LACUNARY SERIES AND PROBABILITY

R. Kaufman

In this note we continue some investigations connecting a lacunary series Λ of real numbers

$$
\Lambda: 1 \leqq \lambda_{1}<\cdots<\lambda_{k}<\cdots, q \lambda_{k} \leqq \lambda_{k+1} \quad(1<q)
$$

and a probability measure μ on $(-\infty, \infty)$ satisfying

$$
\begin{equation*}
\mu([a, a+h]) \ll h^{\beta} \tag{1}
\end{equation*}
$$

for all intervals $[\alpha, \alpha+h]$ of length $h<1$, and a fixed exponent $0<\beta<1$. (The notation $X \ll Y$ is a substitute for $X=$ $O(Y)$.) Measures μ occur in the theory of sets of fractional Hausdorff dimension.

In the following statements S is a subset of $(-\infty, \infty)$ of Lebesgue measure 0 , depending only on μ and Λ.

Theorem 1. For $r=2,4,6, \cdots$ and $t \notin S$, there is a constant $B_{r}(t)$ so that

$$
\int_{-\infty}^{\infty}\left|\sum a_{k} \cos \left(\lambda_{k} t x+b_{k}\right)\right|^{r} \mu(d x) \leqq B_{r}(t)\left(\sum\left|a_{k}\right|^{2}\right)^{r / 2}
$$

Here $B_{r}(t)$ is independent of the sequences $\left(a_{j}\right)$ and $\left(b_{k}\right)$.
Theorem 2. For $t \notin S$ the normalized sums

$$
\left(\frac{1}{2} N\right)^{-1 / 2} \sum_{k \leqq N} \cos \left(\lambda_{k} t x+b_{k}\right)
$$

tend in law (with respect to the probability μ) to the normal law. Here the convergence is uniform for all sequences $\left(b_{k}\right)$.

Theorem 1 is a random form of a fact apparently known from the advent of the study of lacunary series; Theorem 2 bears the same relation to the work of Salem and Zygmund [4]. Probability enters critically in the theorems because $\beta<1$: for any increasing sequence Λ there is a measure μ fulfilling (1) for every $\beta<1$ and such that the t-set defined in Theorem 1 is of first category.

1. In this section and later we use the notations

$$
e(y) \equiv e^{i y}, \mu(y) \equiv \int_{-\infty}^{\infty} e(y x) \mu(d x),
$$

$-\infty<y<\infty$. In the following estimation $|y|>1$.

$$
\begin{aligned}
I & =\int_{1}^{2}|\widehat{\mu}(t y)|^{2} d t=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{1}^{2} e\left(t y x_{1}-t y x_{2}\right) d t \cdot \mu\left(d x_{1}\right) \mu\left(d x_{2}\right) \\
& \leqq \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \inf \left(1,2\left|y x_{1}-y x_{2}\right|^{-1}\right) \mu\left(d x_{1}\right) \mu\left(d x_{2}\right) .
\end{aligned}
$$

Let $r>0$ be the integer defined by $2^{-r}<|y|^{-1} \leqq 2^{1-r}$; we sum the integrand over the sets

$$
\left(\left|x_{1}-x_{2}\right|>1\right),\left(1>\left|x_{1}-x_{2}\right| \geqq \frac{1}{2}\right), \cdots,\left(2^{1-r}>\left|x_{1}-x_{2}\right|>2^{-r}\right)
$$

and finally over the set $\left(2^{-r}>\left|x_{1}-x_{2}\right|\right)$. In each case the product measure can be estimated by (1) and Fubini's Theorem; summing up we obtain $I \ll|y|^{-\beta}$. A more convenient form is valid for all real y :

$$
\begin{equation*}
\int_{1}^{2}|\hat{\mu}(t y)| d t \ll(1+|y|)^{-1 / 2 \beta} . \tag{2}
\end{equation*}
$$

2. To prove Theorem 1 we require an elementary lemma.

Lemma. Let $\left(v_{k}\right)_{1}^{\infty}$ be a sequence of real numbers and r a positive integer. Let T be the sum of the moduli of all Fourier-Stieltjes coefficients

$$
\hat{\mu}\left(d_{1} v_{k_{1}}+d_{2} v_{k_{2}}+\cdots\right)
$$

where $1 \leqq k_{1}<k_{2}<\cdots, d_{1}, d_{2}, \cdots$ are integers $\neq 0$, and

$$
\left|d_{1}\right|+\left|d_{2}\right|+\cdots \leqq 2 r ;
$$

the number of integers d_{1}, d_{2}, \cdots varies between 1 and $2 r$.
Then

$$
\int\left|\sum a_{k} e\left(v_{k} x\right)\right|^{2 r} \mu(d x) \leqq(1+T)(r!)^{2}\left(\sum\left|a_{k}\right|^{2}\right)^{r}
$$

Proof. We first expand $\left(\sum a_{k} e\left(v_{k} x\right)\right)^{r}$ by the multinomial formula, obtaining a sum of terms

$$
r!\left(e_{1}!e_{2}!\cdots e_{r}!\right)^{-1} a_{k_{1}}^{e_{1}} \cdots a_{k_{r}^{e} r}^{e} e\left(e_{1} v_{k_{1}} x+\cdots+e_{r} v_{k_{r}} x\right) .
$$

Of course $1 \leqq k_{1}<\cdots<k_{r}$, and the r-tuple (e_{1}, \cdots, e_{r}) is variable, subject to the equality $e_{1}+\cdots+e_{r}=r$. Next to this expansion we place that of the conjugate, using exponents f_{1}, \cdots, f_{r}. Multiplying these expansions and integrating with respect to μ, we collect the integrals in two steps.

First we consider terms in the product in which $\left(e_{1}, \cdots, e_{r}\right)=$ $\left(f_{1}, \cdots, f_{r}\right)$. Making a term-by-term comparison with $\left(\sum\left|a_{k}\right|^{2}\right)^{r}$, we find a sum $\leqq r!\left(\sum\left|a_{k}\right|^{2}\right)^{r}$.

For the remaining terms we note the factor $\hat{\mu}\left(e_{1} v_{k_{1}}-f_{1} v_{k_{1}}^{\prime}+\cdots\right)$ attached to the number $\left|a_{k_{1}}\right|^{e_{1}+f_{1}} \cdots$, and note that the former number is counted in T. Thus the sum here is $\leqq(r!)^{2} \max \left|a_{k}\right|^{2 r}$, and the proof is complete.

To prove Theorem 1 it will be enough to give a proof for sequences Λ with a gap $q \geqq 2 r$, for in any case Λ is a union of $1+[\log q /$ $\log 2 r]$ sequences with gaps of this size. According to the lemma, it is sufficient to show that for almost all t, the sum T is finite, where T is calculated for the sequence $v_{k} \equiv t \lambda_{k}$. Thus T is a sum of numbers

$$
\left|\hat{\mu}\left(t d_{1} \lambda_{k_{1}}+\cdots+t d_{s} \lambda_{k_{s}}\right)\right|
$$

where $d_{1} \neq 0, \cdots, d_{s} \neq 0,\left|d_{1}\right|+\cdots+\left|d_{s}\right| \leqq 2 r$. Because $q \geqq r$ and $\left|d_{1}\right|+\cdots+\left|d_{s-1}\right| \leqq 2 r-1$,

$$
\left|d_{1} \lambda_{k_{1}}+\cdots+d_{s} \lambda_{k_{s}}\right| \geqq \frac{1}{r} \lambda_{k_{s}},
$$

whence

$$
\int_{1}^{2}\left|\hat{\mu}\left(t d_{1} \lambda_{k_{1}}+\cdots+t d_{s} \lambda_{k_{s}}\right)\right| d t \ll \lambda_{k_{s}}^{-1 / 2 \beta} .
$$

But the number of forms $d_{1} \lambda_{k_{1}}+\cdots+d_{s} \lambda_{k_{s}}$ having a certain $k=k_{s}$ is $\ll k^{2 r}$. Thus $\int_{1}^{2} T d t<\infty$ because $\sum_{1}^{\infty} k^{2 r} \lambda_{k}^{-1 / 2,}<\infty$. This proves Theorem 1 for the interval $1<t<2$ and the same argument is plainly valid for $(-\infty, \infty)$.
3. In the proof of Theorem 2 it is again necessary to estimate sums like T, but it is no longer possible to make such sums converge. Instead, we must estimate their rate of increase.

Lemma. Let $d_{1} \neq 0, \cdots, d_{s} \neq 0$ be integers and

$$
p=\left|d_{1}\right|+\cdots+\left|d_{s}\right|
$$

The number of s-tuples $1 \leqq k_{1}<\cdots<k_{s} \leqq N$ for which

$$
\begin{equation*}
\left|d_{1} \lambda_{k_{1}}+\cdots+d_{s} \lambda_{k_{s}}-\lambda\right| \leqq 2^{j} \quad(j=1,2,3, \cdots) \tag{3}
\end{equation*}
$$

is bounded as follows for all real λ and $N \geqq 1$:
(a) $\leqq B(p, q) j^{p} \quad$ if $p=1$ or $p=2$.
(b) $\leqq B(p, q) j^{p} N^{1 / 2(p-1)}$ if $p>2$.

Proof. The argument for $s=1$ is very simple and is contained implicitly in that now given for $s=2, p \geqq 2$. Here we distinguish two cases, according as $\left|d_{1} \lambda_{k_{1}}\right| \leqq q^{-1}\left|d_{2} \lambda_{k_{2}}\right|$, or not. In the first case we can write

$$
d_{1} \lambda_{k_{1}}+d_{2} \lambda_{k_{2}}=(1+\theta) d_{2} \lambda_{k_{2}}, \quad|\theta| \leqq q^{-1}<1
$$

Let $k<k^{*}$ be two values of k_{2} occurring in this case. Then

$$
\left|\lambda_{k}(1+\theta)-\lambda_{k^{*}}\left(1+\theta^{*}\right)\right| \leqq 2^{j+1}
$$

$$
\lambda_{k^{*}} \leqq\left(\lambda_{k}+2^{j+1}\right)\left(1-q^{-1}\right)^{-2}
$$

From this it follows that $k^{*}-k \ll j$, so that k_{2} is restricted to $\ll j$ values. Once k_{2} is chosen, k_{1} is similarly confined, and so the first case distinguished before gives a contribution $\ll j^{2}$. Moreover this case always obtains when $\left|d_{1}\right| \leqq\left|d_{2}\right|$, and in particular when $s=2$, $p=2$; thus (a) is proved. Again, if $\left|d_{1} \lambda_{k_{1}}\right|>q^{-1} d_{2} \lambda_{k_{2}}$ then

$$
k_{1}<k_{2} \leqq k_{1}+\log \left|d_{1}\right| / \log q
$$

and $\left(k_{1}, k_{2}\right)$ is restricted to $\ll N$ values. Because $p>2$, this is consistent with (b).

When $s \geqq 3$ we choose an integer $A=A_{q, s}$ so that $2 A^{-q} p \leqq 1$ and first estimate the number of solutions of (3) wherein $k_{s-1}+A<k_{s}$. Then

$$
d_{1} \lambda_{k_{1}}+\cdots+d_{s} \lambda_{k_{s}}=(1+\theta) d_{s} \lambda_{k_{s}}, \quad|\theta| \leqq \frac{1}{2} .
$$

We find as above that k_{s} can assume $\ll j$ different values, and once k_{s} is fixed we find by induction (on p or on s) that the remaining choices are $\ll j^{p-1} N^{1 / 2(p-2)}$ in number. Finally, if $k_{s-1}<k_{s} \leqq k_{s-1}+A$, then $\left(k_{1}, k_{2}\right)$ has at most $A N$ values, and for each one of these the number of choices is $\ll j^{p-2} N^{1 / 2(p-3)}$. This proves the lemma.

Much more precise estimates are given by Erdös and Gál, but these don't seem to be applicable [1].
4. In the proof of Theorem 2 we use the multinomial expansion of $\left(\sum_{k \leq N} \cos \left(t \lambda_{k} x+b_{k}\right)\right)^{r}$ into a finite combination of sums (with coefficients to be considered later)

$$
\sum_{1 \leq k_{1}<\cdots<k_{s} \leq x} \sum_{\cos ^{e_{1}}\left(t \lambda_{k_{1}} x+b_{k_{1}}\right) \cdots \cos ^{e_{s}}\left(t \lambda_{k_{s}} x+b_{k_{s}}\right)}
$$

Here $e_{1} \geqq 1, \cdots, e_{s} \geqq 1$, and $e_{1}+\cdots+e_{s}=r$. This sum is $\leqq N^{s}$ in modulus, and so it can be neglected if $s<\frac{1}{2} r$. When r is even, say $r=2 v$, there occurs a dominant contribution determined by the choice $s=v, e=\cdots=e_{v}=2$. This requires closer argument and we exclude it for the moment; in every s-tuple (e_{1}, \cdots, e_{s}) remaining at least one component must be odd.

To exploit the last remark we expand

$$
\cos ^{e_{1}}\left(t \lambda_{k_{1}} x+b_{k_{1}}\right) \cdots \cos ^{e_{s}}\left(t \lambda_{k_{s}} x+b_{k_{s}}\right)
$$

into a linear combination of exponentials $e\left((t x)\left(d_{1} \lambda_{k_{1}}+\cdots+d r \lambda_{k_{r}}\right)\right)$, wherein $1 \leqq\left|d_{1}\right|+\cdots+\left|d_{s}\right| \leqq r$.

We can handle the dominant term in almost the same way, using the identity $2 \cos ^{2} u=1+\cos 2 u$. In the multinomial formula there
occurs the factor $r!2^{-v}\left(v=\frac{1}{2} r\right)$. Hence the dominant term contains the constant 1 with a coefficient

$$
\left.2^{-v} \cdot r!2^{-v} \cdot{ }_{v}^{N}\right)=2^{-r} r!(v!)^{-1} N^{v}+0\left(N^{v-1}\right)
$$

Now the $r^{\text {th }}$ moment

$$
m_{r}=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} u^{r} e^{-1 / 2 u^{2}} d u=2^{-v} r!(v!)^{-1}
$$

Thus the constant term is $2^{-v} N^{v} m_{r}+0\left(N^{v-1}\right)$, and this is correct because the 'norming' constant is $\left(\frac{1}{2} N\right)^{-1 / 2}$.

In the dominant term there occur other exponentials, but each of them is of the type considered above. It remains now to be proved that the random error, say R_{N}, encountered in the moment of

$$
\sum_{k \leq N} \cos \left(t \lambda_{k} x+b_{k}\right)
$$

is almost surely $o\left(N^{v}\right)$ as $N \rightarrow+\infty$. But in fact these errors are Fourier-Stieltjes coefficients

$$
\left|\hat{\mu}\left(t d_{1} \lambda_{k_{1}}+\cdots+t d_{s} \lambda_{k_{s}}\right)\right|
$$

where $1 \leqq k_{1}<\cdots<k_{s} \leqq N$ and $1 \leqq\left|d_{1}\right|+\cdots+\left|d_{s}\right| \leqq r$. From the previous lemma and from the estimation (2), we find that

$$
\int_{1}^{2} R_{N} d t \ll N^{v-1 / 2}
$$

and therefore, by Chebyshev's inequality, $R_{N^{3}}=o\left(N^{3 v}\right)$ almost surely. Because $(N+1)^{3}=N^{3}+o\left(N^{3}\right)$ this completes the proof.

It is not difficult to formulate and prove a similar theorem for the union of sequences $t \Lambda \cup s \Lambda$, where (t, s) is a point in the plane. When μ is absolutely continuous, however, we can suppress one of the variables and obtain a central-limit theorem for sums

$$
\sum_{k \leq N} \cos \left(\lambda_{k} x+b_{k}\right)+\sum_{k \leq N} \cos \left(\lambda_{k} t x+b_{k}^{\prime}\right) .
$$

The central-limit phenomenon here is false for certain sequences Λ and certain values of $t: \lambda_{k}=2^{k}$ and $t=2$. The existence of even one $t>1$ rendering the central-limit theorem false is presumably a strong restriction on a lacunary sequence.
5. We conclude by stating a theorem and a conjecture related to it. As before S is a set of measure 0 in $(-\infty, \infty)$ depending only on Λ and μ.

Theorem 3. For each $t \notin S$, each closed set E, and each $\varepsilon>0$,
there is an integer $N=N(t, \varepsilon, E)$ such that

$$
\left.\left|\int_{E}\right| \sum_{k \geq N} a_{k} e\left(\lambda_{k} t x\right)\right|^{2} \mu(d x)-\mu(E) \sum_{k \geq N}\left|a_{k}\right|^{2}\left|\leqq \varepsilon \sum_{k \geq N}\right| a_{k}{ }^{2} .
$$

The proof is very similar to that of Theorem 1, and to some extent depends upon Theorem 1; however, it is necessary here to use the estimate (a) of the lemma in $\S 3$.

Corollary. If $\sum\left|a_{k}\right|^{2}=+\infty$, then $\sum_{1}^{\infty} a_{k} e\left(\lambda_{k} t x\right)$ diverges almost everywhere with respect to μ.

It is natural to conjecture that $\sum_{1}^{\infty} a_{k} e\left(\lambda_{k} t x\right)$ converges almost everywhere, provided $\sum\left|a_{k}\right|^{2}<\infty$.

Added in proof. This follows from theorems on orthogonal series.

References

1. P. Erdos and I. S. Gal, On the law of the iterated logarithm, Indag. Math. 17 (1955), 65-84.
2. R. Kaufman, A problem on lacunary series, Acta Sci. Math. (Szeged) 29 (1968), 313-316.
3. -, A random method for lacunary series, J. Analyse Math, 22 (1969), 171175.
4. R. Salem and A. Zygmund, On lacunary trigonometric series, I, and $I I$, Proc. Nat. Acad. Sci. 33 (1947), 333-338; Ibidem 34 (1948), 54-62.

Received February 21, 1969.
University of Illinois

