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BOUNDARY VALUE PROBLEMS WITH INTERIOR
POINT BOUNDARY CONDITIONS1

ALLAN M. KRALL

Recently Neuberger, Zettl and Loud have revived interest
in self-adjoint boundary value problems with interior point
boundary conditions. All three have derived their results
from rather extensive study of the Green's function associat-
ed with the nonhomogeneous problem. They require G(x, £) =

Rather than approach the problem via the Green's func-
tion, this article considers the problem as that of a differen-
tial operator in a Hubert space, derives the adjoint operator,
whose domain specifies the adjoint boundary conditions, and
then produces necessary and sufficient conditions for self-
ad jointness.

To do this we employ a variation of the fundamental lemma of
the calculus of variations in the Hubert space setting, and we note
our method is applicable even when the Green's function fails to exist.

For convenience we only consider a first order vector equation,
although our results are easily extended to n-ϊh order vector systems.
Finally, our method is extendable to systems whose boundary condi-
tions are applied at an infinite set of points. We hope to pursue this
line in a future paper.

I* The problem and its adjoint. Let us consider an interval
[α, b] which is subdivided into m subintervals by

Gi, α2, , am^(a = α0 < a, < < am_, < am = b) .

We denote by H the Hubert space of n x 1 vectors

X = (x19 x2, , xnγ , Y = (ylf y2, , yn)* ,

defined on [α, b] whose components are in L2(α, 6) and whose inner
product is given by

(X, Y) = \b Y*Xdx = Σ

Let us consider boundary operators of the form

M,Y = t[AijY(aj + ) + BvYia,-)] ,

i — 1, , k, where Aim = 0, Bi0 = 0, and Y(ad±) indicates the limit of
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Y(x) as x approaches αy from above or below. We assume that these
boundary operators are linearly independent. Thus k ^ 2nm. Note,
however, k does not have to equal nm.

We let A1 and Ao be continuous n x n matrices, and in addition
assume that A[{x) exists and is continuous. We denote by D the set
of all n x 1 vectors Y satisfying

(1) Y is in H.
(2) Y is absolutely continuous in each subinterval [a3J aj+1],j =

0,1, , m — 1, of [α, 6].
(3) M,Y= 0,i = 1, ...,fc.
(4) AyY' + A0Y is in H.
We define a differential operator L by letting LY — A1Y

f + AQY
for all Γ in D.

It is evident that D is dense in if, and therefore L has a well-
defined adjoint operator L* associated with it.

THEOREM 1. If Z is in the domain of L*, then Z is absolutely
continuous in each subinterval [αy, aj+1],j — 0,1, , m — 1 of [a, 6],

L*Z = — (AfZy + Ao*^ m eαc/̂  subinterval

(aj9 aj+1),j = 0, 1, .. , m - 1

o/ [α, 6].

Proof. Let i ϊ 0 denote the subspace of D whose elements vanish
at a, au , αm_x, b. Ho is also dense in H.

If F is in HQ, then

Γ (L*Z)*Fd^ = Γ Z^A.Y' + ΛΓ]da; .
Jα Jα

Thus

ί^^Γ'da? = [b[L*Z- A?Z]*Ydx .
Jα Ja

Since F vanishes at a, aly , αm_x, 6, integrating by parts,

Γ(AfZ)*Γ'^ = - ΓjΠlΛZ- AfZ]dt\*Y'dx .

So

ΓJAΓ^ + (" [ i *^ - A*Z\dt\*Y'dx = 0 .

J*Y'dx = 0. It is

S b

K*Ydx = 0 if and only if
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rrdx — 0 .

Since Y is in JSΓ0, which is dense H, Y' is only orthogonal to elements
which are constant on each subinterval (a,-, α i+1), j = 0,1, , m — 1.
Thus

AfZ + [*[L*Z - A*Z]dt = C(Z) ,
Ja

where C(Z) is constant on each subinterval (ad, aί+1), i = 0,1, , m — 1.
If x Φ a5 for some j , we may differentiate, and

L*Z= -(AϊZ)' + A*Z .

THEOREM 2. If Z is in the domain of L*, then Z satisfies the
following equations.

= 0 ,

ίfj^ΦiiZ) = 0 ,

where j = 1, 2, , m, and Φi(Z) are functionals which depend upon Z.

Proof. Let Y be in the domain of L and Z be in the domain of
L*. Then

(LΓ, £ ) - (F, L*Z)

3 = 1

1 = o .

Let 0?(i?) be arbitrary parameters, * = 1, •••,&. Then, since
i r = 0, i = 1, "-,k,

a- k

~ 1 ' - • τ=b "

Collecting like terms,

k

0 = Σ [Ziaj-rAMj-) - Σ Φt(Z)Bii]Y(ai-)

i(«i + ) -i,Φΐ(Z)Ati]Y(aJ + ) .
i l
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Since Y(as + ) and Y(aj —) may be arbitrary, the result follows.
The parameters Φi(Z) seem somewhat artificial in this setting.

However, if the boundary conditions also involve an integral, they
enter in a very natural way, not only into the adjoint boundary con-
ditions, but also into the form of the adjoint operator.

2* Reduction to an end point problem* The results of this
section are very similar to a procedure of Mansfield's [2]. Mansfield,
however, parameterized each subinterval [αyα i+1],i — 0, , m — 1.
This is unnecessary.

We make the following definitions. Let JJ = [αi_1, a,j],j = l, « ,m.
L e t ny d e n o t e t h e nmxl v e c t o r ^/ = (Y(Xj), Y(x2), •••, Y(xm)Y w h e r e

x3 is in I3,

0

0

0

0

0

\

0
o \
0

v 0 0 . . . A0(xm)/'

= (B^). Let A consist of the m-tuple

(α0 +, α ! +, • , a,m-ι+),

J5 the m-tuple (a1—,a2—9

 β , α m — ) . By ^(A) we mean the ^ m x 1

vector (F(α o + ), F(α x + ), •••, F ( α w _ 1 + ) t with a similar expression for

i ϊ is exactly equivalent to the Hubert space έ%f of nm x 1 vec-
tors ^ , where the norm is computed by integrating the first n com-
ponents over Il9 the next n over J2, etc. In this notation, however
D corresponds to the set 3f which consists of all nm x 1 matrices
^/ satisfying

(1) ^/ is in Sίf.
(2) ^/ is absolutely continuous in the m-tuple interval [A, B\.
( 3 ) J^^/(A) + &?&(B) = 0.
( 4 ) j ^ f ' + j ^ J ^ is in 3ίf.

Then L corresponds to the operator g? which is defined by ^^/ —
S>/&' + S/^/ for all ^/ in Sf.

In this setting our problem has been reduced to one with end
point boundary conditions.

If ST = (Zfa), Z(x2), , Z(xm)Y and
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the adjoint operator takes the form.

on [A, B\. The domain of Jίf* is determined by the boundary conditions

= 0 ,

= 0 .

Green's formula takes the form

= 0 .

On the other hand if r^2/{A) + &2/{B) completes the number
of independent boundary forms, then there exist complimentary forms

+ &3Γ(B) and &%T{A) + <3r%T{B) such that

The coefficients of these forms satisfy

0

which yields the equivalent boundary condition f§f %*(A) + ̂ % ( B ) = 0,
and the formula Φ(^) = J ^ ; r ( ^ ) + i^;r(J5). The following theorem
follows in a manner similar to that of Reid [4].

THEOREM 3. J^ is self-adjoint in Sίf if and only if

The last result may also be found by substituting the parametric
adjoint boundary conditions into those for ^?.

If the number of boundary conditions k in the original problem
is equal to nm, and if the homogeneous problem (j*f — λ)g^ = 0 has
only the trivial solution in £%f, then the nonhomogeneous problem

has a unique solution, which is generated by an in-
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tegral equation.

The Green's function £2f(X, Ξ) has the form

IG{xι x xλ) G{x1 x x2) G(Xj. x a?«) y

G(x2 x x,) G(x2 x a?2) (α;2 x α?m)

x xm)j\G(xm x a?!) G(xm x x2) ••• 6

As a function of X it formally satisfies (=2^— λ ) ^ = 0 and the boun-
dary conditions defining £&. As a function of Ξ, &(X, Ξ)* formally
satisfies the adjoint equation (^>f* — X)%' — 0 and the adjoint boun-
dary conditions. If J^f is self-adjoint in S$f, &(X, Ξ) automatically
exhibits the usual symmetric properties associated with self-adjoint
boundary value problems which were illustrated by Loud [1],

We finally remark that these results can be extended to higher
order systems with the standard modifications. In the self-ad joint
situations the usual eigenfunction expansions are valid. In the non-
self-adjoint situations expansions similar to Birkhoff's are possible.
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