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LACUNARY SERIES AND PROBABILITY

R. KAUFMAN

In this note we continue some investigations connecting a
lacunary series A of real numbers

A : 1 ̂  λ± < -" < λ k < -- , q λ k ^ h+i (1 < q)

and a probability measure μ on (—°o, °°) satisfying

(1) μ&a, a + A]) « hfi

for all intervals [a, a + h] of length h < 1, and a fixed expon-
ent 0 < β < 1. (The notation X « F is a substitute for X =
0(Y).) Measures jM occur in the theory of sets of fractional
Hausdorff dimension.

In the following statements S is a subset of (— oo, oo) of
Lebesgue measure 0, depending only on μ and A.

THEOREM 1. For r = 2, 4, 6, and t&S, there is a con-

stant Br(t) so that

s : I 2 α* cos (λktx + h) \rμ(dx) S

Here Br(f) is independent of the sequences (aj) and (bk).

THEOREM 2. For £ g S the normalized sums

tend in law (with respect to the probability μ) to the normal
law. Here the convergence is uniform for all sequences (bk).

Theorem 1 is a random form of a fact apparently known from
the advent of the study of lacunary series; Theorem 2 bears the same
relation to the work of Salem and Zygmund [4]. Probability enters
critically in the theorems because β < 1: for any increasing sequence
A there is a measure μ fulfilling (1) for every β < 1 and such that
the t-set defined in Theorem 1 is of first category.

1* In this section and later we use the notations

e(y) = eiv, μ(y) = 1 e(yx)μ(dx) ,
J-oo

— oo < y < oo. I n t h e fo l lowing e s t i m a t i o n \y\ > 1.

S 2 ^ Γoo Γco Γ2

\μ(ty)\2dt = \ I I e(tyx1 - tyx2)dtψ(dx1)μ(dx2)
1 J-ooJ-ooJl

inf (1, 2\yx, - yx2\~1)μ(dx1)μ(dx2) .
o
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Let r > 0 be the integer defined by 2~r < \y\-~1 <£ 21~r; we sum the
integrand over the sets

, - x2
1), \Xί - x2\ ^ - a?2

2"r)

and finally over the set (2~r > \xx — x2\). In each case the product
measure can be estimated by (1) and Fubini's Theorem; summing up
we obtain K\y\~β. A more convenient form is valid for all real y:

(2) \[\μ(ty)\dt<(l + \y\)~ιl2β .

2* To prove Theorem 1 we require an elementary lemma.

LEMMA. Let (vk)? be a sequence of real numbers and r a positive
integer. Let T be the sum of the moduli of all Fourier-Stieltjes
coefficients

βidίV^ + d2vk2 + •••)

where 1 ^ kt < k2 < , d19 d2, are integers Φ 0, and

the number of integers dlf d2, - varies between 1 and 2r.
Then

T)(r!)2(Σ

ake{vkx))r by the multinomial formula,

x + - + ervkx) .

Proof. We first expand
obtaining a sum of terms

r!(β1!β2! er\)-ιae

k\

Of course 1 <£ ̂  < < kr1 and the r-tuple (elf , er) is variable,
subject to the equality ex + + βr = r. Next to this expansion we
place that of the conjugate, using exponents f19 •••,/.. Multiplying
these expansions and integrating with respect to μ, we collect the
integrals in two steps.

First we consider terms in the product in which (elf '-*,er) =
(fy # *>/r) Making a term-by-term comparison with (Σ^\ak\

2)r, we
find a sum ^ r! ak | 2 ) r .

For the remaining terms we note the factor β(e1vkl — fvkί + •••)
attached to the number \akl\

ei+fl , and note that the former number
is counted in T. Thus the sum here is ^ (r!)2max \ak\

2r, and the
proof is complete.
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To prove Theorem 1 it will be enough to give a proof for sequ-
ences A with a gap q ^ 2r, for in any case A is a union of 1 + [log qj
Iog2r] sequences with gaps of this size. According to the lemma,
it is sufficient to show that for almost all t, the sum T is finite, where
T is calculated for the sequence vk = ίλ*. Thus T is a sum of numbers

\β(td1Xkι+ . . . + tdsXk)\ ,

where dt Φ 0, - , ds Φ 0, | dL | + - + | ds | <5 2r. Because q ^ r and

| ί i l + ••• + | d . - i l ^ 2 r - l ,

l^iλAl + ••• + dβλ*,l ^ — λ*β,

whence

( ^ + + tdsxk) \dt < Xϊ1^ .

But the number of forms cί1λJfcl + + dsλλ;s having a certain k = ks

is <& 2 r . Thus Γ m < o o because XΓ k2rxςι™ < oo. This proves

Theorem 1 for the interval 1 < t < 2 and the same argument is plainly-

valid for (— oo, oo).

3* In the proof of Theorem 2 it is again necessary to estimate
sums like T, but it is no longer possible to make such sums converge.
Instead, we must estimate their rate of increase.

LEMMA. Let dι Φ 0, , ds Φ 0 be integers and

p = \d,\ + -•• + \ds\ .

The number of s-tuples 1 ί£ kt < < ks <g N for which

( 3 ) |diλ f c l + . . . + ώ s λ , s - λ | ^ 2 J (? - 1 , 2 , 3 , . . . )

is bounded as follows for all real X and N >̂ 1:
(a) ^ J5(p, g)ip i/ p = 1 or p = 2.
(b) ^ B(p, q)j*Nm*-ι) if p > 2.

Proof. The argument for s — 1 is very simple and is contained
implicitly in that now given for s = 2, p ^ 2. Here we distinguish
two cases, according as |eZiλfcJ ^ (Z" 1 !^^!? or not. In the first case
we can write

dΛfcl + d2Xk2 = (1 + ^)d2λ,2 , |01 ^ g-1 < 1 .

Let k < &* be two values of fc2 occurring in this case. Then

\Xk(l + Θ) -Xk,(l + θ*)\ SV+l
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From this it follows that &* — k < j , so that k2 is restricted to < j
values. Once k2 is chosen, kt is similarly confined, and so the first
case distinguished before gives a contribution < j 2 . Moreover this
case always obtains when |d x | ^ \d2\, and in particular when s = 2,
p = 2; thus (a) is proved. Again, if Icp^J > q~ιd2Xk2 then

kγ < k2 ^ k, + log I dj. I/log g

and (fci, &2) is restricted to < N values. Because p > 2, this is consist-
ent with (b).

When s ^> 3 we choose an integer A = AQfS so that 2A"qp ^ 1 and
first estimate the number of solutions of (3) wherein ks_λ + A < ks.
Then

We find as above that ks can assume < j different values, and once
ks is fixed we find by induction (on p or on s) that the remaining
choices are < jp-^JSf1'2^-^ in number. Finally, if ks^ < ks ^ fcs_i + A,
then (&x, fe2) has at most AN values, and for each one of these the
number of choices is < jp-2]^1!2^-^, This proves the lemma.

Much more precise estimates are given by Erdδs and Gal, but
these don't seem to be applicable [1].

4* In the proof of Theorem 2 we use the multinomial expansion
°f (ΣA^ V cos (tXkx + bk))r into a finite combination of sums (with coef-
ficients to be considered later)

Σ Σ cosei(ίλΛ x + bk) coses(tXk x + bk) .
k)

J

Here eL ̂  1, , es ^ 1, and ex + + es = r. This sum is ^ iVs in
modulus, and so it can be neglected if s < Jr . When r is even, say
r — 2v, there occurs a dominant contribution determined by the choice
s = v, e = ••• — ev = 2. This requires closer argument and we ex-
clude it for the moment; in every s-tuple (e19 , e8) remaining at least
one component must be odd.

To exploit the last remark we expand

cos'1 (tXk]x + bk) cos6* {t\kx + bk)

into a linear combination of exponentials e((tx)(d1Xkl + ••• + drXkr)),
wherein 1 ^ | dx \ + + | ds \ ̂  r .

We can handle the dominant term in almost the same way, using
the identity 2 cos2^ = 1 + cos 2u. In the multinomial formula there
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occurs the factor r! 2~v(v — | r ) . Hence the dominant term contains
the constant 1 with a coefficient

2-*.r!2-.(ίr) = 2~rr\{v\)~ιNv + 0(Nv~ι) .

Now the rth moment

V2π J-~ v ;

Thus the constant term is 2~vNvmr + OCAΓ""1), and this is correct because
the 'norming' constant is (|iV)~1/2.

In the dominant term there occur other exponentials, but each of
them is of the type considered above. It remains now to be proved
that the random error, say Rx, encountered in the moment of

Σ cos (txkx + bk)

is almost surely o(Nv) as N —* + °°. But in fact these errors are
Fourier-Stieltjes coefficients

Iβitd^ + ••• + tdsXks)\

where 1 ^ k, < < ks ^ N and 1 ^ | dx \ + + | cls \ ̂  r. From
the previous lemma and from the estimation (2), we find that

\2RNdt < Nv~]'2

and therefore, by Chebyshev's inequality, ^ 3 = o(NZv) almost surely.
Because (Λτ + I)3 = iV3 + o(N3) this completes the proof.

It is not difficult to formulate and prove a similar theorem for
the union of sequences tΛ (j sΛ, where (£, s) is a point in the plane.
When μ is absolutely continuous, however, we can suppress one of
the variables and obtain a central-limit theorem for sums

Σ cos (Xkx + bk) + Σ cos (Xktx + 60 .

The central-limit phenomenon here is false for certain sequences A
and certain values of t: Xk = 2/c and £ = 2. The existence of even one
t > 1 rendering the central-limit theorem false is presumably a strong
restriction on a lacunary sequence.

5* We conclude by stating a theorem and a conjecture related
to it. As before S is a set of measure 0 in (— 00, 00) depending only
on A and μ.

THEOREM 3. For each t& S, each closed set E, and each ε > 0,
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there is an integer N = N(ty ε, E) such that

IL ake(Xktx) μ(dx)-μ(E)Σ,\at\>

The proof is very similar to that of Theorem 1, and to some ex-
tent depends upon Theorem 1; however, it is necessary here to use
the estimate (a) of the lemma in § 3.

COROLLARY. // Σ I ak I2 = + °°, then ΣΓ ake(xktx) diverges almost
everywhere with respect to μ.

It is natural to conjecture that ΣΓ ake(Xktx) converges almost
everywhere, provided Σ \ak\2 < °°

Added in proof. This follows from theorems on orthogonal series.
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