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FACIAL DECOMPOSITION OF LINEARLY COMPACT
SIMPLEXES AND SEPARATION OF

FUNCTIONS ON CONES

L. ASIMOW AND A. J. ELLIS

Necessary and sufficient conditions for a linearly compact
simplex K to be uniquely decomposable at a face are given.
If P is a cone having the Riesz decomposition property and
if —/, g are subadditive homogeneous functions on P with
f'^9 then it is shown that there is an additive homogeneous
function h on P with f^h^g. If Pis a lattice cone for the
dual space of an ordered Banach space X and if —/, g are
also ^-continuous then, under certain conditions, it is possible
to choose h e X; a consequence of this result is Andό's theorem,
that an ordered Banach space has the Riesz decomposition
property if its dual space is a lattice. A nonmeasure theoretic
proof of Edwards' separation theorem for compact simplexes is
also deduced from these results.

Let K be a linearly compact simplex in a real vector space E. With-

out loss of generality we will assume that K is contained in a hyper-

plane e~ι(l) and that E = lin K, where lin K denotes the linear hull

of K. Then it is well known that E is a vector lattice relative to

the cone with base K, and that co (K[j —K) is the closed unit ball

for a norm making E a pre-AL-spaee. In fact if K is compact for a

locally convex Hausdorff topology on E then E is the Banach dual

space of A(K), the space of all affine continuous functions on K with

supremum norm (cf. [5]). (We refer to [10] as a general reference

for the lattice theory and terminology that is used.)

The set K is said to be decomposable at a face F if there exists

a complementary face F' of K such that F Γ) F' = Φ while co (F U F')

= K. If a complementary face to F exists then it is evident that it

is uniquely determined; moreover, in this case, Alfsen [1] has shown

that the decomposition is unique in the sense that each keK has a

unique decomposition k = Xx + (1 — λ) y with x e F, yeF' and 0 <̂  λ <* 1.

Alfsen has also given a necessary and sufficient condition for K to be

decomposable at F; we give here other necessary and sufficient con-

ditions which are perhaps more closely tied to the order and norm

structure of E.

THEOREM 1. Let K be a linearly compact simplex and F, F'

disjoint faces of K. Then F and Fr are complementary faces for a

301



302 L. ASIMOW AND A. J. ELLIS

(necessarily unique) decomposition of K if and only if E is the
order-direct sum of lin F and lin Fr. Consequently, if E is complete
in its norm then K is uniquely decomposable at F if and only if F
is norm-closed.

Proof. Since F is a face of K it is easily verified that lin F is
a lattice ideal in E and that (lin F) Π K = F. If E is the order-
direct sum of lin F and lin F' then each x e K has a unique decom-
position x = y + z with y, z i> 0, yelinF, ze lin Ff\ hence K =
co(F U Ff), and the decomposition is unique.

Suppose conversely that K = co(FuF'). Then, since £7 = lin F
+ lin -F', it will follow that i? is the order-direct sum of lin F and
l i n F' i f w e p r o v e t h a t l i n F' = ( l i n F ) L = {yeE: \ x \ Λ \ y \ = 0,
V^elin F) (cf. [10, p. 38]). Since (lin F)L is a lattice ideal the set
G = KΠ (lin F)L is a face of if disjoint from F, and hence G g ί 7 ' .
However if x e F'\G then there exists & y e F such that a? Λ y — z Φ 0
but, since F and Ff are faces of K and # = z +(# — 2), y = z + (y — z),
this implies that 2/|| 2 || e F Π i7" which is impossible. Therefore we
have (lin F)L = lin G = lin JF".

If £7 is complete in its norm then it is an AL-space. If F is
norm-closed then the continuity of the lattice operations in E shows that
lin F is also norm-closed, and hence is a band. Therefore, by a
theorem of Riesz (cf. [10, p. 39]), lin F has an order-direct complement
in E, and so K is uniquely decomposable at F. If, conversely, K is
uniquely decomposable at F then there exists a natural affine function
/ on K such that F = /-1 (0), Ff = f~ι (1). The function / has an
obvious extension to a continuous linear functional g on E and, since
F = K f] g"1 (0), it follows that F is norm-closed.

If K is a compact simplex then E is certainly a Banach space,
and so the following result is immediate.

COROLLARY. If K is a compact simplex and F a face of K, then
K is uniquely decomposable at F if and only if F is norm-closed.

The corollary generalizes Alfsen's result that a compact simplex
is uniquely decomposable at each closed (i.e., compact) face. When K
is an arbitrary compact convex set Alfsen and Andersen [2] charact-
erize the decomposable faces of K. However it is not true that every
linearly compact simplex is decomposable at every norm-closed face,
as the following example shows.

Example. Let K denote the continuous nonnegative functions /
on



FACIAL DECOMPOSITION OF LINEARLY COMPACT SIMPLEXES 303

S I fl/2

f{t)dt = 1, and let F = {feK: f(t)dt = 0} .
o Jo

Then K is a base for the lattice cone in C [0, 1], and hence is a
linearly compact simplex, and it is clear that F is a face of K. The
norm in C [0, 1] associated with K is the Lx [0, l]-norm, and hence
F is norm-closed. Suppose that there exists a face Fr complementary
to F in K. Then, since f(l/2) = 0 for all feF, there exists a ueF'
such that u(l/2) > 0. However it is easy to decompose u nontrivially
u = Xg + (l-λ)fc with #ei<\ k f and 0 < λ < l . Since Fr is a
face of K it follows that geFf)F', which is a contradiction. There-
fore K is not decomposable at the norm-closed face F.

It has been shown by Asimow [4] that the state space of a
function algebra is decomposable at every extreme point, and so such
a property does not characterize simplexes among compact convex
sets this property does however characterize simplexes among finite-
dimensional compact convex sets as the following slightly more general
result shows.

PROPOSITION. If K is a compact convex set which is decomposable
<at each extreme point x, and such that each complementary face {x}'
is closed, then K is a finite-dimensional simplex.

Proof. If the set Ke of extreme points of K is infinite then there
•exists an accumulation point ueK. For each xeKe the set Ke con-
sists of x together with the extreme points of the closed set {x}f.
Consequently ue{x}f for all xeKe. Therefore the intersection of the
faces {x}' forms a closed face F of K which is not empty, since ueF.
However if y is an extreme point of F then yeKe, and also y e {y}'
which is impossible. Hence Ke is finite.

If Ke has m points and K has dimension n then, for each x e Ke,
it is clear that {x}' has m —1 extreme points and has dimension n — 1,
and {x}' has a similar decomposition property to K. Reducing in this
way we see eventually that m = n + 1, that is K is an ^-dimensional
simplex.

If K is a compact simplex then the above result shows that not
-all faces {x}f can be closed. For example, for the simplex {x e lx:
x^0, || x || ^ 1} all but one of the faces {x}' are closed, while for the
simplex of probability measures on [0, 1] none of the faces {x}' are
-closed.

2* We prove an analogue for linearly compact simplexes of
Edwards' separation theorem [6], which characterizes compact simple-

this is a corollary of the following result.
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THEOREM 2. Let P be a cone possessing the Riesz decomposition
property, and let —/, g be subadditive homogeneous functionals on P
with f^g. Then there exists an additive homogeneous functional h
on P such that f^h^g.

Proof. If we define h on P by

h(x) = inf J Σ / t e ) : x = ΣAxi, xt e

then it is clear that f^>h^>g, and hence h is finite-valued. Moreover,
h is positive-homogeneous and subadditive. If x — y + z with
x, y, zeP, and if e > 0 choose #f e P such that a? = Σ?=i #< a n ( i
Σii=if(%i)^h(x) + ε. Then there exist aiάeP such that ΣSUGti =
2/> Σ?=i αi2 = s, «ii + α*2 = Xi for i = 1, 2, , n. We have

h{x) ̂  Σ /(»<) ~ e ̂  Σ/(^i) + Σ/(α ί a) - e ̂  λ(y) + Λ(s) - ε ,

so that Λ is additive and homogeneous.

In the corollary below K will denote a linearly compact subset of
E, again contained in a hyperplane e~ι(l) and such that lin K — E.
By Ah(K) we will denote the Banach space of all bounded real-valued
affine functions on K with the supremum norm. If o,o(K{J—K) is.
linearly bounded then its Minkowski functional is a norm in E and
Ah{K) is simply the Banach dual space of E for this norm. In the
particular case when K is compact for some locally convex Hausdorff
topology on E, Ab(K) is the second dual space of A(K).

COROLLARY. The following statements are equivalent.
( i ) K is a linearly compact simplex.
(ii) co(K{J—K) is linearly compact and, if —/, g are bounded

convex functions on K with f^gy there exists an heAb(K) such that

Proof, (i)—>(ii). That co (K{J—K) is linearly compact was-
proved in [5, Th. 2], If P is the cone generated by K as a base then
P is a lattice-cone. If / and g are extended homogeneously to the
rest of P then the existence of the required h e Ab(K) follows from
the theorem.

(ii) —+ ( i ) . If uL, u2, v19 v2 e Ah(K) and u19 u2 <J vί9 v2 then, putting
g(x) = max [u^x), u2(x)], f(x) — min [v^x), v2(x)] for all xeK, we ob-
tain a function h e Ab(K) such that uu u2^ h ̂  vlf v2. The w*-com-
pactness of order intervals in Ab(K) now shows that Ah(K) is a vector
lattice, in fact an AM-space. Therefore E is an AL-space and, iix
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particular, each η e E has a unique decomposition η = rjι — η2 with
rji^O and | i^ | | = ||^i il + ll^ll* namely for ηγ — η+, ΎJZ = 37-. Since, by
hypothesis, co (K U — K) is the closed unit ball of E it follows that
E is a sublattice of E. Therefore K is a linearly compact simplex.

It is perhaps surprising that the linear compactness condition on
co(KU--K) cannot be dropped, as the following two simple examples
show.

Examples. ( i ) Let E be the linear subspace of Zx spanned by
those elements with only finitely many nonzero coordinates, together
with the two elements {2~%}, {(-3)~w}, and let K={xeE: x^O,
II x Hi <; 1}. If S = {x e E : || x \l ̂  1} then it is obvious that for each
ε>0 we have co (K\J-K) g S g ( l + e)co(K\J-K). If x = {{-3~n}
then x+ίE, so that 2xeS but 2#£co (K\J-K). Therefore co
(JBLU —K) is not linearly closed; in other terminology E has a (1 + ε)-
generating cone for all ε > 0 but not a 1-generating cone. However,
a straightforward verification shows that E has the Riesz decomposi-
tion property and hence, by Theorem 2, K has the separation property
stated in part (ii) of the Corollary. However K is not a simplex.

(ii) Let K denote the polynomials p nonnegative on [0, 1] and

such that I p(x) dx = 1. It is clear that co (K{J — K) is not linearly
Jo

compact because the polynomials do not constitute a sublattice of
LJO, 1]. It is true, but less obvious, that lin K has the Riesz decom-
position property (of. [7]). We are grateful to Professor W. A. «L
Luxemburg for bringing this fact and reference to our notice.

By an ordered Banach space we shall mean a partially ordered
Banach space which has a closed, normal, generating cone. If X is
an ordered Banach space then so is X* (cf. [8]). The following lemma
now follows from a result of Kadison ([9, Lemma 4.3]).

LEMMA 1. Let X be an ordered Banach space and let

K={feX*:

equipped with the w*-topology. Then X is order and topologically
isomorphi® to

A0(K)^{feA(K): /(0) = 0} .

LEMMA 2. Let C be a cone in a vector space V, let p be a func-
tion homogeneous on C and let f be a function affine on V such that
f(x)<Ξ*p(x) for all xeC. Then the linear function g—f—fφ) satis-
fies g(x) Sp(x) for all xeC.
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Proof. It is simple to check that g is linear on V. Suppose that

there is a point xeC such that g{x) > p(x). Then if ε = —f(0) and

§ = f(x) — p(x) we have ε >̂ 0 and g(x) — p(x) = d + ε > 0. Hence there

exists an r ^ l such that r (δ + ε) > ε, and we have

f{x) = r-if(rx) + (1 -

Therefore

f(rx) - p(rx) = r(f(x) - p(a )) + (r - l)ε = r(δ + ε) - ε > 0 ,

which gives a contradiction.

The following theorem is the main result of this section and is a

topological version of Theorem 2.

THEOREM 3. Let X be an ordered Banach space such that the dual

cone P * is a lattice cone in X*, and let —/, g be w*'-continuous sub-

additive homogeneous functionals on P * with f^g. If either ( i )

/ = uγ A u2, g = vγ V v2, where uίf u2, vίt v2 e X, or ( i i ) the dual cone

in X** possesses an interior point, then there exists an heX such

that

Proof. If K = {xeP*: | | $ | | ^ 1} then Lemma 1 shows that we
can assume that X — A0(K), and it is sufficient to find an k l such
that f(x) ^ h(x) ̂  g(x) for all xeK.

Let G denote the w*-closed convex hull of the graph of / in KxR
and define /(x) = sup {u(x) : ueA(K), u^f} forall^eiΓ. A straight-
forward calculation shows that f(x) <̂  inf {r : (x, r) e G] for each x e K.
If μ < inf {r : (x, r) e G} then by separating (#, μ) from G we obtain
a ^eA(ϋΓ) such that v^f while v(x)> μ therefore /(a;) = inf
{r : (x, r) e G}. Given ε > 0, for each xeK let Nx be a w*-compact
convex neighbourhood of x such that | f(x) — f(y) | < ε for each y e Nx,
and let if c (J?=i ^ ^ For each a GiΓ we therefore have

(x, f{x)) S co U W,. x [/(«*) - ε, /fe) + ε]} ,
i

and so we can write x = χ? = 1 λ< ̂ , /(a;) = Σ?=i λ* ri ^
Ti G [/(^) — ε, f(Xi) + ε] for each i. If we now define for each xeP*

fix) - inf JΣ/(α\.) : «•• e P*, Σ ^ = 4

then, for each a; 6 iΓ,

/ + e ^ Σλ* r€ + 2e = /(a?) + 2ε .
i



FACIAL DECOMPOSITION OF LINEARLY COMPACT SIMPLEXES 307

Therefore f(x) g f(x) for each x e K. If a > 0 and if fa(x) = sup
{u(x) : ue A(aK), u^f) then the argument shows that /(a?) S fa(%)
for all a; e aK in particular /α(0) = 0 = /(0).

If condition ( i ) holds then we have

f(x) = inf K ( ^ ) + ^2(x2) : x =: xt + x2f x, e P *} .

Since P * is a normal cone we can choose α: > 0 such that
II a?i II + II #2II ^ α II a? II whenever x — xt + x2 with ^ e P* .

If condition (ii) holds and if ζ is an interior point of the dual
€one in X** then the order interval [ —ζ, ζ] is the unit ball for an
equivalent norm in X**, and hence X* has an equivalent norm which
is additive on P*. Therefore there exists an a > 0 such that

I ΣίU whenever xi e P*.
Now let x = Σ?=i B< ̂  °> where xi e P*, and with n = 2 if ( i )

holds. If λ = Σ?=i II «* ll» and if ^ = 0 when xi = 0, ^ = λ^ /li «»I
when Xi Φ 0, then y{ e aK for each i. Since / β is convex on aK we
liave

f(yύ
λ

In case (ii) this inequality gives fa(x) ^f(x) for each xeK, while in
case ( i ) we have fa(x) ^ u^Xj) + u2(x2) which again gives fa(x) ^ /(α?)
in either case therefore we have proved that f(x) = fa (x) for each
.xeK. If we define | | / | | = sup {|/(α;)| : a eJSΓ}, and | | / | | similarly,
then we have \f(x) \ ̂  ΣΓ=i II / II II ̂  II ̂  oc \\ f \\ \\ x \\ for each x e K, so
that 11/llsS a\\f\\._

By Theorem 2 / is additive on P * and the above argument shows
that / is w*-l. s. c. on βK for each β > 0. The set {x e P * : /(a?) ^ r}
is convex and its intersection with each multiple of the unit ball of
X * is w*-elosed hence / is w*-l. s. c. on P*. If we write g for
-(-g) then g is w*-u. s. c. on P * and is additive, homogeneous and
satisfies g ^g ^ / ^ / . If ε > 0 and r>a then, by separating the
sets {(x, t)eP* x R ;t> f(x)} and {(y, s-e/r) eK x R : s£ g(y)} and
applying Lemma 2, we obtain a w ε e l such that wε^f and
we(a) > ^(x) — ε/r for all a? e K. Hence if zε = (g — wε)Vθ, zs is homo-
geneous, subadditive and w*-continuous on P* with \\ze\\ < ε/r. The
above argument shows that zε is w*-u. s. c. on P * and that
|| £β || <Ξ α || 3, || < ε. Since the set K x {ε/r} is disjoint from the w*-
closed cone {(x, t) : α?eP*, t^zε(x)} the separation theorem gives a
j ) ε e l such that pε^zε^ g — wε, 0 and || pε || ^ ε.

Using the procedure of the preceding paragraph choose flf gx e X
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such that / ^ / , #1 S 0, g ^ f + gλ and || gx || < 1/2, in particular we
have / Λ (/i + 0i) 2̂  0 V Λ By induction there exist sequences {/J
and {gn} in X such that (a) gn^0, | | 0 n | | < 2 - , (b) gVfn^fn+1 + gn+1,
(c) fn+i^fΛ(fn + g»). Properties (b) and (c) give -gn+1^fn+1-fn^gn

so t h a t l l / n + i - A l l < 2 - n . Therefore {fn} converges to heX such

t h a t h^fhy (c), and h ^ g by (b).

COROLLARY 1 (Andδ [3]). If X is an ordered Banach space such
that X* is a lattice for the dual ordering then X has the Riesz
decomposition property.

COROLLARY 2 (Edwards [6]). If K is a compact simplex and if
-/, g are u. s. c. convex functions on K with f^g then there exists
an he A(K) such that f^h^g.

Proof. By truncating if necessary we may assume that / and g
are bounded, say \f(x)\, \g{x)\ ̂ λ for all xeK. First suppose that
the strict inequality f>g holds then the set G = {(x,t) : λ <Ξ t ^ g(x)}
is compact in Kx R and is a subset of the convex set H={(y,s): s<f(y)}
which is relatively open in K x R. Therefore, taking the convex hull
of a finite covering of G by compact convex neighbourhoods in H, we
see that H contains the closed convex hull of G. Hence for each
xe K there is an fx e A{K) and a neighbourhood Ux of x such that
g<fx while fM<f(v) for all ye Ux. If K^\JU UXi and if / ' =
fxλ Λ Λ fXn then / ' is continuous and concave on K with g <fr<f.
Similarly we can construct a continuous convex function gr on K such
that g < gr < / ' < / . The functions —/', gf have natural extensions
to w*-continuous subadditive homogeneous functions on the positive cone
P* of A(K)* such that g' ^ / ' , and so Theorem 3 gives an h'e A(K)
such that g < gf <L h' Sf ^ /.

In the general case f^g there exists an ht e A(K) such that
/ + l > A 1 > f l f — 1. By considering the functions (/Λ Λi) + 1/2 and
(# V ΛΊ) — 1/2 we similarly obtain an h2e A (K) such that
f + l/2> hz> g - 1/2 while ]| A2 - ^ || < 1/2. Proceeding in this way
we obtain a sequence {hn} which converges in A{K) to h such that
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