that is, if and only if

(15) S X @ty — BraBia) = 0
and
(16) lzi;m ; (@855 + ;850 = 0

for all k, k=0, =1, +2, ...,
Condition (16) is equivalent to

(17) zZ‘m jgaj,zﬁj,k—z =0,

so that the functions (10) are a triple of conjugate harmonic functions
in Z7*(P,) if and only if (15) and (17) hold for all k, £k = 0, =1, +2, .-,

In terms of the original coefficients ¢;, @;,, and b;,, by (13) and
(14) the relation (15) can be written (cf. [5]) as

3 o 3
(18) 2k :Z;aa',kcj + lzZ_.w Ik —1) ,Z{ (@001 — b ,1b;0) = 0

for k = +1, +2, .-+, and as

3 oo

3
(19) 2. ¢ — 1;—"00 ’ ;:% (@105, — b;b;,0) =0

=1

for £k = 0, and (17) can be written as

3 0 3
(20) k % bj,ij + lgoo Z(k - l) % aj,,b,-,k_l = 0

for k=0, &1, +£2, ...

Thus, (18), (19), and (20) are necessary and sufficient conditions:
for the functions (10) to be a triple of conjugate harmonic functions.

If for some & >0, the functions (10) are a triple of conjugate:
harmonic functions in Z*(P,), that is, if the functions (10) are the:
coordinate functions of a minimal surface S in isothermal representation
for (u,v) e Z*(P,), then [unless P, turns out to be a regular point of
S (see p. 21)], we shall say that P, is an ¢solated singular point of S.
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If S has an isolated singular point at P,, and for an infinitude
of negative indices | we have

(21) (@ + B0 <0,

then we say that the singularity of S at P, is essential; otherwise,
we say that it is nonessential.

If S has a nonessential isolated singularity at P,, and the lowest
index ! = t for which (21) holds is negative, then we say that S has
a pole of order |t| at P,. By definition, then, the poles of S are
isolated.

We note by (19) that if (21) does not hold for any negative value
of I, that is, if for j = 1,2,3 we have

aj,,=bj,,=0, l-:—]., —2,°",
then

(22) S =0,
=
or ¢, =¢, = ¢, = 0. Hence, a minimal surface given in isothermal
representation by functions x;(u, v) cannot have an isolated singularity
that s merely logarithmic.
If (21) does not hold for any [ < 0, then we say that S has a
removable singularity at P,. In this case, we adjoin to S the point

(23) a, = (A0, Gg,05 Xsj0)

corresponding to P,, if indeed this correspondence was not already
given in the definition of S. Then the functions (10) determine an
isothermal map of the neighborhood %#/.(P,), that is, of the set of
values (u, v) satisfying

( — u)* + (v — v) < &,

onto the (extended) surface, which we again denote by S. We then
say that S is regular at P,.
If S is regular at P,, then either each x;(u, v) satisfies

xj(u’ 'U) = Qj0 .7 = 1’ 2$ 3 ’

and S reduces to a point, or there is a lowest positive index [ = ¢ for
which (21) holds. In the former case, we say that S is a constant
minimal surface. In the latter case, we say that S has an a,point
of order t at P,; in particular, if a, = 0 = (0, 0, 0) then we say that
S has a zero of order ¢t at P,

If S has a pole or order —¢ > 0 or an a,-point of order ¢ > 0 at
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P,, then for k = 2¢, (18) and (20) reduce respectively to

£ g (@, —b)=0 and # g, ;b =0,
so that, since

3
jgl (a%, + b)) #0,

3 3 3
(24) xai,=>b,+0, >ia;b;,=0.
J=1 J=1 J=1
In what follows, we shall frequently use the notation

o(y(r)) or O(y(r))

to indicate a function (not always the same function) o(r, ) such that,
uniformly with respect to ¢, we have

p(r, 0) 0o
v 1 ST

1im 209 _ o or Tm

r—0 ql/'(’)") =0

respectively.
If S has a pole of order —¢ > 0 at P,, then from (10) and (24)
we obtain

3 3
S [, V)P = r* (Z‘, aZ,, cos’ to
i=1 j=1
3 :
(25) + 2 3 a;,.b;, cos td sin td + ﬁ] b2, sin® t0> + o(r*)
i=1 i=1
3
=r* > a, + o(r*) .
i=1
Similarly, if S has an a,-point of order ¢ > 0 at P,, then
R 3
(26) 22w, v) — a5 = " X aj, + o(r*) .
j=1 j=1
By (24) and (26) we thus see that if S does not reduce to a point,
then not only the poles but also the finite a-points of S are isolated [5].
In analogy with complex-variable theory, for the present develop-

ment we extend Euclidean 3-space by postulating a single ideal point
at oo. In this space, the transformation

of=H—, 3§=1238,
g=1 wq
effects an inversion in the unit sphere with center at the origin, and
the transformation is isothermal (see § 6, below). If S has a pole of

order —t > 0 at P,, then the surface
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S*:x; = af , = fl)j(%,?)) ) .:112’3,
j €Ty (u, v) 3:1 [xq(u’ ’U)]z J

has a zero of order |t| at P,. The surface S* will not ordinarily be
a minimal surface; for example, if S is a plane not passing through
the origin, then S* will be a sphere. Since the transformation is
isothermal, however, we say that angles between curves on S* at the
origin correspond to angles of the same measure on S at co.

Suppose that S has a pole of order —t >0 at Py (uy, v,), let
P.: (u,, v;) and P,(u,, v;) be nearby points at which S does not have a
zero, with

(U; — Uy, v; — V) = (r;c08 0, 7r;8inb;), i=12,

and consider the vectors from P, to P, and from P, to P,. An angle
from the first of these to the second has measure 6, — 6,. The corres-
ponding space vectors joining points on S* meet at an angle #, 0 <
0 < w, which, by (25), satisfies

g [ (uy, v) [} (s, 0,)]
{35 1050, 0)FJ{ 5 070, 0

cos @ =

J=1

[xj(ul ’ vl)][wj(u'z: 'Uz)]

3
J=1

{2 o, 0PRSS [0, w12

Il

3
=1
3
> ri(a;,. costb, + b;, sintd )ri(a;, cos tb, + b, sin t,) + o(rir)
=1

3 3
[t e+ ooty frt Syt + o) |
i= i=

By (24), this reduces to
3

( ) ag.,,)(cos £6, cos t, + sin t6, sin t6;) + o(1)
1

— 3
g; a/?’,t + 0(1)
= cos (6, — 8,) + o(1) ,

cos b =

so that if 4, — 6, has a limit 6, as ,— 0 and »,— 0,

lim @, — 6,) = 0, ,
r1—0
r9—0

then

lim cos ® = cos t6, .
r1—0
r9—0
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Hence the magnitudes of angles at P, are multiplied by |¢| in the map
on S* at the origin. Therefore, by the convention given above, they
are multiplied by |¢| in the map on S at oo.

Similarly, by (24) and (26), if S has an a-point of order ¢ > 0 at
P,, then the magnitudes of angles at P, are multiplied by ¢ in the
map on S at a.

If, except for poles, S is a regular minimal surface given in
isothermal representation by (1) for (u,v) in a finite domain D, then
we say that S is a meromorphic minimal surface for (u,v) in D.
In particular, if D is the entire finite plane, then we say simply that
S is a meromorphic minimal surface. If D is the entire finite plane
and S has no poles in D, then we say that S is an entire minimal
surface.

For example, the functions

x1=%<i—+w):<—7l‘—+r)cos¢9,

(27) —aill )= (L1 i
2, %z(w w) <r +r> sin @ ,
z, = A(2logw) = 2log r, w = r(cosd + i 8ind) ,

are the coordinate functions of a meromorphic minimal surface (actually
a catenoid) in isothermal representation. Its single pole in the finite
plane is at the origin and is of order 1.

The minimal surface of Enneper [11, p. 221] is given in isothermal
representation by

x, = ZB@Bw — w') =3rcosfd — r*cos 3,
(28) ®, = Zi(Bw + w*) = —3rsind — r*sin 36 ,
2y = B (Bw) = 3r’cos 20 , w = r(cos § + i8in f) .

This is an entire minimal surface. Its single zero is at the origin and
is of order 1.
The relations

%, = A(logw — jw?) = logr — 3r*cos 26 ,
(29) x, = Zillog w + jw?) = —16 — 3r*sin 20 ,
2, = B2w) = 2rcosd , w = r(cos§ + isinb) ,

give an isothermal representation of a minimal surface with a singu-
larity of a different sort at the origin. The second of the relations
(29) is not a (single-valued) function of w = u + 4v, however, so that
this surface is not included in the class of surfaces presently under
consideration.

The subclass of meromorphic minimal surfaces (1) for which the
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¢; are restricted to have the value 0 in the representation (10) for each
P, is somewhat more tractable than the unrestricted class. The re-
striction is not needed for the validity of the results of this paper,
however, and accordingly we shall not make it here.

3. Formulas. In this section, we shall develop some formulas
that will be needed later. These formulas are concerned with the
differential geometry of meromorphic minimal surfaces.

Let the functions (10) be the coordinate functions of a nonconstant
meromorphic minimal surface S in isothermal representation in Z7*(P,),
and let 7 denote the lowest index ! for which we have

3
(30) Sat, %0,
j=1

By (9) and (24), 7 is then also the lowest index for which (21) holds.
Equation (10) can accordingly be written as

x;(u, v) = ¢;logr + i‘, r*(a;,, cos kO + b; ;. sin k0)
k=t

(31)
ZQ[CiIng—{"fj(w)]y j=17213!

where

(32) > a3 # 0

and

(33) Fil@) = 55 (@5, — iby )0 .

If z =0, let ¢ denote the lowest positive index ! for which (21)
holds; if £ 0, let ¢t = 7. Then t = 7, with inequality if and only if
7 = 0. Recalling that (22) holds if z = 0, we see that:

If <0, then £ =7 and S has a pole of order —¢ at P,.

If £ =0, then ¢t > z and S has an a,point (a, = 0) of order ¢
at P,.

If 2 >0, then ¢t =z and S has a zero of order ¢ at P,

If £ <0, then t = 7, so that (25) can be written as
(34) S Ly, ) = 17 3 a3+ 0(r™)
j=1 Jj=1
If z = 0 then, because of (22), (34) follows from (31) by direct compu-

tation. If z > 0, then again ¢ = z; since now a, =0, (26) can be
written as (34) in this case. Hence (34) holds in all cases.
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From (31) and the definition of ¢, by differentiating we obtain

(35) gﬁ; — z% = ‘/‘5 + ,2 k(a,, — b )@ " .

Eqguating real parts, and equating imaginary parts, in (35), we therefore
have

0%; _ & cos 0
(36) ou r
+ gt, kr*a; . cos (k — 1)8 + b, , sin (k — 1)6],
2& = Y ging
37) ov 7

+ 3 krtb,, cos (b — 1)0 — a;, sin (k — 1)0] .
k=t
From (2), (3), (24), and (36), we obtain
(38) N, 9) = 135 S a, 4+ 0

It follows from (24) and (38) (cf. [5]) that for a mnonconstant
meromorphic minimal surface S given in terms of isothermal parame-
ters (u,v), the zeros and infinities of the area-deformation ratio
Mu, v) are isolated.

At points where Mwu,v) 0 and Mu, v) # oo, S has a tangent
plane. The direction cosines X,(«,v) of its normal are given [11,
p. 147] by

0xy(w, v) 0x(u, v) 0w (u, v) 0, (u, v)
ou oV on oV
Mu, v)

(39) () =

where j,k,1 =1,2,8 in cyclic order. For the functions (31), let ¢ > 0
be so small that \(u,v) = 0 and \u, v) # o in Z/*(P,). Then for
(u, v) e ZZ*(P,), from (36), (37), (38), and (39) we obtain, by a computation,

Pr=Hag,b, — ab) + 0

Xi(u’y ’U) = 3
erir S al, + O(r*)
g=1

(40)

_ @by — a1iby .
= - + O(r) .
20,
7=1

By (40), we see that
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Qb1 — Qy,iby
b

(41) lim X (u, v) = 2
r—0 Z ag,t
g=1
i, k, 1 =1,2,3 in cyclic order, even if A\(uy ) = 0 or M (uy, v,) = oo.
We take this limiting value (41) as the definition of X;(u,, v,) if Mu,, v,) =
0 or M(uy, v,) = oo, With this extended definition of the functions
Xi(u,v), we see by (24) that a nonconstant meromorphic minimal
surface S given in terms of isothermic parameters (u,v) has a
continuous unit normal vector function

X(u, 'U) = (Xl(u, ’U), Xz(ur ?)), Xﬁ(u$ ’U))

throughout the domain in which S is meromorphic.

The next formula we shall develop is fundamental for the present
investigation. It isan expression [7] for the Laplacian of the logarithm
of the distance function

42) (S0 o1}

for a nonconstant meromorphic minimal surface given in isothermal
representation.

For the isothermal coordinate functions (31) of a nonconstant
meromorphic minimal surface S, let € > 0 be so small that in Z*(P,)
the distance function (42) and the area-deformation ratio Mu, v) have
no zeros or infinities, They might or might not vanish or be infinite
at P,

Using vector notation, for (u, v) € ZZ*(P,) we obtain, by a compu-
tation,

4log (x-x)*

(43) _ (eex)(x-dx + X0 x, + X,0x,) — 20(x-x,)° + (x-x,)°]
(x+x)? '

where the subscripts indicate partial differentiation. By (2) and (3)
we have

Xy X, = X, X, = MU, v),
and from (4) we obtain
dx =0.
Hence (43) reduces to

2(x- o) — (x-x,) — (x-x)"]

(44) 4log (x-x)? =
(x-x)?

Since Mu, v) = 0 in Z/*(P,), x, and x, are nonnull vectors there.
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Further, these vectors lie in the tangent plane to S and therefore are
perpendicular to the unit normal vector X(u, v); and since F' = 0, they
are perpendicular to each other. Accordingly, for any (u, v) e ZZ*(P,),
there are scalars «, 8, v such that

(45) x =ax, + Bx, + vX.
From (45), we obtain

xX-x =a\+ B\ + 7,

XX, = a\n,
x-x, = B\,
x-X =7.

Hence (44) can be written as

2(a2x’2 + 182x2 + 72)\' — azhz — IBZAIZ) _ 272x
(x-x)* (x-x)’

Adlog (x-x)% =

or, finally, the fundamental formula

2(x - X)) .

(46) dlog (x-x)t =
(x-x)

In obtaining an estimate of the behavior of the right-hand member
of (46) as » — 0, we can use the expressions (34) and (38) for x-x and
A, respectively. For x-X, by (31) and (40) we have

r >, (a;,. cos 70 + b, . sin 7A)(ay,.b,,, —a,,, by,.)
47 x-X =Lkt

+ o(r7) ,

Qe

st

3
Sa
q=1

where 7, k,1 =1,2,83 in cyclic order in the sum in the numerator.
If = =0, then by (24), (32), (34), (38), and (47) we have

lim (x-x)* = (,2:{ a§,0>z >0,

r—0

3
limx =3 a2, limr* 2 >0,
J=1

r—0 r—0

with equality if and only if ¢ > 1, and

) 2% @ @a,ebr,e — @ybyy) T
lim (x- X)* = | L& >0.

3
r—0
2
2. g,
g=1

Since each of these three limits exists and is finite, and the limit of
(x-x)? is not 0, it follows from (46) that 4 log (x-x)?* is continuous at
(%, v,) in this case.
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If z #0, then ¢t = 7, and the sum in the numerator of the first
term in the right-hand member of (47) vanishes identically. We then
have, by (31) and (40),

(48) x-X = O(r )

unless

(49) 7= -1 and icir;éO.
=1

In the exceptional case (49), we have
(50) x-X=00ogr).
If (48) holds, then from (34), (38), (46), and (48) we get

(51 4log (x-x)t = LXENOCDN __ ggar-seanssy — 0(1) ,
[,r.zt éa?’,t _‘__ 0(,',.2!)]

so that 4log(x-x)? is bounded in the neighborhood of P,. Notice, how-
ever, that it is not necessarily continuous at P,. For example, for
the minimal surface of Enneper (28), we have

Alog (x-x)* = 2cos?20 + o(1) ,

so that the limiting behavior of 4log (x-x)? depends on the limiting
behavior of 4. Thus if 6 — 0 as »— 0 then 4log (x-x)*— 2, but if
6 — /4 as r— 0 then 4log (x-x)?— 0.
In the exceptional case (49), in place of (51) we have, by (32) and (50),
(52) [7‘“2 e+ o(r"z)]
= Ofr—**(log r)*] = O[(log 7)*] .

For example, for the catenoid (27) we have
4log (x-x)* = 8(log 71 + o(1)] .

Thus in the exceptional case (49), we see that 4log (x-x)* becomes
infinite as r— 0. As we shall see in the next section, however, it
does not become infinite too rapidly for the applications we shall be
making.

4. An application of Green’s theorem. Let w = u + tv; let
A,(w,) denote the closed circular disc |w — w,| < r; and let 04, (w,)
denote the boundary, |w — w,| = r, of A,(w,).

Let the functions (1) be the coordinate functions of a nonconstant
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meromorphic minimal surface S in isothermal representation for (u, v)
in a finite domain D, and for a given fixed R > 0 let 4;(0) be contained
in D.

If S has a zero at the origin, let s, denote the order of this zero;
otherwise, let s, = 0. Similarly, if S has a pole at the origin, let x,
denote the order of this pole, and otherwise let n, = 0. Of course, at
least one of s, and n, must be equal to 0, and both might be equal
to 0.

Let s, be denoted by %(0, 0; S), and %, by #%(0, co; S). Then by
(34) and the definition of z, if 7, is the value of 7, and ¢, that of ¢,
for the functions (31) representing S when P, is the origin, we have

(53) xex = 1% ; @+ o), =|w],
with

(54) i a., # 0

and J

(55) T, = 8§, — 1, = n(0, 0; S) — n(0, 0; S) .

For any p, 0 < p < R, there can be only a finite number of zeros
and poles of S in A,(0), since the zeros and poles of a nonconstant
meromorphic minimal surface are isolated. In the punctured disc
0<|w]| =< p, let the zeros of S be at the points

W = Ry, Ryy ***y Rt s E=Fk(o)=0,
with
0<|z| =zl - =zal=p,
and let the poles be at
W=D,D0 0, L=U0)z=0,
with
0<|p|Slp:l=---=Sml=0p.
Let the orders of these zeros and poles be, respectively,
81,8 *oy 8, and My, Ny, -0+, Ny,

and denote the sum of the orders of the zeros and poles of S in A,(0)
by n(p, 0; S) and n(p, oo; S), respectively:

(56) n(0,0; S) =8, + 8, + «++ + 8,
(57) 1P, 003 8) =y + My + o0 + 1y
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Then n(0,0;S) =0, with s; >0 for j=1,2,..-, %k, and similarly
n(p, o0; S) = 0, with n, >0 for ¢ =1,2, ---, 1L

Now let p, 0 < p < R, be chosen so that S does not have a zero
or pole on 04,(0). Since there are only a finite number of zeros and
poles of S in A,(0), we can choose » > 0 so small that the k¥ + 7 + 1
closed circular discs A4,0), A4.(z;), 7=1,2,.--,k, and A.(p), ¢ =
1,2, ...,1, are disjoint from one another and interior to A,(0). Let
2, denote the domain interior to the circle 0A4,(0) and exterior to the
circles 04,(0), 04.(z;), and dA.(p,), j=1,---,kand ¢=1,2,---, 1.

In Q,, the function

(58) g(u, v) = log (x-x)?
has continuous derivatives of all orders. Hence we can apply Green’s

theorem to g(u, v) in 2,:

(59) S 99 gg — Sg Ag(u, v)dA
32, Oy 2,

where v refers to the normal directed outwardly from 2,.
By the definition of 2,, we have

g Mds=§ 99 do_g 99 ,qp
(60) 09, dy 04,00 00 24,000 OF

-3 § @.rdo—ig 99 444 .
Jj=1

34,(z5) OF a=1 Joa,(n)) OF

From (31), (53), and (55), by a computation we find that on 6A4,(0) we
have

99 _ % +o(rt) = 3= 4 oy,
or r r

so that

S 99 130 = 21z, + o(1) = 27(s, — 1) + o(L) .
34,000 07

Similarly, on the 04.(z;) and 0A4,(p,) we have, respectively,

a_g. — Si + 0(,,.—1)
or r

and

99 _ =M ooy,
or 7

so that
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S ?—grdf) = 2ms; + o(1)
aAr(Zj) or
and
S @—rdﬁ = —2n, + o(1) .
94,(py) or

By (56), (57), and (60), we accordingly have

og(u, v) 4. _ S 99 0do — 97 S s
860, dy ds = 04,(0) ap pdﬁ 2w ;:"6 5

+ 27 S_l] n, + o(1)
g=0

- 99 odp — 2 .
B Sup(o) 00 edp (e, 0; 5)

+ 2zn(p, °0; S) + o(l)

whence

lim g 09w, v) g
r—=0 J0Q, d))

— S 29 0o — 2an(p, 0; 5) + 2rn(p, 00 ) .
34,000 00

(61)

By (51) and (52), for any A.(w) < D we have
27
0

SS Ag(u, v)dA = S 5’0(1)0 do do
Ay (w) 0
or at worst, in the exceptional case (49),

SSA ( )Ag(u, v)dA = S:zO[(log o)lo do df .
Since
00(1) = o(1) and o0O[(logo)*] = o(1),

in either case we have

lim SS dg(u, v)dA = 0 .
Ay (w)

r—0

Therefore, by the definition of 2,,

(62) lim SSQ dg(u, v)dA = SSA gl v)dA .

(4

From (59), (61), and (62), we obtain
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ag —_ . . —
Loo ool pdt = 2nlp, 0: 5) + 2enlp, 003 8) = ([ dotw,vaa,

whence
_I_S 99 49 — ™Mp,0; S) — n(p, oo; S)
63) 2w Joa, 0p 0
1
-~ 2mp SSAP(O)Ag(u, v)dA -

Now (63) can be written as

L [*20 gy m0,0:8) =m0, 2 5) _ m(p,0:5) = m0,0;8)

64) 2 Jo 0p o 0
4 P, ;S) —n(0,0;8) _ 1 Sg dg(u, v)dA
0 an 450 ’ )
Nothing that, by (55),
_ ™0,0;S) — n(0,0;8) _ —7 :__a_logp"0
o 4 op

= L ("2 1og g
2w Jo dp og p~dd

0
we see from (58) that

2 Jo 0p 0

1 (¥ .x)Eo-*
- R G

(65)

By (65), we can therefore rewrite (64) as

__1_ Szr_a_log [(x.x)ép~fo]d0 — n(p, 0; S) — n(0, 0; S)
(66) 2w Jo d0p 0
U202 8) — 0, 20i8) _ L [{ g, via .
o 2r0 J) a0

By (51) and (52), for any r, 0 < » < R, the right-hand member
of (66) can be integrated from 0 to » with respect to p. The numer-
ators in the second and third terms on the left vanish in an interval
0p=mr, r,>0, so these terms also can be integrated. For the
first term in the left-hand member of (66), by (53) we have

fER TR

LTS st
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_ 1 .3\ ool "
== Sologux x)}o~"] |z do

S log (x-x)*d6 — 7, log r
2w Jou, 0

— log (g a§,,0>% +o(1),

so that

lim S{% Saip log [(x- x)ép—ro]do}dp

= iS log (x-x)2d6 — n(0, 0; S) log »
2w Jos,.0

8. 3
+ n(0, oo; S) log » — log <]Z=1 a,-,,o) .

Hence (66) yields

1

—_—— . é
= Su,(o) log (x-x)3d6

- gr o, 0; S) ; (0, 0; S) do — n(0,0; S) log r

4 So n(p, ; S) ; 0, 205 8) o + n(0, o0; S) log 7

() - LT, oo

(67)

If for a nonnegative function ¢ the function log*e is defined by

logp for =1,

log*g =
og'P {0 for 0<p=<1,

then we have the identity
1
log ¢ = log*p — logt— ,
@

and (67) can be written, by (46) and (58), as

1

—S log*(x- x)2d6
27 Joa,

+ | e o; §) > 0. 22:8) 4o + n(0, 0; ) log 7

_ 1 F(xe x)—2
(68) - —ZE_SGA,.(O) log (- x)~d¢
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. S P, 0;8) =m0, 0:S) 35 1 (0, 0; 8) log

0 0
# [N, aalie + os (o)

5. The Nevanlinna characteristic function. For a nonconstant
meromorphic minimal surface S given in isothermic representation by
the functions (1), and for any given finite

a = (aly a2y a’3) y
consider the surface
(69) S—ax; =2a;(u,v) —a;, ij=123,

for (u, v) e D. This again is a nonconstant meromorphic minimal surface
in isothermic representation.
Applying (68) to S — a, we obtain

1 e — a)e(x — a)l?
%Su,m log*[(x — a)-(x — a)]2dé

i S %(p,OO;S—a)—%(O,OO;S—a)dp
0 o
+ (0, c0; S — a)log r
_ 1 @) (x — a2
=5 SaA,m log* [(x — a)-(x — a)]~2d6
n S’n(p,O;S—a)—n(0,0;S—a) do
0 ‘0 .
+ n(0,0; S — a)logr
1 [(x —a)- X -
Nl e

ol o Ja,07[(x — a)-(x — a)]?

3 3
+ log (Z a?,n,) ,
i=1

(70)

where 7, is the value of 7, and ¢, that of ¢, for the functions (69),
and the a;,. are leading coefficients of these functions.
Since the poles of S and the poles of S — a occur at the same

(u, v)-points, we have
(71) n(0, 00; S) = n(p, ;S — a) .

Since the zeros of the surface S — a are the a-points of the surface
S, the function n(p, a; S), defined by

(72) np, a; S) = n(p,0; S — a),
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gives an expression of the number of a-points of the surface S in
lw| < p.

If the map of A,(0) on S is projected from a on the unit sphere
with center at a, then the function %(p, a; S), defined by

. Q) — [(x — a)-XT
(73) Mo, a; 5) = SL‘,(O) [(x — a)-(x — a)]z)\ldA ’

gives a measure of the area of this projection, with the element of
area of the projection weighted by

—l—lcos(x—a,X)].
(1

Thus k(p, a; S) can be considered as a measure of the visibility of the
surface S for |w| =< p, as viewed from a.
In particular, we have

(74) h(0,a;S)=0.

Since
lim h(0,a; S) =0,

we define (o, oo0; S) by
(75) h(p, 0;S8) = 0.

By analogy with the Nevanlinna theory of meromorphic functions
of a complex variable, let us define a proximity function (Schmiegungs-
funktion) for S by

m(r, co; S) = ——1—S log* (x-x)¥d6 ,
27 Jod, (0
(76) 1
m(r,a; S) = —S log* [(x — a)-(x — a)]"%d6 ,
27 Joa,

and an enumerative function (Anzahlfunktion) by

N(r, 00; 8) = S 0, 03 8) = 0,05 8) g5 1 1(0, o0; S) log 7,

) iy o
N, a;S) = So "(P’“’S);”( 1@ 5) 45 + n(0, a; S) log 7 ,

for a finite.

To these we now adjoin a visibility function (Sichbarkeitsfunkiion),
defined by

H(r,;8) =0,

(78) H(r, a; 8) = S:____h@’;’? S do .
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By (74) and (75), the definition (78) of H is quite analogous to the
definition (77) of N, with A in place of =n.

Substituting from (76), (77), and (78) into (68) and (70), and using
(71) and (72), we obtain, respectively,

m(r, oo; S) + N('ry o5 S) + H(’/’, 03 S)

79 3 3
W e 09 + NeL 0 ) + H, 0:8) + log (3 i.)
and

M(’I‘, o0, S — a) + N(’rr 05 S) + H(’I', ©0; S)
(80)

3 3
= m(r, a; S) + N(r, a; S) + H(r, a; S) + log (g a‘;,fa) i

It is well known that for any two nonnegative numbers, say v,
and v, with v, = 7, = 0, we have
(81) log* (v, + 7,) < log* v, + log* v, + log 2.
To establish (81), notice that for v, = 1 we have

log™* (v + 7,) = log i+ 7)) = log 2v,
= logv, + log 2 < log* v, + log* v, + log 2,

while for v, < 1 we have
log* (v; + 7,) = log 2 = log* v, + log* v, + log 2.

Hence (81) holds in any case.
By the triangle inequality, we have

[(x — a)-(x — @) < (x-x) + (a-a)?
and

(x-x)t=[(x —a+a)(x—a-+ a)]’}
<[(x — a)-(x — @) + (a-a) .

Accordingly, from (76) and (81) we obtain

(82) m(r, ;S — a) < m(r, 03 S) + log* (a-a)? + log 2
and
(83) m(r, co; S) < m(r, o; S — a) + log+ (a—a)% +log2.

From (82) and (83), we have
(84) m(r, ©; S) — m(r, ;S — a) = B(r,a; S) ,
with
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(85) | B(r, a; 8)| < log* (a-a)* + log 2.
Substituting for m(r, co; S — a) from (84) into (80), we get
m(r, oo; S) + N(r, 00; S) + H(r, o0; S)

(86) =m(r,a;S) + N(r,a;S) + H(r,a;S) +C(r,a; S) ,
where

3 3
87) C(r, a; S) = log (g a) + B(r,a; 8S) .

By (85) and (87), we have
3 3
(88) |[C(r,a; S)| < Ilog <§_j, a},a\) | + log* (a-a) + log 2.
We define the total affinity of S to @ in |w| < », or the affinity
Sunction for S, by
(89) Ar, a; S) = m(r,a; S) + N(r,a; S) + H(r,a;S) .

In particular, we call the total affinity of S to oo the Nevanlinna
characteristic function of S and denote it by T(r; S), so that

T(r; S) = Ar, o0; S)
(90) ZM(’I",OO;S)+N(’I‘,OO;S)+H(1‘,OO;S)
= m(r, o0; §) + N(r, o0; S) .

The first fundamental theorem of R. Nevanlinna [10] concerning
meromorphic functions of a complex variable is generalized by means
of the inequality (88) to meromorphic minimal surfaces:

THEOREM 1. If the functions
xj:xj(uyv)a j=112y3’

are the coordinate fumctions of a monconstant meromorphic minimal
surface S in isothermal representation for u* + v* < oo, then for each
finite a we have

(91) T(r,S) = Ar,a; S) + C(r,a; S) ,

where C(r, a; S) ts a bounded function of r for each a:

(92) |C(r, a; )| < }log @ aﬁ-,,,fl + log* (a-a) + log 2 .

Thus S has essentially the same affinity for all points a in space,
in the sense that for any two given points a and b the difference
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Ar, a; S) — A(r, b; S)

is a bounded function of 7:

3 3
|6, a5 ) — A, b; 8) | < |log (X a3, )|
(93) 3 =

+ llog <zi', aﬁ-,,b> l + log* (a-a)* + log* (b-b) + log 4 .
This is true in particular if S lies on a plane (the complex-variable
case) and the point a, or the point b, or both, are not on the plane.

6. The hyperspherical characteristic function. Because of the
log* function in the formulas (76), the value of the proximity function
m(r, a; S) is affected only by the portion of the map of 0A4,(0) on S
that lies at distance < 1 from a for a finite, or at distance = 1 from
0 for a = .

In the Ahlfors-Shimizu theory [1, 14; 9, 15] for the complex-variable
case, the plane of the map S is projected stereographically [8, pp. 119,
120] onto a spherical surface of radius Z, and then the chordal distance
is used as a metric. In this metric, each point of the plane is at distance
<1 from each other point of the plane, and accordingly all of the
map of 04 (0) on S contributes to the proximity function for each
point a of the plane.

An analogous treatment can be given for isothermal maps on
nonconstant meromorphic minimal surfaces.

In the four-dimensional (x,, x,, x;, x,)-space, let &, be the hyper-
sphere with center

x' = (f, x3, 28, )
and radius d,. Then, as in three-dimensional inversion, the points
x = (y, T, @5, w,) and x' = (x], @, ¥, )

are said to be inverses of each other with respect to .&*, if and only
if x and x’ are on the same ray with endpoint x° and are such that

00" = 6%,
where
0= [(x —x%-(x — X and & = [(x — x°)-(x' — x)]

are the Euclidean distances in four-dimensional space from x° to x and
from x° to x’, respectively.

By similar triangles, then, x and x' are inverses of each other
with respect to &7, if and only if
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'—];—'——.2—:_:_') '=1y29314’
x; — s 0 0* 0* J

or

(94) =0 —at), j=1,234.

62

As in the three-dimensional case [8, pp. 117-120], inversion in &7,
maps four-dimensional space in a one-to-one way onto itself, with x°
corresponding to a unique ideal point, oo, at infinity. A hypersphere
or hyperplane is mapped onto a hypersphere or hyperplane, according
as the given hypersphere or hyperplane does not or does pass through x°.

Further, from (94) we obtain

da; = %dwi - 25_‘23(95,. — dd
whence
ds”? = dx’-dx’
= %dx dx %(%adﬁ(x — x%-dx
+ i‘;é(day(x — x9)-(x — x)
= %dx-dx = %(Jls2 ,
or
2
(95) ds’ = %ds ,

so that the transformation is an isothermal one.
For the particular choice

x*=(0,0,0,1) and 6,=1,
(94) yields

x = T

w4 at+ (v, — 12
a2+ x4 2) + w (e, — 1)
@+ o) + 23 + (v, — 1)

j=172139

X =

Under this inversion, the coordinates of the image of a point (x, x,, ., 0)
on the hyperplane z, = 0 are given by
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r X ;
X = 2 2 2
v+t a+1
=% i —=1.2.8
1+x.x7 j b b b
(96) 2 2 2
— Xi 4+ T3 + X5
o+ +ai+1
__ XX
1+ xx

The coordinates (96) satisfy
wf + o + ad + (2 — 3= (3)*,

so that the image of (x,, «,, 2,, 0) lies on the sphere & with center
(0,0,0,3%) and radius 4. In fact, the stereographic projection of the
hypersphere & from its “north” pole (0, 0, 0, 1) onto the hyperplane
x, = 0 tangent to 57 at its “south” pole (0, 0, 0, 0) coincides with the
mapping of & onto this hyperplane under inversion in .&,.

We shall henceforth call the hyperplane x, = 0 the (x,, «,, x,)-space.
For points

X = (xly xz: .’133,) and y = (yly yz: ya)
in the finite (z,, x,, #;)-space, the line segment joining their images
x' = (v, @5, @5, %) and Y = (5, ¥s, U3 Yi)

under the inversion in %, described above is a chord of the sphere
<. If we let y(x, y) denote the length of this chord,

Ax, y) = distance (x',y) = [(x' — ¥)-(x' — ¥
then we have
(97) 0=x(xpy=1.
From (96), we obtain
1+ x-x)’Q + y-y)lxix, »)F
=1+yy)x— 1L+ xxy]-[L+yyx— 1+ x-x)y]
+[A + y-y)x-x) — 1 + x-x)y-y)F
=1+ x-x)1+ypld+yy(xx)+ 1+ x-x)(y-vy)
- 2(x-y) — 2(x-x)y-y)],
so that
1+ x-x)1 +y-plxx, ) =x-x—2xy+y-y
=(x—y+(x—y),
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or

98 R (C Ay Ny L
(98) 20x ) A+ x-xPA + y-y?

In the limit, as y — o, (98) gives

1
99 o) = —_——
(99) w09 = s

We now define a hyperspherical proximity function for S, analo-
gous to (76), in terms of the chordal distance:

1 1
° 1 8) = — 1 de .
(100) me(r, a; S) py Su,m og . @)
Notice that here the integrand, which in (76) was restricted to
nonnegative values by use of the log+* function, takes on only nonnega-
tive values by virtue of (97).
By (98), (99), and (100), we have

m"(r,oo;S):-LS log (1 + x-x)*d# ,
2 Joa, 0

_1_8 log L+ x-x)¥1 + a-a)? 20
21 Joa 0 [(x — a)(x — a)]%

(101)

me(r,a; S) =

for a = (a,, a,, a;) finite.
From (76), (101), and the fact that

log ¢ = log* ¢ — log* 1 ,
P

for a finite we obtain

m°(r, a; S) = m°(r, c0; S) + m(r, a; S)

(102) —m(r,o; S —a) + log (1 + a'a)% .

Substituting from (102) into (80), we get
m°(r, o0; 8) + N(r, o0; S) + H(r, 00; S)
=m°(r,a;S) + N(r,a; S) + H(r, a; S)

+ log (Zin@hal?
1 + a-a)

(103)

We can write (103) as

m°(r, 0; §) + N(r, 00; §) + H(r, o0; 8) + C(c0; S)

(104) =m°(r,a;S) + N(r,a;S) + H(r,a;S) + C(a; S) ,



MEROMORPHIC MINIMAL SURFACES 43

where the constants C(co; S) and C(a; S) are such that in (104) both
the left-hand member and the right-hand member — 0 as »— 0.
Namely, if there is not a pole of S at » = 0 then we have

1
C(c0; S) = log ’
(OO (1 + 23_1 a] o)é
(105)
C(a; S) = log (21 -1 @, ra

1+ 3. at )il + a-a)f

while if there is a pole of S at r = 0 then ¢, = ¢, < 0 is independent

of a,
Ajrea = Qjtg j = 1; 2, 3 ’

a

and we have

C(, S) =10g———1——,
(3l5=103,0) to
(106) )
Cla; S) = log ——mM .
(a; S) g it aap

It might be noted that in complex-variable theory the equation
analogous to (104) does not include the terms H(r, oo; S) and H(r, a; S),
for then these terms are identically zero. Neither does the complex-
variable equation ordinarily include constant terms C(co; S) and C(a; S);
here, however, the distinetion is only notational, for the constants are
then included in the definitions either [9] of m°(r, oo, S) and m°(r, a; S)
or [15] of N(r, oo; S) and N(r, a; S).

We now define the hyperspherical affinity of S to @ in |w| = »,

or the hyperspherical affinity function for S, by
(107) A(r, a; S) = m°(r, a; S) + N(r, a; S)
+ H(r,a; S) + C(a; S) .

In particular, we call the hyperspherical affinity of S to oo the
hyperspherical characteristic function of S and denote it by T°(r; S):
T°(r; S) = A°(r, ; S)

(108) = m°(r, 003 8) + N(r, co0; 8) + H(r; 003 §) + C(c0; ) .

Substituting from (107) and (108) in (104), we have the following
generalization of the Ahlfors-Shimizu spherical form of the first funda-
mental theorem of Nevanlinna to meromorphic minimal surfaces:

THEOREM 2. If the fumnctions

xizxi(u!v)y j:172y3y
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are the coordinate functions of a nmonconstant meromorphic minimal
surface in isothermal representation for w* + v* < oo, them for each
finite a = (a,, a,, a;) we have

(109) T (r; 8) =A°(r,a; §) ,

where WA°(r,a; S) is the hyperspherical affinity of S to a, and
T(r; S) =A°(r,00; S) is the hyperspherical characteristic function of S.

7. Convexity properties. For
wWw+vr=|lwlr=lu+wl< oo,

let the functions (1) be the coordinate functions of a nonconstant
meromorphic minimal surface S in isothermal representation. For a
finite or infinite, let the a-points of S in 0 < |w| < r < r be at the
points w=w;, j=1,2,---,k, of moduli r, =7, < -+ <7, and let

the respective orders of these a-points be a;, 7 =1,2,---, k. Then
n(r,a;S) =0+ Q& + o0+,

where «, = 0 is the order of the a-point, if any, at w = 0.

Evaluating the integral in (77), we obtain

,’.n(r,a:S)

(110) Nr,a;S) =log —MM .
PPE o0 i

From either (77) or (110), we see that N(r,a;S) is a continuous
function of log r. Further, by differentiating either (77) or (110), we
get

dN(r,a; S)

111
(111) dlogr

= n(r, a; S)
except at the points of discontinuity of n(r, a; S). Accordingly, since
n(r, a; S) is a nondecreasing, nonnegative function of log r, we have
the following result:

The function N(r,a;S) is a mondecreasing, piecewise linear,
convex function of log r.

Similarly, for a finite, by differentiating the second equation in
(78) we obtain

(112) dH(r,a; S) _ h(r,a;S) .
dlogr

By (73), we have
k(r,a;S) =z 0,

with equality for » > 0 if and only if S is a plane surface and a lies



MEROMORPHIC MINIMAL SURFACES 45

in the plane. Further, by (78), we have
H(r,a;S)>0 for »>0 if h(r,a;S)=#0.

Hence we have the following result:

The function H(r,a; S) vanishes identically if a is infinite or
of S is a plane surface and a lies in the plane. Otherwise, for
r >0, H(r,a; S) 1s a positive, increasing, strictly convex function
of log 7.

To determine the behavior of T°(r; S), we integrate (109) with
respect to a over the three-dimensional hyperspherical “surface” &
and divide by the content

V= 271:2(-1_>3 -
2/ 4

of & to obtain

lV“LT°(r;S)dVa - %SSLm%r, a; S)dV,
(113) + lVSSLN(r, a; S)dV, + % ”LH(T, a; S)dV,

+ %SSLC(«:; S)dV, .

The integrand T°(r, S) of the integral in the left-hand member of
(113) does not vary with a, and accordingly the value of this integral
is T°(r; S).

The first integral in the right-hand member of (118) is

%Sgsym%r, a; S)dv,

(114) - % SSL’[E:LE SGA,.(O) log X(.x}, a) dﬁ]d Ve

- -517_1'-5347(0)[%Sssy log—x—(}}:—;{)_dva]dﬁ ’

and here by geometric symmetry the inner integral in the last expression
is the same for all x e &”. Accordingly, we can replace y(x,a) by
%(x(0, 0), @) in (114). Except at a = x(0,0), by (105) and (106), we
have

C(a; S) = IOg X(x(oy O)’ a) .

Therefore the sum of the first and fourth integrals in the right-hand
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member of (113) is 0.

The function N(r, a; S) has value 0 for all @ not on S. It therefore
has value 0 everywhere except at most on a set of three-dimensional
measure 0 on . Hence the second integral in the right-hand member
of (113) has value 0.

It follows, accordingly, that (113) can be written as

T | .
(115) T°(r; S) = ngH(r, a; S)dV, .

By (78), then, we have
(116) =

By (73), the function

(0, 8) = ||| o, a; $)10v,

is positive for p > 0 and is a strictly increasing function of log po. It
can be given a quasi-geometric interpretation, as indicated in the
discussion of h(pa; S) in §5.

From (116) we obtain

(117) aT°(r; S) _ P(r; S) .
dlogr

Since F(r; S) is positive for r > 0 and is a strictly increasing function
of logr, and since 7°(0; S) = 0, we therefore have the following
result:

The function T°(r; S) is positive for r > 0 and is an increasing,
strictly convex fumnction of log r.

It follows from (76), (81), and (101) that

0 < m(r, 0; S) < m°(r, ©, S) < m(r, oo; S) + log 2% .

Therefore, by (90) and (108), the difference T°(r; S) — T(r; S) is a
bounded function of r. Actually, it can be shown that, like T°(r; S),
the function T(r; S) is an increasing, strictly convex function of log r.

The foregoing convexity properties are useful, in particular, in
the study of problems of order and type [4] in the theory of meromorphic
minimal surfaces.
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