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ANALYTIC AND HARMONIC OBSTRUCTION ON
NONORIENTABLE KLEIN SURFACES

NORMAN L. ALLING

It is well-known that, on a finitely connected, noncompact,
Riemann surface, the complex-dimension of the space of all
analytic differentials modulo the space of exact analytic dif-
ferentials is the first Betti number of the underlying surface,
and hence its real-dimension twice the first Betti number.
Further, it is well-known that the group of units of the
algebra of analytic functions on such a surface modulo the
subgroup of exponential functions is a free Abelian group
whose rank is again the first Betti number of the underlying
surface. Thus, in each case, the analytic obstruction on the
surface fully dualizes the continuous obstruction.

Interestingly, this is not the case on a finitely connected,
noncompact, nonorientable Klein surface; for example, in the
case of the first problem, the real-dimension is twice the first
Betti number minus one. In the second problem, the group
in question is isomorphic to the direct sum of the two element
group and the free Abelian group whose rank is the first Betti
number, of the underlying space, minus one. These calcula-
tions are first made using sheaf theory, in §2. Integration
theory is then applied, §3, to elucidate the reason that this
curious defect occurs. Application is then made, using in-
tegration, to a mixed harmonic—analytic obstruction problem
in § 4. Finally, the Dirichlet deficiency of the analogue of the
standard algebra on compact, nonorientable, Klein surfaces—
with boundary—is computed. Again the defect of minus one
occurs. Throughout, the reason why this defect occurs in
the nonorientable case is of prime concern.

0* Foundations* The analytic foundations of the theory of Klein

surfaces can be found in [11], [3], and [ 4 ] . Further, Greenleaf's paper

[7], a companion to this, provides another reference, as well as proving
Cartan's Theorem B in this context.

Let 2) be a noncompact, nonorientable, Klein surface, (without
boundary), and let 36-^2) be its complex double [4]: i.e., 36 is a
Riemann surface and p a two-to-one local homeomorphism of 3c onto
2). Recall also that 3c has an antianalytic involution τ such that
poz = p. Let έ? be the structure sheaf on 3c, rέ? the constant sheaf
on 3c, and Ω the sheaf of germs of analytic differentials on 36. Given
an open set U of Y let βίf(U) = {seΓip-^U), έ?): s = σ(s)}, where
σ(s) = fcosov, K denoting complex conjugation; thus £ίf is a presheaf
on Y. Let 3ίΓ be defined by replacing & by <&, 3(f* be replacing
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by ^ * , and & by replacing έ? by ίZ.

LEMMA 0.1. 3(f, 3ίΓ, £ίf*, and <& are complete presheaves.

Let the associated sheaves be denoted by the same symbols and
let these sheaves be called, respectively, the sheaf of germs of holo-
morphίc functions on 2), twisted constant sheaf on Y, the sheaf of
germs of nonzero holomorphίc functions on 2), and the twisted iZ sheaf
on Y. Holomorphic differentials can be defined on ϊ in a variety of
ways. The method used in [4] was to choose U = (U,, Zj)jeJe 36 and
to associate with it a family ω = {ω3)jeJ of holomorphic functions, ωd

being defined on U3 subject to an appropriate compatability condition.
We then passed to equivalence classes, etc. Let σ(ω) = (a(a)j))jeJ. The
following can be proved easily.

LEMMA 0.2. σ(w) is a holomorphic differential on X. Further
if (ύ — fdg, f and g holomorphic on X, then σ(ω) = σ(f)dσ(g).

Let Δ(U) = {ωe Γ{p-\U), Ω): ω = σ(ω)}; then it is easily seen
that Δ is a complete presheaf. Let Δ be the sheaf on Y associated
with this presheaf. Then it is easily seen that Δ is a locally free
sheaf of .^-modules of rank one on Y, and that following sequence
of sheaves and sheaf maps is exact:

(O.a) 0 > ST > 3lf -^-> Δ > 0 .

The de Rham problem, in this context, is the following: find
άimBΔ(%))/dβ^($}). Applying the cross section functor to (O.a), we
arrive at the following long exact sequence:

0

(O.b) ^ - ^

IΓ(Y, 3ίT) > H1®,

Given an open set W in X and seΓ(W, έ?), let exps = β2rs. The
following sequence of sheaves and sheaf maps on 3£ is exact.

(O.c) 0 >iZ > ^ - ^ > ^ * >1 .

It is easily seen that this sequence induces the following exact sequence
of sheaves and sheaf maps on 2).

(o.d) o —> gf — > ^ r — sef* —> l .

Applying the cross section functor to (O.d) results in the following
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long exact sequence:

o — > r(z, gf) — ^
(O.e)

This sequence will be used to analyze <^*(?))/expJg!ί7(?)), the
group of units modulo the subgroup of exponentials.

1* Introduction* Having the long de Rham cohomology sequence
(O.b) and the long exponential cohomology sequence (O.e), let us analyze
them, beginning with the first interesting terms, 3ίΓ(Y) and Γ(Y, &),
by noting that these groups depend only on the topology on Y.

We assumed at the outset that Y is connected. If Y is orien-
table, SΓ is just the constant sheaf <g% so that SΓ(Y) — RC and
Γ{Y, 5 )̂ — iZ. If Y is nonorientable, X is connected and, since
ST(Y) = {seΓ(X, if): s = σ(s)}, 3T{Y) = R and Γ(Y, gf) - 0. Thus
we have the following.

PROPOSITION 1.1. // Y is orientable JT"(Γ) - RC and Γ(Y, )
iZ. However, if Y is nonorientable ^Γ(Y) = R and Γ(Y, &) = 0;
thus exp in (0. e) is injective in this case.

The following essential theorem is an easy consequence of a very
special case of Cartan's Theorem B.

THEOREM. (Cartan) 1.2. iΓ(2), 3lf) = 0.

Note. In the companion paper by Greenleaf [7] he gives a much
more general result. The proof is included here only to make this
paper more self-contained.

Proof. In case Y is orientable choose an analytic structure She2).
Since every Riemann surface is a Stein manifold H1^,, gίf) — 0. As-
sume now that Y is nonorientable. By swelling out a triangulation
of F a bit we can choose U Ξ= (£/",-, Zj)jeJe 2) that is locally finite such
that each U3 and each UjΓϊ Uk is simply connected and so that each
V~ι{U0 ) has two components. Through an abuse of notation, let U
also denote (Uj)jeJ and let V = (p^iU^jej, and note that V is a
locally finite covering of X which is a Leray relative to έ?. Every
1-cocycle (resp. bounding 1-cocycle) on U with coefficients in ^f is a
1-cocycle (resp. bounding 1-cocycle) on V with coefficients in έ?. Thus
these inclusion maps induce an i?-linear map IΌ of Hι{U, Sίf) into
Hι{V, έ?). Since σ is an i2-linear involution of Γip-^Uj), d?), it
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induces an iMinear involution σ of Hι(V, έ?) which has I^H'i
as its set of fixed points. Let TΌ = (1 + σ)/29 and note that TUIU is
the identity map of H\U, 3(?)\ thus Iu is injective. By Cartan's
Theorem B (see e.g., [8] for details), H'iV, έ?) = 0, proving the
theorem.

Note: To define the normalized trace map Tu we divided by 2.
Thus it is not a-priori true that Iu maps H^U, &) injectively into
H\V, ίZ). Were IΌ injective in this case H\Y, &) would be torsion
free.

COROLLARY 1.3. The following sequences are exact:

(l.a) o > JΓ(Y) > ^ ( 2 ) ) -!L> J(2)) > H\Y, SΓ) > 0 .

(l.b) 0 > Γ(Y, 5?) > ^T(S)) ^^-> Sir*®) > H\Y, 5?) > 0 .

COROLLARY (Mίttag-Leffler, Florack) 1.4. The Mittag-Leffler
theorem holds on 2).

Proof (i). If Y is orientable use Florack's argument, in which
she invokes Theorem B [6]. If Y is nonorientable, use that fact that
H1®, Sίf) - 0, as Plorack did.

Proof (ii). In the nonorientable case, choose one singularity in
X over each singularity in Y, choose appropriate principal parts at
these singularities in X, use Florack's result to obtain a global
meromorphic function on X having these singularities; on taking its
trace one is finished.

COROLLARY (Weierstrass, Florack) 1.5. The Weίerstrass "pro-
duct" theorem holds on 2).

Of course, if Y is orientable, this is nothing other than Florack's
Theorem [6]. Assume that 2) is nonorientable. To utilize her argu-
ment here we need to know that H\Y, £ίf*) — 0. If we knew that
H2(Y, g7) = 0 we could use (O.e) to achieve this. This produces no
obstacle, however, since the analogue of Proof (ii) above easily proves
Corollary 1.5.

2* Cech cohomology on finitely connected klein surfaces and
applications* In § 1 the problem of computing dim^ Λ(W/d(<^(W)
and ^*(2))/exp Sίfi®) was reduced to computing dim^ H\Y, 3ίT) and
Hι{Yj 2^) in (1.3). Let us restrict our attention to a Klein surface 2)
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which is the interior of a compact Klein surface D that has a non-
empty boundary dΫ. Since Hι{Y, JίT) and H\Y, Sf) do not depend
on the dianalytic structure 2), but depend only on the topology of
Y—as the notation suggests—we can compute these group on spaces
homeomorphic to Y; thus the initial results of this section deal only
with topology, although analysis may creep into some of the proofs.

Let k be the number of components of dΫ; thus k is an integer,
k 2̂  1. It is well-known (see e.g., [9] as a general reference here),
that Ϋ is characterized by knowing the following data: If it is
orientable or nonorientable, k, and χ(?)-the Euler characteristic of
Ϋ. Let D = {ze C: \z\ ^ 1}. If Ϋ is nonorientable, adjoin a half-
twisted strip to D to form a Mδbius strip D,; if not, let DL Ξ= Zλ
(Again see [9].) Now adjoin k — 1 untwisted strips to DL to form
D2. Now adjoin h handles to D2 in the form of pairs of interlocking
untwisted strips, to form D3 so that %(A) is reduced to either χ(Ϋ)
or to χ(F) + 1. In the first case let A = S3, and in the second let
JD4 be formed from D3 by adjoining a half-twisted strip; so that
χφ4) = χ(Ϋ) in either case. Thus χ(D4) = l — (k — l) — 2h — m, where
m is the number of half-twisted strips adjoined, m = 0, 1, or 2, the
surface being orientable if and only if m = 0. That each case arises
may be seen by letting Ϋ = D, letting Ϋ be a Mobius strip, and
letting Ϋ be a disc with two half twisted adjoined. Clearly k and h
can assume any integer k >̂ 1 and h ^ 0. To summarize:

(2.a) χ(Y) = 1 - (k - 1) - 2h ~ m ,

the integers k, h and m being a complete set of invariants for Y.
Let b(Y) be the first Betti number of Y. Then

(2.b)

PROPOSITION 2.1. Assttme ίfcαί F is orientable; then
J^") = 2b(Y) and Hι(Y, gf) is α /reβ Abelian group of rank b(Y).

Proof. In this case SίΓ is isomorphic to the constant sheaf C
and %? to the constant sheaf iZ, proving the proposition.

Assume that Y is nonorientable; then X, its complex double, is
connected. If m = 1, 6(X) = 2(A; - 1) + 4h + 1, and if m = 2, b(X) =
2(k - 1) + Ah + 3. Hence

(2.c) 6(X) = 2(Λ - 1) + Ah + m(m + l)/2 , m = 1, 2 .

LEMMA 2.2. Assume that Y is nonorientable. dimΛ Hι{Y, *5ίΓ) —
i dim,, Hι(X, r^) - dim,, Hι(X,
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Proof. The injection I of 3ίΓ into <§f and the trace T{~ (1 + σ)/2)
of & onto J^" induce the following maps:

Since TI is the identity map, I is injective. Since the elements of
R, £^(W> and z/(2)) together with i times these elements—respec-
tively—generate C, έ?(7t,), and β(3e)-respectively; dim^ H\X, rtf) =
2dimi2 ίP(Y, j ^ ) , proving the lemma.

THEOREM 2.3. dimR H
ι(Y, <3Γ) is 2b(Y) if Y is orientable, and

2b(Y) — 1 if Y is nonorientable. In terms of k, h, and m, dim^ Hι(Y,
= 2(k - 1) + Ah + m(m + l)/2.

u2

At this stage, it is not immediately clear why in the nonorientable
case, the analytic obstruction, as evidenced by the solution of the de
Rhm problem in this case, is one less than the topological obstruction.
One of the main objectives of this paper is not only to compute the
analytic obstruction on nonorientable Y, but also to account for the
defect form what is expected from the topological obstruction.

Let us turn our attention to H\Y, &).

EXAMPLE 2.1. Let Y be a Mδbius strip. Let Y be written as
follows:

(2.e)

Let Zj be a coordinate function on Uj9 so that all transition functions
are orientation preserving expect zλz^1 and zsz^. Let U = (U19 U2, Z73).
Let 0-cocycles on U with coefficients in <& be written as (f1? f2, / 3 ) .
The coboundary of (/,, /2, / 3 ), 3(/lf /2, /3) is the 1-cocycle (/2 - flf

fι — fv /1-/3). Let f — / 3 be written in terms of zγ. Clearly H\U, gf)
is cyclic, being generated by the 1-cocycle (0, 0, i). Further d(ί, i, i) =
(0, 0, 2ί); thus H'iU, %?}, and also H\Y, <&), is isomorphic to Z2.

THEOREM 2.4. // Y is orientable, Hι(Y, gf) ~ ZHY\ and if Y
is nonorientable Hι(Y, 2?) ~ Z2Q)Zh{Y)~\

Proof. Assume that Y is orientable; then Hι{ Y, <&) ~ H\ Y, Z) ~
Zb{Y). Assume that Y is nonorientable. If m = 1 we can treat the
twisted and untwisted strips adjoined to D, to form S4 independently
and arrive at the results above. Assume that m = 2, and consider
the following example.
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EXAMPLE 2.2. Let Ϋ be formed from D by adjoining two half-
twisted strips thus k — 1, h = 0, and m — 2. Let U1 be the interior
of D. Let U2{j Ud form one half-twisted strip of Γ, U.f] U2, U.Π U31

and U2f]U3 being simply connected. Similarly, let U4{jU5 make up
the other half-twisted strip on Y subject to the same restraints. Let
z2z~ζ\ z3z2\ Z&1, and zδz^1 be the only orientation reversing transition
functions, the family {Uj, zό)je{ly2^Ath) = U being an atlas of Y. Let
1-cocycles be written (/12, /23, /31; /14, /45> fδl); thus a = (0, i, 0; 0, 0, 0)
and β = (0, 0, 0; 0, i, 0) generate H^U, &). Observing the same con-
ventions as were adopted in Example 2.1, the coboundary of the
0-cocycle (i, i, i, i, i) is (0, 2ΐ, 0; 0, 2i, 0): i.e., 2(α + β) = 0. Hence
iΓ(ϊf, gf) is isomorphic to Z x Z/(2, 2)Z: i.e., Hι(U, gf) _ ^ 2 φ ̂ .
We conclude that H H ^ 2^) - ^ θ ^

Returning now to the proof of (2.4), note that applying Example
2.2 to the case at point, Hι(Y, gf) ~ (Z2 0 Z) 0 Zδ ( F )-2 - Z2 0 Z 6 ^^ 1 ,
since the twisted and untwisted strips may be treated independently;
this proves the theorem.

Having analyzed Hι(Y, J3Γ) and Hι(Y, gf), let us synthesize the
results of § 1 and § 2 to form the main theorem of this section.

THEOREM 2.5. άimR4(ty)/dJ%?($)) is 2b(Y) or 26(Γ)-1 according
as Y is orientable or not. ^f^^l&x^^f^j) is isomorphic to ZbiY)

or to Z2φ Zb{Y)~ι according as Y is orientable or not.

It may come to the reader as a surprise to see that
exp Sίf^) has a nontrivial torsion group in case Y is nonorientable.
It is natural to wish to find a generator of this group.

THEOREM 2.6. Y is orientable if and only if — le exp
In case Y is nonorientable the residue of —1 in J%**(%))/exp J%f(%))
generates its torsion group, and is order 2.

Proof. Assume that Y is orientable, then i e <£%?($) and exp ί/2 =
— 1. Conversely, assume for a moment that there exists / e J ^ ( D )
such that e x p / = —1, and that Y is nonorientable. Recall that
£έ?(W c ,$r(ϊ). Since exp/ = - 1 , given xeX, f(x) = ί/2 + ni, for
some fixed integer n. Since X is connected f = i/2 + ni. Since
/ e <%*($))> f= σ(f)' i-e., i/2 + ni = κo(i/2 + ni) = -i/2 - ni orn= -1/2;
which is absurd, proving that Y nonorientable implies —1 ^exp^(?)) .
The rest of (2.6) follows (2.5), and can also be proved independently
with ease.

3* Integration and obstruction on 2). If 2) is orientable one
way to approach the de Rham problem is by defining a bilinear pairing
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between ΔiQj)ldSff^) and HJJΓ, C), the first singular homology group
on Y with complex coefficients, with the aid of integration.

Until we have achieved the main theorem of this section, (3.6),
assume that Y is nonorientable. In this case the integration theory
of analytic differentials ω along arcs and curves on 2) exists [4];
however, it requires care to apply it. For example, if Γ is an oriented,
Jordan curve (see, e.g., [10]) in 2) which can be covered by a finite
number of dianalytic charts U = (Uj,Zj)jeJ1 all of whose transition

functions are analytic, then α) is a well defind complex modulo the

choice of U. Such a curve will be called an even curve in 2). Note

that I ω is dependent on the choice of U in that if U ~ (Ujy Zj)jeJ is

chosen instead, the resulting integral is the conjugate of the former.

These are also the only possibilities. An oriented Jordan curve Γ in

Y which has no such covering will be called an odd curve in 2). Let

Γ be such a curve and let y0 e Γ. Let yeΓ — {y0} and note that JΓJ0,

the arc from yQ to y in Γ, can be covered by such an oriented coordi-

nate system; thus l ω is well defined up to complex conjugation.

Letting y approach yQ by passing around Γ and taking the limit

defines a complex number I ω uniquely, up to conjugation and the
JΓ,yQ ^

choice of yQ. Fortunately Re \ ω is uniquely determined by Γ
JΓ,y0

and ω and will be denoted by Re \ ω. (For further details see [4]).
J/\Vo

There exists a basis Γιt •• , J Γ W ) of the first singular homology
group on Y such that Γιy •••, Γbm_1 are even curves and Γb(γ) is an
odd curve. These curves may be chosen as follows: If m = 1 let
Γu , Γb{γ)_1 be paths that go around the untwisted strips of Y and let
Γb{γ) go around the twisted strip of Y. In case m = 2 let Γ19 , Γb[γ)_2

go around the untwisted strips of Y, let Γb{γ)^ go around both twisted
strips, once each, and let Γb{γ) go around one of the twisted strips.

Let the following be defined.

(3.a) φx{ω) ΞORe ( ωj2π

φ2(ω) = Im \ ω/2π

Φϊbm-zi1®) = Re 1 ω/2π

= Im I ω/2π

ω/π .= Re ί



ANALYTIC AND HARMONIC OBSTRUCTION ON NONORIENTABLE 9

Note that φ19 φ3, •• ,<£W)-i are uniquely determined by the given
data (namely Γ19 , Γb{γ)), whereas φ2, φiy , φ2b{γ)-2 are determined
only up to sign, the ambiguity of this choice being independent one
from the other.

An alternative to integrating differentials on ?), using the theory
developed in [4], is to integrate ω e z/(2)) on 3c. For l g j ^ 6 ( 7 ) - 1,
Γj lifts to two oriented Jordan curves Γ) and Γ", which are mapped—
one onto the other, preserving orientation—by τ. V~~ι(Γh{γ)) is also an
oriented Jordan curve in X.

LEMMA 3.1. Let Γ be an oriented Jordan curve (arc) in H and

let α>e J(2)); then \ ω = κo\ ω.
JΓ Jτ(Γ)

Proof. This reduces to a local question for any subarc of Γ, and
its image under r. Let x0 e Γ. We may choose z e £ίf^P$) having a
simple zero at xQ, and necessarily also a simple zero at τ(x0), by—for
example-the Weierstrass "product" theorem for 2) (1.5). ω may be
written in the form fdz, f being in £(?{$$). z is a local homeomor-
phism at x0 (and also at τ(x0)). Let U be an open set of x0 in X on
which z is injective. Let xi be in the component of Γ Π U which
contains x0. (Necessarily τ(xi) is in the component of τ(Γ) Π τ(U) which
contains τ(x0).) Since/and z are symmetric {f(x) — f{x^){z(x^) — (z(x0)) =
(σ(f)(x1)-σ(f)(x0))(σ(z)(x1)-σ(z)(x0)) = (fcof(τ(χ^

ιcoz(τ(xQ))) = /coKfiΦd) - f(τ(xo)))(z(τ(xL)) - ^(r(a o)))]. Since we are
dealing with a Riemann-Stieltjes integral, this proves the lemma.

COROLLARY 3.2. Let o)eJ(D); then [ ω = κ[ ω, for 1 ̂  j £

b(Y) - 1, Re f ω = 2Re ί ω, and Im f ω = 0.
Jp-ι(rHY)) Jrb{Y) )p-ιirb[Y))

We will see that the last fact cited above is a revealing reflection
of the reason that the defect occurs in the nonorientable case. The
following is easily proved.

LEMMA 3.3. Γ[, Γ[', Γ2, Γ2', ., Γb{γ)^ Γb\γ)^ and p~ι{Γb{Y)) con-
stitute a basis for the first singular homology group on X.

Let the following be defined

(3.b) θyHfύ) = Re ( ω/2π

Θ2(ω) = Im ( ω/2π
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Ξ= Re [ ω/2π

~ Im I ω/2π

θ2biY)-i{co) = R e

With the aid of integration theory developed in [4], we have the
following.

PROPOSITION 3.4. Θ1 = φιy Θ2= ±φ2, . ,Θ 2 H Y ) _ 2 = ±φ2h{γ)-2, Θ2h{γ)^ =

<P2b(Y)-i> the signs for even subscripts being independent of one another.

LEMMA 3.5. Let ω e J ® ) such that

φSω) = φ2(ω) = . -. = φ2b(γ)-ι(o)) = 0 ,

then ωed^($)); and conversely.

Proof, ω is in β(ϊ). By (3.2), (3.3), and (3.4) all of its periods
are zero. Thus there exists fe &(£) such that df = ω. Let g =
(/ + σ(f))/2e βe*(W> and note that dg = (α> + σ(ω))/2 = 2ω/2 = ω,
proving the lemma.

Using (3.5) we see that φ19 φ2, , φ2b&)-i induce jβ-linear func-
tionals φls φ2, ••-, φ2b(γ)^ on Δi^)\d^fi^). Since, as we saw in (2.3),
dim^z/(3))/dJ^(ϊ)) = 2b(Y) - 1, we have arrived at the main theorem
of this section.

THEOREM 3.6. {φ19 ^^φmγ)^} is a basis of
R).

Let us now turn our attention to ^ * ( ? ) ) / e x p ^ ( S ) . Assume,
at the outset, that Y may be orientable.

Given ^ e ^ * ( S ) ) , let X(g) = dg/g; then λ is a homomorphism of
the multiplicative group of ^*(2)) into the additive group J(2)). The
following sequence of Abelian groups and group homomorphisms is
exact, 3ίΓ*(Y) being the multiplicative group of units of the field
of constants of <^(2)); namely j?* if Y is nonorientable and C* if
Y is orientable:

(3.c) l — > jr*(Y) — > <§er*(W - ^ 4(W

Given / e ^f (D), λ(exp /) = 2πdf; thus λ(exp JT7(?))) c ώj^(2)). This
shows that λ induces a homomorphism λ making the following sequence
exact.
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(3.d) 1 > K > ^*(2))/exp 31? 1®) — ^

LEMMA 3.7. Let ge£$f*C§) such that dg/g( = X(g)) = df, for some
fe <%*($)). Then there exists ceSΓ*{Y) such that g = cexp/.

Proof. Let k = (exp/)/2ττ, and note that X(k) = 2π (expf)df/2π exp/=
df. Hence \(g) = \(k). Note that (l/gk)(d(g/k)) = (l/gk)(kdg-gdk)/k2 =
(l/k2)(dg/g - dk/k) = 0. We conclude that g/k = eoe 3T*(Y), so g =
cok = (co/2π) exp f = c exp /, proving the lemma.

As an immediate consequence of this lemma we have the follow-
ing.

PROPOSITION 3.8. // Y is orientable, K(~x~l(0)) is {1}. If Y is
nonorientable K— {±1}.

Proof. JT*(F)/exp ST(Y) is isomorphic to C*/exp G or i2*/expi2
according as Y is orientable or not: i.e., it is C*/C* or R*/{r e R: r > 0}.
Using this and (3.7), the proposition is proved.

Note. (3.8) may be considered an arithmetic characterization of
orientability or the lack thereof on Y.

Assume, until further notice, that Y is nonorientable.

LEMMA 3.9. For all ge <£%?*(¥)), and all j , l£j<
r

1/27ΓI dg/g e iZ. If g = ± e x p / , for fe £έf($)), then the integral above

is zero. Finally, Reί l/τr l dg/g) — 0.
\ JΓb{Y) '

Proof. Since l/2π\ dg/g = ±l/2π\ dg/g, (3.4), it is ±i t imes the
J Γj J re-

winding number of g around Γ\, proving t h e first assertion. By (3.2),
Refl/τrί dg/g) = Refl/2τrί dg/g). Since l/2πi\ dg/g is the

V JΓb(Y) / V Jp-ι(rb) J Jp-^Γft)

winding number of g about v~ι{Γh), Re (l/^\ dg/g) — 0, proving the
\ JΓb(V) '

proposition.

Using (3.8) we see that λ (of (3.d)) induces a monomorphism λ
of G Ξ (^^*(?))/eχP^^(?)))/{±l} ]'nto Δt$)\d3(f($!j). Now recall that
Φi> # ^26(F)-i are ^-linear maps of Δ(%))/d<&?(%}) into i2. Let Φ =
(Φv Φ» , ΦibiY)-^ m a p ^(S))/^^57®) into RHY)~ι and let μ = φo\.
By (3.9), /i maps G into ZHY)~ι.



12 NORMAN L. ALLING

THEOREM 3.10. μ is an isomorphism of G(^(^*(2))/exp <%?
{±1}) onto ZW)"\

Proof. Let feβg?*(ty) and let g be its residue in G. Assume
that μ(g) = 0; then—by hypothesis φ&(/))> ^2(λ(/)), , 9W)-i(λ(/)) =
0: i.e., &(%(/)), &(%(/)), •• ,9W>-i(λ(/)) = 0. By (3.6), λ(/) = 0;
thus λ(#) = 0. Since λ is injective, 0 = 0, proving that μ is injective.
By (2.6), {±1} is the torsion group of r^*(2))/exp ^(2)) ; thus G is
a free Abelian group of rank b(Y) — 1, (2.5), which shows that μ is
surjective.

We conclude by noting that J%?*(Q)/exp J%?($8) can be analyzed
in the nonorientable case by noting that {±1}, its torsion group,
reflects its nonorientability and that μ picks out the appropriate
geometric "periods" about Γ19 •• ,i r r

6 ( n_ 1.

4* A mixed analytic and harmonic obstruction problem* As
noted [4], the real part Re/of an analytic function / on 2) is a well-
defined harmonic function u on 2). This may also be seen if we think
of / as an analytic function on X fixed under σ, since it f = u + iv,
σ(f) = uoτ — ivoτ; so % is a real-valued harmonic function that is
invariant under τ: i.e., u engendered a real-valued harmonic function
u on 2). Let LΛ(?)) denote the space of all real-valued harmonic
functions on 2) and let Re £έf(ψ) = {Re/: / e <%?(%)}* A s noted above,
Re SίfiQϊ) is a subspace of Lβ(2)). The question we treat in this section
is the following: what is the dimension m, over R, of LR(%))/Re ££*(%))'!
In case 2) is orientable, m is well-known to beb(Y). (See, e.g., [1].)
Thus assume, until further notice, that Y is nonorientable.

As noted above, LB(ψ) can be considered as the subspace of LB($)
whose elements are invariant under r. Given ueLB(%)), it has a
harmonic differential du on X; thus we may form δ(u) = ω ΞΞ du + i*du,
an analytic differential on 36. Assume first that there exists / e J^(W
such that / = u + iv; then dv = *du and ω = df. Two facts emerge:
(i) in this case α)ei(S), and (ii) ω is exact.

LEMMA 4.1. For all ue LB(ty), δ(u) = ω is in zί(2)): i.e., σ{ω) — ω.

Proof. Let x ' e l and let τ(x') = x". Since ω is an analytic
differential on 36 it is locally of the form dg for some locally defined
analytic function g at x', where g is of the form u + iv locally at x'.
σ(g) is an analytic function, defined locally at x", of the form
UOT — ivoz; thus the real part of σ(ω) at x" is du. Since this is
true for all xf e X, the real part of σ(ω) is du globally. Since an
analytic differential is uniquely determined by its real part, σ{ω) = ω,
proving the lemma.



ANALYTIC AND HARMONIC OBSTRUCTION ON NONORIENTABLE 13

The following sequence of i?-spaces and i?-linear maps is exact:

(4.a) 0 > R > LR(W — Δ®) .

It was also noted above that δ(Re <-%?($))) c dSίf^)\ thus δ induces an
iMinear map δ of LR(ty)/Re 31?(?)) into 4(W/d<%?(W.

LEMMA 4.2. δ is injective.

Proof. Let u e LR{ty) for which there exists / e J^(?)) such that
ω = df. Let / = a + bi, a and b being real valued. Then du+i*du =
a) = da -f- i(iδ; thus c?̂  = ώα, or ^ = a + c, c being a real constant.
Hence u = Re (/ + c), proving that ue*ReJ%?(%)), proving the lemma.

Having found the kernel of δ, namely zero, let us describe its
cokernel. This will be done with the help of the linear functionals
φά on Λ(W/d£έ?(W developed in § 3.

LEMMA 4.3. For all UGLR(%)),

φSβ{u)) = <PMV)) = = <PihlY)-Mu)) = 0

Proof. The assertion is easily seen to boil down to the following

statement: Given a piece-wise C2-Jordan curve Γ in ϊ , i du = 0, a

fact which is obviously true, proving the lemma.

Using this rather crude lemma we obtain an upper bound on the
cardinal number we are trying to compute.

COROLLARY 4.4. dim*LΛ(?))/Re^(?)) ^b(Y) - 1.

LEMMA 4.5 Let ω e z/(ϊ)) such that φjfitή, <ps(co), , cP2b(r)-ι(ω) = 0;
then there exists u e LR(%)) such that δ(u) — a).

Proof. The real part a of ω is a real harmonic differential on
3c which is invariant under the map induced on such differentials by
r. The conditions above assure that all of the periods of a are zero;
thus it is of the form du for some % G L Λ ( D ) , proving the lemma.

In (3.6) we saw that {φlt φ2, ,<p2&(n-2> Φtbm-i} is a basis of
HomΛ(J(2))/d^r(5)),β). Combining (4.3) and (4.5) with (3.6), we
arrive at the main lemma of the section.

LEMMA 4,6. δ(LR($))/Re <%?($))) is the annihilator of the R-sub-
spacc of RomR (Δ^/d££?($)), R) spanned by {ψλ, φz,
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Using this we have the main theorem of the section.

THEOREM 4.7. dim,, LB@))/Re ^f (2)) = b(Y) - 1 if Y is non-
orientable, and is b(Y) if Y is orientable.

EXAMPLE 4.1. Let 2) be a noncompact Mobius strip; then every
real-valued harmonic function on 2) is the real part of an / in Sίf^).

5* Application to the standard algebra on 2). Let 3) be a
compact Klein surface whose boundary BY is nonempty. Let int 2)
denote the interior of 2), with dianalytic structure. The standard
algebra -4(3)) on 2), defined and treated superficially in |2], is the
algebra of all continuous complex "functions" on 2) that are analytic
on int 2). Alternatively, we can define -4.(2)) using the orienting

double 36 —̂ -> 2) of 2), if 2) is nonorientable. (See [4] for details.) H
is then a compact orientable Klein surface and p a two-to-one dianalytic
covering map of X onto 2), i.e., a morphism. Then A(2)) can be defined
to be the set of all elements of the standard algebra on ϊ invariant
under σ, where σ(f) = tcofor. Let / e -4(2)) be represented as u + iv,
u and v being real-valued harmonic functions on 3c. u is then con-
tinuous on Y and harmonic on int 2). Let Ref = u\dY, and note that
Re is an i?-linear map of A (2)) into CR(dY), the J?-algebra of all
continuous real-valued functions on d Y. Under the sup norm, CR(d Y)
is a real Banach algebra. Let cl Re A(2)) denote the closure of
Re-4(2)) in CR(dY) under the sup norm. Let D. d. (A(2))) =

^ CR(d Y)/cl Re -4(2)) be known as the Dirichlet deficiency of
A(2)) will be called a hypodίrichlet algebra if D. d. (A(2))) is

finite, and a Dirichlet algebra if D. d. CA(2))) = 0. This notion is
well-known for function algebras.

In the orientable case, Wermer [12] has shown that -4(2)) is a
hypodirichlet algebra whose Dirichlet deficiency is bounded above by
b(Y), the first Betti number of Y, with a strong suggestion that
equality occurs. (For a proof that D. d. (A(2))) = b(Y) see, e.g., [1].)
The object of this section is to show, in the nonorientable case, that
-4(?)) is a hypodirichlet algebra, and to compute D. d. A($))). In so
doing we follow very much in Wermer's footsteps, except for a detour
or two occasioned by the nonorientable terrain.

Let g e CR(dY), and regard g as a symmetric element g of CR(dX):
i.e., goτ = g. Using the Dirichlet principle, valid on X, there exists
a continuous real-valued function W on X, harmonic on int 36 such
that W\dY= g. Let U= (W + W<>τ)/2. Note that U is continuous
on X, harmonic on int 3c, U\dX — g, and U°τ = U. (Of course by
uniqueness U = W.) Thus we have proved the following.



ANALYTIC AND HARMONIC OBSTRUCTION ON NONORIENTABLE 15

LEMMA 5.1. The Dίrichlet principle is valid on 2).

Let har# = U\int Y = u; then har is an iϋ-monomorphism of
CR(d Y) into Li2(int2)), the space of all real-valued harmonic functions
on int 2).

Recall that 3, defined in §4, takes ueLB(int^j) to du + ί*du =
ωeΩ(int?ί) which turns out (4.1) to be in z/(int 2)). Thus 7}j:g-+<Pj
(<5(har (g))) are linear functional on CB(dY), 1 ^ j ^ 2b(Y) - 1. By
(4.3), rjlf τj31 . . . , η2h[γ)^ are zero.

LEMMA 5.2. If geRe A(2)), then η21 (g), η4(g), , ̂ W^O) = 0.

Proof. Let / e A(2)) c A(£) be written in the form u + iv on
X, w and v real-valued functions, u \ int 36 = har Re /, and <? (har Re /) =
du + i*du, on int 3£, equals du + ίcίt; = cί/ on int X. Since all the
periods of <Z/ are zero, we may use (3.5) to conclude that η2(g) =
y*{g) = ••• = Vmγ)-2(g) = o .

From (5.2) we conclude that Re A(2)) is contained in i?, the
hyperplane of 0^(3Y) of functions annihilated by ^2, ^4, •• ,%&(n-2
In order to be able to conclude that cl Re ̂ 4(2)) c H, it suffices to
prove the following.

LEMMA 5.3. %> %> * >ίW)-2 α^£ continuous on CR{dY) (under
the sup norm topology).

Proof. Let (gn)neN be a null sequence in CR(dY) and let Un be
the real-valued continuous extension of gn to X which is harmonic
on int ϊ . Using the maximum principle {Un)neN is uniformly a null
sequence on X. Let 3 be a tubular neighborhood of Γ'j9 1 ^ j ^
6(y) — 1, which is an annular compact bordered Riemann surface.
Let 3 be embedded in C as an annulus 3Br = {z e C: r ^ | z \ ̂  1/r} for
some r, 0 < r < 1. Thus, without loss of generality, we may assume
that X = SSr. ί/Λ is obtained by integrating gn times the normal
derivative of the appropriate Green's functions on X. dUJdx and
d UJdy are obtained by integrating gn times the appropriate derivative
of this kernel; thus dUJdx and dUJdy tend uniformly to zero. Thus

l/2πi\ *dUn tends to zero, proving the lemma.

COROLLARY 5.4. H is a closed hyperplane of CR(dY); thus
cl Re A(2)) c H and D.d. A(2)) ^ 6(Γ) - 1.

LEMMA 5.5. Let g be a C2-function in H. There exists f e
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such that Re / = g; hence H = cl Re A(2}).

Proof. Let α> = δ(g); then α> e J(int 2)). Since g e H, ω is without
periods on X. By (3.5), there exists / analytic on int 2) such that
ω — df. Let a be the real part of /; then da = du, where u = har g.
a and u differ by a real constant, which we may assume is zero. Since
g is C2 on dY, f extends to a unique element feA($)). Clearly
Re/ = g. Since the C2-functions in CR(dY) are dense, H= cl Re A(2)),
proving the lemma.

We come then to the main theorem of the section.

THEOREM 5.6. Let 2) be a compact Klein surface. A($)) is a
hypodirichlet algebra whose Dirίchlet deficiency is b(Y) if 2) is
orientable and b{Y) — 1 if 2) is nonorientable.

Wermer [12] goes on to prove somewhat more in the orientable
case; namely that there exist flf , fbiY) e A*(2)), the group of units
of A (2)), such that the real vector space spanned by Re A(2)) U{log I/J,
*••» log \fb(γ)\} is dense in CR(dY). Let us consider this in case 2) is
nonorientable. First note that even though / e A*(2)) may not be a
function on F, | / | is a function on F: i.e., considered as a function
on X, I/I is invariant under τ.

THEOREM 5.7. Assume that 2) is nonorientable. There exist
fa •» fbίY)-ι e A*(2)) ŝ 6cA Λ̂αί £Ae reαi vector space spanned by
ReA(2)) Ujlogl/J, . .^ loglΛα^J} in, C^3Γ) is dense in CR{dY).
Further the images of log | / J , , log | / 6 ( n -, | in V = CR(dY)/H
form a basis of V over R.

Proof Proceeding much as Wermer did [12], let X be analytically
embedded in a slightly larger noncompact Riemann surface 2S in such
a way that Γ[, Γ\\ Γ2, Γ'2

f, . . . , Γ'b{γ)_ί9 Γb\γ)^ and p-\Γhm) are still
a basis for the first singular homology group on W. By (3.6) and
(4.6), there exist uL, , ubm^v e LΛ(SB), invariant under τ, such that
Ψ2j(S(uίc)) = djk, 1 ̂  i, Λ g b(Y) - 1. Let ωΛ = δ(uk), l^k^b(Y) -1.

2TΓ\ ωΛ —τr\ ω / c], where

J XQ J α 0 ^

the last integral is taken via a fixed Jordan arc Γ on X from xQ to
τ(x0). Recall that ωk = du/; + i*duk; thus α)/, has no real periods, only
imaginary periods. By the choice of uk, *duk has only integral periods;
thus the expression above is a well defined analytic function fk(χ) on
2S. We now wish to show that σ(fk) = fk.
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/ fr(*) fr(a?0) \
σ(fk)(x) = Λ oexp [2π\ ωk — π\ ωk)

\ JXQ JX0 J

( Cτ(xQ) Γτ(x) Cτ(x0)

2π\ ωk + 2π\ ωk — n\ ωh
JXQ JΓ(*C) JXQ

( fr(a ) fr(

2π\ ωk + 7Γ\
Jr (a? 0 ) Ja?(

Ή
= exp(2^:\ ωk + πκo\ ωk

)x0

Since ^ G p ^ Λ ^ ^ φ o ) is necessarily in this set; thus we may-
assume that Γ is a subarc of v~\Γh{γ)) and hence that Γ + r ^ ) =

p~ι(Γb{γ)). By (3.2) \ &>£ = a is real. By definition (3.b) and by

(3.4), a = 2πφ2b{γ)_ι(ωk). Since ω^ = δ(uk), and % e LΛ(?)), we may apply

(4.3) and conclude t h a t α = 0. By (3.1) \ ωk = fCo\ ωk; thus
JΓ Jr(Γ)

0 = 1 ωk=\ ωk+\ ωk= \ ωk + κo\ (ωk) = 2Re I ωk .

Hence i ωJ == I ω̂ .) is purely imaginary. As a consequence Λ O \ ωk =

- \ θ ω , and σ(fk)(x) = fk(x) for all a; e TΓ. This shows that fk is

invariant under σ and thus when restricted to X is in A*(2)).

d% = 2ττ(%(x) - uk(x0)); thus ^2i(δ(log |/fc|)) = 2πδjk

for 1 ̂  j , k^ b(Y) - 1. The rest follows from (4.2), (4.6), (3.6), and
(5.5).

Note. The author is indebted to Newcomb Greenleaf for sug-
gesting, in a different context (namely in [4, I, §10]), the trick of

fr(*0)

subtracting l ωk.
Jx0

In case 2) Is orientable it is essentially well-known, and was noted
in [1, §9], that the real linear span of log |A*(?))| is dense in CR(d Y):
i.e., A*(2)) is an Arens-Singer algebra [1, §9]. Thus we have the
following.

COROLLARY 5.8. A(2)) is an Arens-Singer algebra whether 2} is
orientable or not: i.e., the real linear span of log | A*(2))| in CR(d Y)
is dense in CR(dY).

6. Conclusion* As noted in the synopsis, the purpose of this
paper was not only to study the analytic and harmonic obstruction
on nonorientable Klein surfaces 2), which resembles the orientable
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case very closely, but to try to elucidate the reason why the defect
of minus 1, which we will call the Klein defect, occurs. The de
Rham problem (O.b) on 2) occasioned our first insight into the reason
that the Klein defect occurs, when we note that when Y is doubled
to form X each untwisted strip doubles, whereas if m = 1 this
untwisted strip gives rise to only one strip on X, and if m — 2 these
two twisted strips give rise to three strips on X (2.c). The reason
that the Klein defect occurs in the units modulo exponentials problem
(O.e) lies a bit deeper, but may be seen through the language of Cech
cohomology in Examples 2.1 and 2.2, and (2.4).

Integration theory was introduced in §3 to see how the Klein
defect manifests itself in this more classical setting and to develop

a powerful method thereby. The prime fact is that Im \ ω — 0

for all ω e ^(2)), (3.2). In [4] we saw that only the real part of

I ω is well defined, the imaginary part being without invariance—

not even being defined up to sign. This "missing" imaginary period
results in the emergence of the Klein defect in (3.6), (3.10), (4.6), (4.7),
(5.6), and (5.7): i.e., in the rest of the main theorems of the paper.
The presence of two torsion in <βg?*(%))/exp <%?(%)) is not detected by
integration theory in this paper, since X(g) = dg/g = X( — g). The
winding numbers of g around the untwisted strips is, however, re-
captured by integration in (3.10). The two torsion in this context is
thus seen as only arithmetic, even though in the language of Cech
cohomology it does manifest itself geometrically.

Not only has an instance of torsion occurring in analysis been
found, but the answers to each of these analysis problems; the de
Rham problem, (2.5) and the units modulo exponentials problem (2.5);
distinguish between the orientable and the nonorientable case; thus
each of these problems (and also H\Y, JΓ") and H\Y, Sf)) are more
sensitive and revealing of the topology on 2) than anything in
homotopy theory, or than any homology or cohomology theory for
which the homotopy axiom [5] holds. Similarly, given the rank b(Y)
say of the first homology group of Y and the solution of either the
harmonic functions modulo the real part of an analytic function
problem (4.7), or the Dirichlet deficiency problem (5.6), more is re-
vealed about the topology on Y than by all of algebraic topology
which is homotopy invariant.

Thanks are due to Newcomb Greenleaf with whom the author
consulted on several occasions, and whose criticisms of the penultimate
version the manuscript resulted in a number of important changes.
Thanks are also due to Burt Rodin with whom the author conversed
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oft and many a time while in La Jolla. Particular thanks are due
to Helmut Rohrl who helped make the author's very productive stay
in La Jolla, California possible; this paper having been largely written
there within sight of the Pacific.
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