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LINEAR IDENTITIES IN GROUP RINGS

D. S. PASSMAN

Let K[G] denote the group ring of a (not necessarily
finite) group G and suppose that this ring satisfies a nontrivial
polynomial identity of degree n. If Δ denotes the finite con-
jugate subgroup of G, then we show that [G: Δ\ ^ n\. Fur-
thermore, if K [G] is semiprime, then G has an abelian subgroup
of finite bounded index.

Several years ago this author worked on two seemingly unrelated
group ring problems. In [9] I studied the question of the existence
of nontrivial nilpotent ideals in group rings and the methods used were
essentially combinatorial in nature. Later in [6] and [7], I- M. Isaacs
and I studied group rings satisfying polynomial identities and the
chief tool here was the ordinary character theory of finite groups. In
her recent thesis [12] Martha Smith has observed that these two pro-
blems are in fact related and she applied the methods used in the
first to obtain new results in the second. In this paper I take a more
combinatorial and less ring theoretic approach than in [12] to the
study of polynomial identities in group rings.

It occurred to me while writing this paper that I had the oppor-
tunity to include in one manuscript an elementary, essentially self-
contained study of three distinct problems in group rings. These are
the problems of finding necessary and sufficient conditions for K[G] to
be prime, semiprime and for K[G] to satisfy a polynomial identity.
I have availed myself of this opportunity, and therefore I have necess-
arily included here a number of results already in the literature. I
hope that in doing this I have made this paper more enjoyable and
interesting for the reader.

I would like to thank Miss Smith and her thesis advisor Professor
I. N. Herstein for a number of stimulating conversations on this sub-
ject and for allowing me early access to [12].

1* First reduction* Let K be a field and let G be a (not ne-
cessarily finite) group. We let K[G] denote the group ring of G over
K. That is, K[G] is a iΓ-algebra with basis {x\xe G) and with multi-
plication defined distributively using the group multiplication in G.

If a — Σkxxe K[G] we define the support of a to be

Supp a = {x e G \ kx Φ 0} .

Then Suppα is a finite subset of G.
Suppose for a moment that a is central in K[G] and let x e Supp a.
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If y e G then

%* = y~ιχy e Supp y~ιay = Supp α .

Since Suppα: is finite it follows that there are only a finite number
of distinct xy with yeG. The set of all elements xeG with this
property will be of great interest to us. We define

A = A{G) = {xe G\[G: CG(x)] < -} .

Since the conjugates of x are in one to one correspondence with the
right cosets of CG(x) it follows that x has only finitely many conjugates
if and only if xe A.

We can now observe that A is a normal subgroup of G. First
leΔ and since CG(x) — CG(x~ι) we see that xeA implies x~ιeA. Fin-
ally, since a conjugate of xy is the product of a conjugate of x with
one of y, it follows that if x, ye A then xye A. Thus A is a subgroup
of G and it is clearly normal. It is called the F. C. (finite conjugate)
subgroup of G.

The importance of A here is two-fold. First we are able to reduce
the problems studied from K[G] to K[A] and second we are able to
handle the much simpler group A. In this section we consider the
reduction to K[A] which will yield results on prime and semiprime
group rings.

LEMMA 1.1. Let Hly H21 , Hnbe subgroups of G of finite index.
Then H = H1 (Ί H2 Π ΓΊ Hn has finite index in G and in fact

Proof. If Hx is a coset of H then clearly

Hx = Hxx n H2x Π Π Hnx .

Since there are at most [G: ίjΓJfG: H2] [G: Hn] choices for

H.x, H2x, , Hnx ,

the result follows.

LEMMA 1.2. Let G be a group and let H^ H2J •••, Hn be a finite
number of subgroups. Suppose there exists a finite collection of
elements xi3 eG (i = 1, 2, •• ,n; j — 1,2, , f(i)) with

G = [Ji,j HiXij ,

a set theoretic union. Then for some i, [G: Hi] < oo.

Proof. By relabeling we can assume all the Hi to be distinct.
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We prove the result by induction on n, the number of distinct H^
The case n — 1 is clear.

If a full set of cosets of Hn appears among the Hnxnί then [G: Hn] <
co and we are finished. Otherwise if Hnx is missing then

Hnx C \Jί>3 HiXij .

But Hnx Π Hnxnj is empty so Hnx Q {J&njHiXu. Thus

HnXnr S U HiXtj'X^Xnr
iφn

3

and G can be wri t ten as a finite union of cosets of Hly H2, , ί f ^ .
By induction [G: H^ < co for some i = 1,2, •••,% — 1 and the result
follows.

Let 0 denote the projection #: K[G] —> K[J] given by

α = Σ Kx -^ ^(«) = Σ kxx .
G J

Then θ is clearly a iΓ-linear map but it is certainly not a ring hom-
omorphism in general.

LEMMA 1.3. Let a, βeK[G] and suppose that for all xeG we
have axβ = 0. Then θ(a)θ{β) = 0.

Proof. We first show that θ(a)β = 0. Suppose, by way of con-
tradiction, that θ(a)β Φ 0 and let v e Supp θ(a)β.

Suppose Supp^(α) = {ul9 u2, •••, ur} and set W= f) CG(u,i). Since
UieΔ, it follows from Lemma 1.1 that [G: W] < co.

Write α: = β(α) + a' where S u p p α ' Π J = 0 and then write the
finite sums

a' = J α ^ * 2/i £ Λ

with a^biβ K and y^ zte G. If ^ is conjugate to some vzj1 in G
choose hij e G with h^y^a = ^ J 1 . We show now that

Let a; e TF. Then

0 = χ-χaxβ =

(χ-ιa'x)β

since « 6 W7" implies that x centralizes θ(a). Now v occurs in Supp θ(a)β
and so this element must be cancelled by something from the second
term. Thus there exists yif Zj with v = x~ιyiXzά or
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x~ιViX = vzj1 = hT/Vihij .

Thus xhjj e CG{y%) and x e CG{y%)hij and (*) is proved.

Now [G: W] < oo so if G = U TPw* then by (*)

G = \Jitj,kCG(yi)hiάwk

a finite union of cosets. By Lemma 1.2, [(?: C^;) ] < ^ for some i r

a contradiction since yt £ Δ. Thus θ(a)β = 0.
Now Write /3 - 0(/3) + β' where Supp /3' ΓΊ Δ = 0 . Then

0 = 0(α)/3 = 0(α)0GS) + θ(a)βf .

Since Supp θ(a)θ(β) g J and Supp ^(α)/9' ΓΊ J = 0 we have θ(a)θ{β) = 0
and the result follows.

THEOREM 1.4. (Passman [9]). £e£ A αwd B be ideals in K[G\
with AB = 0. Then Θ(A) and Θ(B) are ideals in K[Δ] and Θ(A)Θ(B) = 0.

Proof. We show first that Θ(A) is an ideal in K[Δ], Since

θ(A) is clearly closed under addition. Furthermore, if a e A and T e
K [Δ] then αγ e A, 7α e A and we have easily

θ(oa) = θ(a)j, θ(ya) = τ#(α) .

Thus Θ(A) is an ideal.
Now let a e A, β e B. If x e G then ax 6 A so axβ e AB and

axβ = 0. By Lemma 1.3 we have θ(a)θ{β) = 0 and hence 0(A)0(2?) = 0.

We remark that more generally if Av A2, , An are ideals in
K[G] with A,A2 An = 0, then 0(^0(24*) 0(AW) = 0. A proof of
this, in the more complicated context of twisted group rings, can be
found in [11].

LEMMA 1.5. Let A be an ideal in K[G]. Then A Φ 0 if and
only if Θ(A) Φ 0.

Proof. Certainly Θ(A) Φ 0 implies A Φ 0. Now suppose A Φ 0
and let a e A> a Φ 0. If x e Supp a then since A is an ideal x~ιa e A
and 1 G Supp ar 1^. Thus 0 Φ Θ{x~ιa) e θ(A) and Θ(A) Φ 0.

2* Prime rings* A ring R is said to be prime if for any two
ideals Af B in R, AB = 0 implies A — 0 or B = 0. In this section we
consider the possibility of K[G] being prime. We start by studying
Δ(G).
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LEMMA 2.1. Let G be a group with a central subgroup Z of
finite index. Then G', the commutator subgroup of G is finite.

Proof. Let (x, y) = x~ιy~ιxy denote commutators in G. Since
(x, y)-1 = (y, x) we see that Gf is the set of all finite products of com-
mutators and it is unnecessary to consider inverses.

Let x19 x2y , xn be coset representatives for Z in G and set
ci5 = (χit Xj). We observe first that these are all the commutators of
G. Let x,yeG and say x e Zxi9 y e Zx3 . Then x = uxi9 y = va?y with
u and v central in G. This yields easily (x9 y) = (xi9 x3) = c^ .

Now let x, yeG. Since Z is normal in G and G/i? has order n
we have (a?, 2/)n e Z. Thus

(a, 7/)%+1 = χ~ιy-ιχy(χ, y)n = x-^xfa y)ny

= x-'y^xy^y-'ix, y)n~ιy = (xf y
2){y~ιxy, y)n~ι

since conjugation by y being an automorphism of G implies that

y~ι{χ, y)n~ιy = {y~~ιχy, y~~ιyy)n~ι = (y~ιχy, y)n~ι.

We show finally that every element of G' can be written as a
product of at most n* commutators and this will yield the result.
Suppose U G G ' and u = cxc2 cm a product of m commutators. If
m > n3 then since there are at most n2 distinct ciS it follows that some
Cij, say c = (x, y), occurs at least n + 1 times. We shift n + 1 of
these successively to the left using

(xr,'x8)(x, y) = (x, y)c~ι{xr, xs)c

= (x, y)(c-1χrc1 c~ιχsc)

and obtain u — (x, y)n+1c'n+2c'n+3 c'm where each c\ is a possibly new
commutator. Using

(a?, y)n+1 = (x, y2){y~ιχy, y)n~ι

we can then write u as a product of m — 1 commutators. Thus every
element of Gf is a product of at most n3 of the ci3 and thus clearly
G' is finite.

LEMMA 2.2. Let H be a finitely generated subgroup of A(G).
Then [H: Z(H)] and | H' \ are finite. Thus if Δ(G) contains no non-
identity elements of finite order then A(G) is torsion free abelian.

Proof. Let H be generated by xl9 x2, , xn. Since each xi has
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only a finite number of conjugates in G, they have a finite number
of conjugates in H. Hence [H: CH(x{)] < co. By Lemma 1.1, Z~
Π CH(Xi) has finite index in H. Since xly x2y , xn generate H we see
that Z is central in H. Thus by Lemma 2.1, Hf is finite.

Now suppose A(G) has no nontrivial elements of finite order and
let Xj yeA(G). Set H = <(#, yy. Since i ί is finitely generated the
above implies that W is finite and hence H' = <!)>. Thus α? and y
commute and A(G) is abelian. By definition A(G) is torsion free.

LEMMA 2.3. Group G has a finite normal subgroup H whose
order is divisible by a prime p if and only if A(G) contains an
element of order p.

Proof. Let H be given. Since p||.ff|, H contains an element x
of order p. Since H is normal in G, all conjugates of x are contained
in H and hence xe A.

Now let x e A have order p. Let xγ = x, x2, , #„ be the finite
number of distinct conjugates of x. If H = <#!, #2, , #w> then Hζ=A
and i ί is normal in G since conjugation by an element of G merely
permutes the generators of H. By Lemma 2.2, W is finite. Now
HjH' is a finitely generated abelian group generated by elements of
finite order. Thus H/H' is finite and H is finite. Since xeH, p\\H\
and the result follows.

LEMMA 2.4. Let H be a torsion free abelian subgroup of G and
let a G K[H] £ K[G] with a Φ 0. Then a is not a zero divisor in
K[G].

Proof. We show that aβ = 0 implies that β = 0. An analogous
proof works in the other direction. Suppose #/3 = 0. We can choose
Vu Vv '**iVk in distinct right cosets of H in G so that

β =

Then

0 = aβ = (α/Sj^ + (αft)2/2 + +

and since α/3; 6 iΓ[ίί] we have clearly aβt = 0. Thus it suffices to
show that aβi = 0 implies /3* — 0 or equivalently we can assume that
G = H is a torsion free abelian group.

Assume then that G ~ H. Now there clearly exists a finitely
generated subgroup ΫFgΞG with α, £eiT[W]. Thus we may also
assume that G = W is finitely generated. By the fundamental theorem
of abelian groups G = <$,> x <»2> x x <«ŵ > a finite direct product
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of infinite cyclic groups. Then K[G] is essentially a polynomial ring
in the variables xlf x2, * ,xn except that negative exponents are also
allowed. It is now obvious that K[G] is an integral domain so aβ — 0
implies β = 0.

THEOREM 2.5. (Connell [4]). The following are equivalent:
( i ) K[G] is prime.
(ii) A(G) is torsion free abelian.
(iii) G has no nonidentity finite normal subgroup.

Proof, (i) => (iii). Suppose G has a nonidentity finite normal sub-
group H. Set

α - Σ x e K[G] .
xcH

Since H is normal in G, y~ιHy = H for all yeG and thus y~ιay — a.
Hence a is central in K[G] and clearly a Φ 0.

lΐ ye H then τ/ff = ϋf so #α: = α. This yields

and hence (α: — \H\)a = 0. Since if ^ <1)> we have clearly a — \H\ι Φ
0. Set

A= (a - I J2Ί)ίΓ[G] , 5 - αlΓ[Gl.

Since a is central these are both nonzero ideals. Moreover, clearly
AB = 0 so K[G] is not prime, a contradiction. Hence H does not
exist.

(iii)=>(ii). By Lemma 2.3, A(G) has no nonidentity elements of
finite order and then by Lemma 2.2, Δ(G) is torsion free abelian.

(ii) => ( i ) . Let i and ΰ be ideals in K[G] with AB - 0. By
Theorem 1.4 we have Θ(A)Θ(B) = 0 and hence by Lemma 2.4 either
Θ(A) = 0 o r Θ(B) = 0. The result follows from Lemma 1.5.

3* Semiprime rings* Let R be a ring. An ideal P of R is
said to be prime if R/P is a prime ring. Thus P is prime if and only
if for all ideals A, B Q R we have AB ^ P implies 4 g P or B Q P.
R is said to be semiprime if the intersection of all prime ideals of R
is 0. In particular, R is semiprime if and only if it is a subdirect
product of prime rings.

LEMMA 3.1. Ring R is semiprime if and only if R contains no
nonzero ideal with square 0.
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Proof. Suppose R contains a nonzero ideal A of square 0. If P
is any prime ideal in R then 4 4 = 0 g P so A g P . Hence A is
contained in the intersection of all such prime ideals and R is not
semiprime.

Now suppose that R contains no nonzero ideal of sequare 0. Let
ae R, a Φ 0. We define a sequence T = {alf a2, , an, •} or non-
zero elements of R inductively as follows. First ax = a. Second given
an Φ 0 then the ideal RaJR does not have square 0. Thus for some
βne R we have anβnan Φ 0. Set an+1 = anβnan. Since 0 g T it follows
that T is disjoint from some ideal of R namely 0. By Zorn's lemma
there exists an ideal P of R maximal with respect to Pπ T = 0.
We show that P is prime. Let A and B be ideals of R with A g P ,
B gg P. Then P + A and P + B properly contain P so by the maxim-
ality of P, it follows that for some i , i we have a{e P + A, a3-e P + £.
If m = max (i, i) then clearly am e P + A, am e P + B so

tfWi - ^W3wtfm e (P + A)(P + S ) S P + 4 ΰ .

Since αm + 1 ί P we have AJ5 g P and P is prime. Since a — aγ^P
the result follows.

An element a e R is said to be nilpotent if an = 0 for some posi-
tive integer %. An ideal / of i2 is nil if all elements of I are nilpotent.

THEOREM 3.2. (Pascual Jordan). Suppose that K is a subfield
of the complex numbers which is closed under complex conjugation.
Then K[G] contains no nonzero nil ideal.

Proof. Let * denote complex conjugation and extend * to a map
of K[G] to itself by

xeG xeG

Clearly (α*)* = a and (aβ)* — /3*α*. In addition, the coefficient of
1 e G in <m* is Σ^e^ l&*l2 and thus αα* = 0 if and only if a = 0.

Let / be a nil ideal in K [G] and let a el. Since / is an ideal
we have aa* e I and hence for some n ^ 1, (αα*)w = 0. Let w be
minimal with this property. Suppose that n > 1 and set β = (aa*)*"1.
Clearly β* = /9 so we have /3/3* = (αα*)2π~2 = 0 since 2n — 2 ̂  n. Thus
/5 = 0 by the above, contradicting the minimality of n. This shows
that n = 1, ra* = 0 and hence α: = 0. Thus / = 0.

We remark that K[G] has no nonzero nil ideals if K is any field
of characteristic 0 (see [9], Th. II). However, the above is quite suf-
ficient for our purposes.
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THEOREM 3.3. Let K be a field of characteristic 0. Then K[G]
is semiprime.

Proof. Suppose K[G] is not semiprime. Then by Lemma 3.1,
K[G] contains a nonzero ideal A with A2 = 0. Let a — Σ f ^ f c ^ e Ά>
a Φ 0 and let F be a subfield of K generated over the rationals by
K K •> &w. Then F[G] £ ϋΓ[G] and 4̂ Π -^[G] is a nonzero ideal of
F[G] of square zero. Thus it clearly suffices to assume that K= F
or equivalently that K is finitely generated over the rationals. This
implies that K is contained in the complex numbers C and we fix an
imbedding. Then K[G]^C[G] and AC is a nonzero ideal of C[G]
with square zero. This is a contradiction by Theorem 3.2 and the
result follows.

We now consider fields of characteristic p > 0. Let R be a ring.
We set [R, R] equal to the set of all finite sums of Lie products

[a> β] = aβ — βa

with a, βeR.

LEMMA 3.4. Let E be an algebra over a field K of characteristic
p > 0 and let k and n be positive integers. If a19 a21 , ane E then

{a, + a2 + + an)
pk = af + at + + <k + β

for some βe [E, E].

Proof. Observe that

(«! + « , + •••+ anγ
k = αf * + α?fc + + at + /3

where /3 is the sum of all words ahah aipk with at least two dis-
tinct subscripts occurring. If words ωι and ω2 are cyclic permutations
of each other, that is, if

o), = ahah aipk

o)2 = oc{jaj+1 . aipkah α<y_t

then ω1 — ω2 = yδ — δy e [E, E] where

7 = α ίχα: ί2 α ί y - 1 and S = ^ ί i α ί i + 1 aipk .
pk

Hence modulo [£7, E] all cyclic permutations of a word α> are equal.
For convenience we let the cyclic group Zpk act on the set of these
words by performing the cyclic shifts. Then the number of formally
distinct permutations of a word ω occurring in β is the size of a
nontrivial orbit of Z k and hence is divisible by p. Since K has char-
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acteristic p, the result follows.

THEOREM 3.5. (Passman [9], Connell [4]). Let K be a field of
characteristic p > 0 and let G have no elements of order p. Then
K[G] has no nonzero nil ideals.

Proof. If a = Σkxxe K[G] we set τ(a) = k19 the coefficient of 1.
τ is clearly a JΓ-linear map of K[G] onto JSΓ. Now [if [G], K[G]] is
spanned over if by all Lie products of the form [x, y] with x, yeG.
Furthermore, if τ([x, y]) Φ 0 then certainly y — x~ι and then

[xy y] — xx~ι — x~ιx — 0 ,

a contradiction. Hence τ([K[G], K[G]]) = 0.
Let I be a nontrivial nil ideal in K[G] and let a — Σkxxe I — {0}.

Then for some x, kx φ 0. Since I is an ideal αr'α: e / and clearly
τ(χ-ιa) =z kxΦ 0. Thus we may assume that τ(a) Φ 0. Say

a = kjl -}- k2x2 + + knxn

where kι e K, kγ Φ 0 and the a?€ are distinct nonidentity elements of G.
Since am = 0 for some m > 0 it follows that α:^ — 0 for some integer
& > 0. By Lemma 3.4

0 = a>k = (JcW + {k2x2γ
k + + (fcΛ)pfc + β

where /3e [E"[G], ίΓ[G]] Since 0 = τ(0) = τ{β) and

t ) - Λffe ^ 0

we conclude that for some i = 2, 3, , n, τ((kίxiγ
li) Φ 0. Thus xζ Φ 1,

a f* = 1 and G has an'element of order p, a, contradiction.

The converse to Theorem 3.5 is decidedly false. Namely, there
are many examples of groups G with elements of order p such that
K[G] has no nontrivial nil ideals. (See, for example, [9] and [10].)

THEOREM 3.6. (Passman [9]). Let K be a field of characteristic
p > 0. The following are equivalent.

( i ) K[G] is semiprime.
(ii) Δ(G) has no elements of order p.
(iii) G has no finite normal subgroups with order divisible by

p.

Proof. (i) => (iii) Suppose G has a finite normal subgroup H
with p | |J3Ί. Set

α = ΣxeHxeK[G] .
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As in the proof of Theorem 2.5 we see that a Φ 0, a is central in
K[G] and a2 = \H\a. Now p\\H\ and K has characteristic p so
| # Ί = 0 in K. Thus if A = αiίΓ[G], then A is a nonzero ideal of
if [G] and A2 = 0. By Lemma 3.1 K[G] is not semiprime, a contra-
diction. Hence H does not exist.

(iii)=>(ii). This follows from Lemma 2.3.
(ii) ==> ( i ) . Let A be an ideal in K[G] with A2 = 0. Then by

Theorem 1.4, Θ(A) is an ideal in K[A] with Θ(A)2 = 0. Now Δ has no
elements of order p so by Theorem 3.5, Θ(A) = 0. Hence by Lemma 1.5
we have A — 0 and K[G] is semiprime by Lemma 3.1.

An ideal A is said to be nilpotent if An — A A A — 0 for
some integer n ^ 1. If A is such a nonzero ideal, then certainly a
suitable power of A is a nonzero ideal of square zero. Thus if K has
characteristic p > 0 then by Lemma 3.1 and Theorem 3.6 we see that
K[G] has a nonzero nilpotent ideal if and only if A(G) contains an
element of order ip. It is shown in [11] that K[G] has a unique
maximal nilpotent ideal if and only if Δ(G) contains just finitely many
elements whose order is a power of p.

4* Examples* Let K[ζ19 ζ2, •••] be the polynomial ring over K
in the noncommuting indeterminates ζ19 ζ2, •••. An algebra E over
K is said to satisfy a polynomial identity if there exists

/ > 0 with

/(«!, α2, •••, αΛ) = 0

for all «!, α:27 , an e E. For example, any commutative algebra
satisfies f(ζv ζ2) = ζLζ2 - ζ2ζ lβ

The standard polynomial of degree % is defined by

[Cl> ζ2> *> Cn] = Σ (—l)σC(l)ζ<7(2) ' * # C( % )
oesn

Here SΛ is the symmetric group of degree n and ( — l)a is 1 or —1
according as σ is an even or an odd permutation.

LEMMA 4.1. Let E be a commutative algebra over a field K and
let En denote the ring ofnxn matrices over E. Then En satisfies
the standard polynomial identity of degree n2 + 1.

Proof. Now En has a basis {βlf β2, •",βnή over E of size n2.
Since E is central in En and since [ζ19 ζ2, , ζu2+1] is linear in each
variable it clearly suffices to verify that

[/?ή,&2, •••, An2+I] - 0 .
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However, since here there are only n2 distinct β* we must have two
of the above variables equal. The result now follows since it is obvious
from the form of the standard polynomial, that if two variables are
equal then the polynomial vanishes.

It is in fact true that En satisfies the standard polynomial identity
of degree 2n (see [2]) and by using this stronger result we could
strengthen the next theorem.

THEOREM 4.2. (Kaplansky [8], Amitsur [1]). Let G have an
abelian subgroup A with [G: A] = n< oo. Then K[G] satisfies the
standard polynomial identity of degree n2 + 1.

Proof. Let x19 x2, -* ,xn be a set of right coset representatives
of A in G. Let E = K[A] and V= K[G]. Then clearly V is a left
i?-module with basis {x^ x2, •••,»»}• Now V is also a right K[G\-
module and as such it is faithful. Since right and left multiplication
commute as operators on V, it follows that K[G] is a set of I?-linear
transformations on a ^-dimensional free i?-module V. Thus K [G] ϋ En

and the result follows from Lemma 4.1.

We will see later that a reasonable converse to the above holds.
However we consider some examples now to show that a converse need
not hold in all situations.

LEMMA 4.3. Let E be an algebra over K and suppose that
[E, E]n = 0. Then E satisfies the standard polynomial identity of
degree 2n.

Proof. Let a19 a2, , a2n e E and consider

[a19 a29 , a2n] = Σ {-^Y^o{i)0co{2) • aσ{2n) .
a

Consider all such terms on the right hand side with

{σ(l), σ(2)} = {ilf i2}, {σ(3), σ(4)} = {i8, i j , ,

{σ(2n — 1), σ(2ri)} = {i2*-i» ^ J where of course

{ii,i2> •••> i2Λ} = {1, 2, . . ,2n} .

Then the subsum Σr of all these terms is easily seen to be equal to

Σ' = ±[ah, ai2][ah, α<4] [ahn^ ahn\ = 0

since [E9 E]n = 0. Thus the result clearly follows.

LEMMA 4.4. Let K be a field of characteristic p > 0 and let G
be a group with \G'\ = p and Gf central in G. Then K[G] satisfies
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the standard polynomial identity of degree 2p.

Proof. Since | G' | = p, G' = <z> is cyclic. We show first that

[K[G],K[G]]^(l-z)K[G].

Now [K[G]j K[G]] is spanned over K by elements of the form [x, y]
with x, yeG. For x, yeG we have

[x, y] = xy — yx = (1 — yxy~ιx~x)xy

for some ΐ > 0 since yxy~ιx~γ e G' = <V>. Thus [x, y] e (1 — z)ίf [G]
and this fact follows.

Now K has characteristic p and zp — 1 so (1 — z)p = 1 — zp — 0.
Since z is central in G we have ((1 — z)K[G])p = 0 and the result
follows from Lemma 4.3.

THEOREM 4.5. Let K be a field of characteristic p > 0. Then
there exists a sequence of finite p-groups Pv P2, , Pn, and an
infinite p-group P^ such that

( i ) For all v = 1, 2, , ©o, ϋΓ[Pv] satisfies the standard poly-
nomial identity of degree 2p.

(ii) P n Λαs ̂ o abelian subgroup of index < p \
(iii) Poo &αs ̂ o ahelian subgroup of finite index.

Proof. Let Q be a nonabelian group of order p3. Then Z, the
center of Q, has order p, Q/Z is abelian of type (p, p) and Q' — Z.
Let Q19 Q2, Q3, be copies of Q with centers Z19 Z29 Z3, and say
Zi = <(z{y. For each integer n set

Gn = Q, x Q2 x x QΛ

and set

Goo = ζh x Q2 x x Q% x .

We have clearly G[ = Z(GV) = Z ι x Z ! x •••. Now let N» be the
subgroup of Z(GV) generated by the elements ^^Γ1, Z3«ΓS «^ΓS Then
Nv is a central and hence a normal subgroup of Gv and we set

Pn = GJNn , P . - Goo/ΛΓoo .

Clearly P; S Z(GV)/NU and the latter group has order p. Thus | P; | g
p and PI is central so (i) follows by Lemma 4.4. We observe now
that Z(PV) = Z(GV)/NU. For suppose a? = xxx2 G G , - Z(GV). Then
for some i, x{ £ Zι and hence there exists yt 6 Qέ which does not cen-
tralize Xi. Then y^eG^ and
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(», Vi) = X^VT'xVi = XϊιyϊιXiVi .

is a nonidentity element of Zi. Since clearly Z, Π JV> = <1> we see
that the images of x and of y{ do not commute in Pu. This yields
[Pn: Z(PJ] - p2* and [P. : Z(P )] = - .

Suppose A is an abelian subgroup of Pu of finite index pι and set
JS = AZ(PU). Then JB is abelian of index <g p* and J5 is normal in Pu

since I? 3 Z(PV) = Pi. Now P J 5 is clearly elementary abelian and we
can choose w19 w2, •• , w t e P v with P v = <Ί3, w^ w2, , wt>. If ?/GP U

then y~ιWiV = Wi(wiy y)eWiPl. Hence since \Pi\ = p we see that Wι
has at most p conjugates in P v and [Py: CPυ(Wi)] ^ p. Thus by
Lemma 1.1 if

w = p n c^fao n Cpv(̂ 2) n n c^ί^ί)

then [Pv: W] ^ p* p p p = p 2 ί . Now 5 is abelian so TΓ centr-
alizes J5 and all the w, and hence TΓ= Z(P>). Since [Po.: Z(P«)] = oo,
(iii) follows and since [Pn: Z(Pn)] = p2n we have t ^ n and (ii) follows.
This completes the proof.

5* Second reduction* We now obtain a refinement of the re-
duction of § 1 which is applicable to studying polynomial identities.

LEMMA 5.1. Let G be a group and suppose that G can be written
as G = U HiXij a finite union of cosets. Then G — U 'H&ij where the
union is restricted to those Hi with [G: Hi] < co.

Proof. Let S? - {i\[G: Hi] < oo} and let g = {i\[G: Ht] - oo}.
By Lemma 1.2, S? Φ 0 . Let W= Γiie^Hi. Then [G: W] < oo by
Lemma 1.1 and each coset HiXia with ieS^ is a finite union of cosets
of W. Thus

Xij = U fl*»iy = U Wyk

a finite union of cosets of W. If G Φ U '-&<»»,• then G =£ U Wi/Λ and
some coset Wy is missing. Then

and since WV Π Wyk is empty we have Wy ξΞ=\Jie^H%Xij. Thus all
cosets of W are contained in finite unions of cosets of those Hi with
i e g . Since [(?: TF] < oo this yields a representation of G as a finite
union of cosets of those Hi with i e f$ This contradicts Lemma 1.2
and thus G = U ΉiXi3'.

LEMMA 5.2. Lei G ^ ΌHmgmn, a finite union of cosets. Let
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&„ az, , a9J βlf β2i , βseK[G]

and suppose that for all x e G — U Hmgmn we have

ocιxβι + a2xβ2 + • • • + asxβs - 0 .

Then there exists yeG with

i + θ{a2Yβ2+ . +θ(asyβs = 0 .'" '

Proof. Let W be the intersection of the centralizers of all ele-
ments in Supp θ(<Xi) for i — 1, 2, , s. By Lemma 1.1, [G: W] — t <
oo. Clearly if xe W then a? centralizes θia^j θ(a2), •••, θ(as). Let
{t̂ } be a set of coset representatives for W in G. Let us suppose by
way of contradiction that for i = 1, 2, •••, ί

7, .= θia^β, + Θ(a2)
uίβ2+ . + 0 « r ^ 8 =* 0

and let ^
Write α y = θ(a3) + αj where Supp a){\ Δ — 0 and then write the

finite sums

βj = Σbjkzk .

If y3- is conjugate to some ViZk

ι in G choose &<y*e G with hτ}ky3hi3k =

Let x e G and suppose that xg UHmgmn. Then we must have

0 = x^ajXβj, + x~~γa2xβ2 + + x"1aΛxβΛ

= [0(<*J)*JSI + θ{a2Yβ2 + + 0(0*73*]

+ [αί*A + αfft + + <#*£.] .

Since {%} is a full set of coset representatives of W in G we have
xeWui for some i. Since TF centralizes Θ(a1)1θ(a2)1 ••, 0 ( O the
first expression above is equal to γ< Hence

0 = Ύ 4- Γ ŷf̂ /P, 4- (ylx RΛ 4- -+- (Ytx R 1

Now Vi occurs in the support of 7; and so this element must be can-
celled by something from the second term. Thus there exists yj9 zk

with Vt = y*zk or

Thus a; e CG(yi)hijk. We have therefore shown that

G = ({jHmgmn) U (UCσ(%)λ<y*)

a finite union of cosets. Now yo £ Δ so [G: CG(7/y)] = co. Since, by
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Lemma 5.1, we can delete subgroups of infinite index from the above
we have G = \jHmgmn, a contradiction. The lemma is proved.

It is obvious from the above that we can handle linear identities
in K[G]. Thus we need the following.

LEMMA 5.3. Suppose E is an algebra over a field K which satis-
fies a nontrivial polynomial identity of degree n. Then E satisfies
the polynomial identity fe K[ζly ζ2, , ζn] with

Λ'Ci> C2> •> ζ*) = Σ #σζ<7(i)ζσ(2) ' ' Co(n>
oesn

where aσe K and they are not all zero.

Proof. A monomial in i f[d, ζ2, •••] is an element of the form
CixCi2 ••• ζ<r. These of course form a basis for K[ζly ζ2, •••] over K.

Let g — g(ζt, ζ2, •) be the given polonomial of degree n satisfied
by E. Suppose some variable ζ< occurs in some but not all of the
monomials in the expression for g. Then g = gf + g" where ζ4 occurs
in all the monomials of gf and in none of g". Then g" Φ 0, degree g" g n
and f/"(d, ζ2, , ζ<, •) = flr(d, ζ2, , 0, •) so g" is also clearly a
polynomial identity for E. We continue in this manner reducing the
number of variables involved until we obtain a nonzero polynomial h
of degree tin with the property that each variable ζt which occurs
in h in fact occurs in each monomial. Since degree h g n we see that
h is a function of at most n variables. By changing notation if
necessary we may assume that heK[ζu ζ2, •••, ζ j .

Let έ%f be the set of all he K[ζ19 ζ2, , ζn], hφO which are poly-
nomial identities for E of degree ^n and for which all variables which
are involved in h occur in each monomial. We choose fe β^ to be a
function of the maximal number of variables possible. Say / is a func-
tion of t ^ n variables. We show now that / has the desired property.

Suppose that some monomial in / is not linear in say ζx. Since
degree f ^ n and fe £ίf this implies that / cannot be a function of
all ζ; so say ζΛ is missing. Set

/' = /(d + C, £, •) - /id, d, •) ~ /(C , d, •)

It follows easily that f'φO and that / ' e Sίf. Furthermore / ' is a
function of t + 1 variables, a contradiction. Hence all monomials in
/ are linear in each variable and thus they all have degree t <£ n. If
t < n then say ζn is missing and setting / " = ζnf yields a contradic-
tion. Thus t = n and / has the desired form.

6. Polynomial identity rings* Suppose A is an abelian sub-
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group of G with [G: A] < oo. Then every element of A has only a
unite number of conjugates in G and thus Δ(G) 2 A and [G: A] < oo.
Therefore, according to the observation of [12], a first step in finding
a converse to Theorem 4.2 is to show that [G: A] is finite. That is
the goal of this section.

Let K[ζ19 ζ2, •] be the polynomial ring over K in the noncommut-
dng indeterminates ζ l f ζ2, •••. A linear monomial is an element μe
K[ζu ^2J •] of the form μ = ζ^ζ^ ζ ί r with all i, distinct and with
r ^ 1. Thus μ is linear in each variable.

LEMMA 6.1. The number of linear monomials in K[ζu ζ2, , ζm]
is ^(m + 1)1.

Proof. The number of linear monomials in K[ζlf ζ2, ••, ζm] of
degree m is of course ml. Now any other linear monomial is clearly
just an initial segment of one of these. This yields a bound of

m ml ^ (m + 1)! .

We remark that a more precise upper bound here is e m! =
(2.718. . ,)ml. We now come to the first main theorem of this paper.

THEOREM 6.2. Let K[G] satisfy a nontrivial polynomial identity
of degree n. Then [G: A] ̂  nl.

Proof. We assume by way of contradiction that [G: A] > nl By
Lemma 5.3 we may assume that K[G] satisfies the polynomial identity

.so that clearly n > 1. For j = 1, 2, , n define

f3-eK[ζifζi+l9 . . . , ζ j

1)7

/ = CiC2 * ζj-i/j + terms not starting with dC2 C ^ .

Then clearly f = f,fn = ζn and fά is a homogeneous multilinear poly-
nomial of degree n — j + 1. In particular, for all j \ ζ, occurs in each
monomial of f . We clearly have

fi = Ci/j+i + terms no starting with ζ, .

For j = 2, 3, , w let ^ ^ denote the set of all linear monomials
in K[ζj, ζ i + ] , •••, ζ j and let ^ be empty. Then by Lemma 6.1 we
Lave for all j , |^€y| ̂  \^ί\ ^ w! We show now by induction on
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j = 1,2, , n that for any xjy xj+1J , xn e G then either

fj(X3; Xj+1, •••, Xn) = 0

or //(a?, , α?i+1, , xn) e A for some μ G ̂ ^ . Since f=f1 is a polynomial
identity satisfied by iΓ[G], the result for j = 1 is clear.

Suppose the result holds for some j < n. Fix

and let a; G G play the role of the i-th variable. Let μ e ^C + 1 . ; f If
μ(Xj+19 Xj+2, , a?Λ) G Δ we are done. Thus we may assume that

for all μ e ̂ f3+1. Set ^ - ^ + 1 = g, .
Now let μ e gy so that μ involves the variable ζ3 . Write μ =

μfl,5μ
n where μf and μ" are monomials in K\ζj+1, ζj+2, •••, ζ j . Then

μ(x, xj+1, , »w) G J if and only if

ίc G μ'(xj+1, , x«)-ιΔμ"(xά+ι, , ajj-1 - z/^

a fixed coset of J, since // and μ" do not involved ζy and since Δ is
normal in G. Thus it follows that for all xeG — \Jμe%.Λhμ we have
μ(x, xj+1, , xn) ί J for all μ e ^€ί since ^ ^ e ^ ί + i U S Since the
inductive result holds for j we conclude that for all xe G — U/<eg/A^
we have f,(x, xjirl, , xn) = 0. Note that

and [G: z/] > ^! by assumption so G — {Jμe%.Λhμ is nonempty.

Write

/i(Ci, ζ i + 1, , ζn) = ζ, /,+ 1 + Σrηrζβη'r

where 3?r, ^ G i^[ζ i + 1, ζ i + 2, , ζn] and rjr is a linear monomial. Hence
Ύ]r G ̂ J + 1 . Now by the above we have

0 = l-x-fj+ί(x3+1, . . , xn)

+ Σrηr(xj+1, , ̂ ) ^ ; f e +1, , xn)

for all xeG — \J/ie^ Δhμφ 0 . Hence by Lemma 5.2 there exists
?/ G G with

0 - θ(iYfj+1(xj+ι, •-.,&») + Σrθ(ηr(x3+ί, , ίcw))v^(ίCi+i, ••-,&•).

Clearly ^(l)y = 1. Also ^ r ( ^ +i, , a?J G G — A since ηre^!ίJ+1 and
hence θ(τ]r(xj^ί, , a J) = 0. Thus

0 = l fj+1(Xj+1, , α J = fJ+1(x3+1, , .τn)
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and the induction step is proved.
In particular, the inductive result holds for j = n. Here fn(ζn) =

ζn and ^ C = {ζn}. Thus we conclude that for all xeG that either
x = 0 or x e Δ, a contradiction since G Φ Δ. Therefore the assumption
\G\ Δ\ > n\ is false and the theorem is proved.

7* Corollaries*

LEMMA 7.1. Leέ G α finitely generated group and let H he a
subgroup of finite index. Then H is finitely generated.

Proof. By adding inverses if necessary we can assume that G is
generated by x19 x2, , xt as a semigroup. Let y19 y2, , yn be a set
of right coset representatives for H in G. For each i, j , HyiXj is a
€oset of H say HyiXj = i??/^. Then there exists /&o e if with

Let H be the subgroup of H generated by {Â  }, and set W =
Since hi5 e H we have {Hy^Xj — Hh^y^ = 5?/^ g TΓ and hence
ίF. Thus since the x3- generate G as a semigroup we have WG — W

and hence clearly W — G. This yields easily H = H and the result
follows.

COROLLARY 7.2. Let G be a finitely generated group and suppose
that K[G] satisfies a polynomial identity. Then G has a normal
abelian subgroup of finite index.

Proof. By Theorem 6.2, [G: Δ] < oo and hence by the previous
lemma Δ is finitely generated. Hence by Lemma 2.2, [Δ: Z(Δ)] < oo
so Z(Δ) is an abelian subgroup of G of finite index. Since Z(Δ) is
characteristic in Δ, it is normal in G.

We remark that even if we know the degree of the polynomial
identity we cannot, in general, bound the index of the abelian sub-
group in the above as the finite examples of Theorem 4.5 indicate.
Furthermore, the example of the group P^ shows that if G is not
finitely generated then G need not have an abelian subgroup of finite
index.

LEMMA 7.3. Let E = Km be the ring ofmxm matrices over K.
Then E does not satisfy a polynomial identity of degree < 2m.

Proof. Suppose by way of contradiction that E satisfies a poly-
nomial identity of degree n < 2m. By Lemma 5.3 we may assume
that E satisfies
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/(Cl> C2> " •» C») = C1C2 ' Cn + Σ ^ C ( i ) ζ σ ( 2 ) ' ' ' Coin)

Let {ei3} denote the set of matrix units in E, that is ei3 is the matrix:
whose only nonzero entry is a 1 in the (i, i)-th position. Since n < 2m
we may set

f* ?* f* f f*

Then dC2 ζ» at these values is not zero but clearly for all σ Φ 1,
Cσ(i)ζσ(2) Cσ(») at these values is zero. Thus £7 does not satisfy /, a
contradiction.

Under certain circumstances we can improve the bound on [G: A]
given in Theorem 6.2. The following result can be found in [12].
The proof here retains the basic flavor of the original, namely the
formation of a suitable ring of quotients, but it does not require the
use of deep ring theoretic machinery. Amazingly enough we apply
some elementary Galois theory.

THEOREM 7.4. (Smith [12]). Let K[G] be prime and suppose
that K[G] satisfies a polynomial identity of degree n. Then A is a
torsion free abelian group and [G: A] ^ n/2.

Proof By Theorem 2.5, A is torsion free abelian and by Theorem
6.2, [G: A] = k < °o. Hence by Lemma 2.4, no nonzero element of
K[A] is a zero divisor in K[G] and in particular K[A] is an integral
domain. Set G = GjA. Then G acts faithfully by conjugation on A
since if xe G and x centralizes A, then [G: C(x)] < 00 and xe A. Thus
G acts faithfully by conjugation as ring automorphisms on K[A\. Let
x19 x2, , xk be a complete set of coset representatives of A in G with

Let Z denote the center of K[G]. As we observed in §1, 2 g
K[A] and thus no nonzero element of Z is a zero divisor in K[G\.
Since Z is central it is then trivial to form the ring of quotients
Z~ιK[G\. This is the set of all formal fractions ψιa with ηeZ- {0},
aeK[G] and with the usual identifications made.

Let L = Z-ιK[A] s Z~ιK[G] and let F - ZιZ ^ L. Clearly F is
a field and L is an integral domain. Suppose aeK[A], a Φ 0. Then
a(a*2ax* aXk) e Z — {0} since iί[zl] is commutative. Thus a is in-
vertible in L and L is a field. Now G acts on L and in fact we see
that G is a group of field automorphisms of L with fixed field precisely
F. The latter follows since if r]~ιa e i is fixed by all elements of
G, then aeZ and ψ'aeF. Thus by Galois theory ([3], Th. 14)
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Since K[G] is free over K[A] of rank k, this shows that E = Z~ιK[G\
is a finite dimensional algebra over F and dim^ E = fc2.

We observe now that E is prime. Suppose A and 1? are ideals
of E with AS = 0. Let rf[xa e A, ηΐιβ e B. Then since ηt and % are
central we have clearly (K[G]aK[G])(K[G]βK[G]) =-0 and since iΓ[G]
is prime we conclude that either a = 0 or /S = 0. Thus if J5 Φ 0 we
can assume that β Φ 0 and conclude that A = 0. This implies that
E is a full matrix ring over some division algebra over F. It is clear
that F is the center of E so E is central simple over F. Thus if JF
denotes the algebraic closure of F then F §§F E ~ Fm, the ring of
m x m matrices over F . Since

m2 = dim^ Fm = dimFE — k2

we see that m = k.
Now by Lemma 5.3 we can assume that K[G] satisfies a multi-

linear polynomial identity of degree n. Since Z is central it follows
that E also satisfies this identity viewed as a polynomial over F.
Then clearly F ®F E = Fk satisfies this identity viewed as a polynomial
over F. Thus by Lemma 7.3, n > 2k or n/2 ^ k. The result follows.

LEMMA 7.5. Suppose K[G] satisfies a polynomial identity f of
degree n. Let H be a subgroup of G. Then K[H] also satisfies f
Furthermore if H is normal in G, then K[G/H] satisfies f.

Proof. The first statement is clear since K[H] S K[G]. Suppose
H is normal in G. Then the homomorphism G —> G/H induces an
epimorphism K[G] —»K[G/H] so the second result follows.

COROLLARY 7.6β Suppose G is finitely generated and K[G] satis-
fies a polynomial identity of degree n. Then [G: Δ\ <̂  n/2.

Proof By Theorem 6.2, [G: A] < co and hence by Lemma 7.1, Δ
is finitely generated. Thus by Lemma 2.2, Δ' is finite. Since Δ/Δ' is
a finitely generated abelian group and Δf is finite we conclude that
H, the set of all elements of finite order in Δ, is in fact a finite sub-
group of Δ. Clearly H is normal in G.

Set G = G/H and J=_Δ/H so that clearly ΔQ Δ(G). On the other
hand suppose x — HxeΔ(G). Then the conjugates of x are contained
in only finitely many cosets of H and since H is finite, x e Δ. Thus
/ = Δ(G). Since A is clearly torsion free abelian we see that K[G] is
prime by Theorem 2.5. Furthermore by Lemma 7.5, K[G] satisfies a
polynomial identity of degree n. Hence by Theorem 7.4, [G: I] <; n/2
and since [G: A] = [G: A], the result follows.
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8/ Finite groups* At this point we can no longer keep this
paper self contained. We will need Theorem 8.2 below which is a
result on finite groups. In characteristic 0, in a slightly different
form, this is due to Isaacs and Passman in [7]. Our proof will merely
translate the statement here to its original form in [7] and then quote
that result. The characteristic p > 0 case is shown to follow from
the characteristic 0 one, but the proof requires a certain amount of
character theory. The reader who is not familiar with these techni-
ques should just skip the proof. The remainder of this paper will
again be self contained.

LEMMA 8.1. Let G be a finite group and suppose that K[G] satis-
fies a polynomial identity of degree n. Let Ko denote the prime
subfield of K and let Ko be the algebraic closure of KQ. Then K0[G]
satisfies a polynomial identity of degree n and all irreducible repre-
sentations of KQ[G] have degree ^ n/2.

Proof. Let / be the given polynomial identity for K[G] of degree
n and write / = Σa{fi where the /* are polynomials over Ko and the
α̂  e K are linearly independent over Ko. If we evaluate / at elements
of K0[G] then each /< evaluated is in KQ[G]. Since the a{ are also
linearly independent over K0[G] we conclude that each f{ is an identity
for K0[G]. Clearly for some i, f{ has degree n.

Thus KQ[G] satisfies a polynomial identity of degree n and thus
by Lemma 5.3 it satisfies a multilinear polynomial g of degree n.
Clearly g is also an identity for K0[G]. Since Ko is algebraically closed,
an irreducible representation of KQ[G] of degree m yields a homomor-
phism of K0[G] onto (K0)m, the ring of m x m matrices over KQ. This
ring must therefore also satisfy g so by Lemma 7.3, n ^ 2m and
n/2 ^ m.

THEOREM 8.2. There exists a finite valued function J τυith the
following property. Let G be a finite group and let K[G] satisfy a
polynomial identity of degree n. Suppose that either K has charac-
teristic 0 or K has characteristic p > 0 and p\\G'\ where Gf is the
commutator subgroup of G. Then G has an abelian subgroup A with
[G:A] ^

Proof. Let Q denote the algebraic closure of the rational num-
bers. If K has characteristic 0 then by Lemma 8.1 we conclude that
all irreducible representations of Q[G] have degree <; n/2. Hence the
result follows from Theorem 5.3 of [7].

Now let K have characteristic p. Since p \ \ Gp \ by assumption,
it follows easily that G = HP where H is a normal ^-complement and
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P is an abelian Sylow p-subgroup. We consider the irreducible Q-
characters of G. Let χ be such a character of G and let φ be an
irreducible constituent of χH, the restriction of χ to H. Let T denote
the inertia group of φ in G so that G^T^H. By Satz V. 17.11.b
°f [$]> X = CG where ζ is an irreducible character of T which is a
constituent of φτ. Now | T/H\ is prime to \H\ so that Satz V. 17.12.C
of [5] yields <pr = 1^(1)7]^ where η is an irreducible character of T
with ηH = φ and the X{ are irreducible characters of T/H. Since T/iϊ
is abelian all λ< have degree 1 and by Satz V. 17.12.b of [5] we must
have ζ = 7?λ for some λ = λ*. Hence

This shows that

ζ*(l) = [G: T]ζ(l) - [G:

Now by Hauptsatz V. 17.3.g of [5] we have χH = &£{?>** where ί =
[G: Γ] and {a?J is a complete set of coset representations of Γ in G.
Thus evaluating at 1 yields tφ(l) — χ(ΐ) = βί^(l) so β = 1 and χH =

Σί
Let * denote a fixed homomorphism from the multiplicative group

of |G|-th roots of unity in Q onto the group of |G|-th roots of unity

in GF(p), the algebraic closure of GF(p). If xeG then χ(x) is a sum
of |G|-th roots of unity and hence we can speak of χ*, a function

from G to GF(p). The map χ - + χ * is then essentially the map of
§ V. 12 of [5] and χ* is the character of some representation of

GF(p)[G]. Clearly

(X*)* - Σ {ΨXΨ =
1

Σ

Since p | | ί f | it follows from Hauptsatz V. 12.9 of [5] that the {φxψ
are all characters of distinct, irreducible, G-conjugate representations

of GF(p)[H]. Thus Hauptsatz V. 17.3 of [5] implies easily that χ*

is the character of an irreducible representation of GF(p)[G].
Now K[G] satisfies a polynomial identity of degree n and hence

by Lemma 8.1 we see that

degree χ = degree χ* <£ n/2 .

We have therefore shown that all irreducible Q[G] representations
have degree <̂  n/2. The result now follows from Theorem 5.3 of [7].

We remark that the function / is actually the function associated
with Jordan's theorem on finite complex linear groups.
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9* Semiprime polynomial identity rings* In this final section
we consider semiprime group rings which satisfy a polynomial identity.

LEMMA 9.1. Let G be a finitely generated group and let m be an
integer. Then there exist only finitely many subgroups H of G with
[G: H] ̂  m.

Proof. Let H be a subgroup of G with [G: H] = t ^ m. Then G
permutes the t right cosets of H by right multiplication and this
yields a homomorphism φ: G —• St £ Sm where Sm is the symmetric
group on m letters. It is clear that the kernel of φ is contained in
H so that H— φ~ι(W) for some subgroup Woί Sm. Now there are only
finitely many choices for W and furthermore there are only finitely
many φ since φ is determined by the images of the finite number of
generators of G. Thus there are only finitely many possibilities for
H.

LEMMA 9.2. Let G be an arbitrary group and let m be an in-
teger. Then G has an abelian subgroup with index at most m if and
only if every finitely generated subgroup of G has such an abelian
subgroup.

Proof. If A is abelian with [G: A] ̂  m then for any subgroup
H of G we have

m^[G:A]^[GΓ\H:AΠH] = [H: Af]H] .

Hence A Π H is an abelian subgroup of H with index at most m.
Conversely, let us assume that every finitely generated subgroup

of G has an abelian subgroup of index at most m. For each finite
subset a of G let Ga = {ά} be the group generated by the elements
in a. Let ma be the minimum index of abelian subgroups of Ga. By
assumption 1 <; ma <Ξ m for each a. Choose aQ such that m0 = m«0 is
the largest of the ma's and set Go = Gao.

Let A19 A2, ' , Ar be the abelian subgroup of Go with [Go: Aζ\ =
m0. By Lemma 9.1 there are only finitely many of these. We show
that for some i = 1, 2, , r both [G: C(AJ] ^ m0 and C(A<) is abelian.
This will, of course, yield the result. Suppose this is not the case.
Then for each i choose (Xi to consist of two noncommuting elements
of C(Ai) if the latter is nonabelian or choose a{ to consist of mQ + 1
elements in distinct right cosets of C(A<) if [G: C(Ai)] > m0. Let

a = (XoUctiU *-- l)ar .

This is a finite set so let Aa be an abelian subgroup of Ga with
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[Ga: Aa] = ma .

Now

mQ^ma= [Ga: Aa] ^ [Ga n GQ: Aa Π Gύ]

= [Go: Aa n Go] .

On the other hand Aa Π Go is an abelian subgroup of GQ and

m^m0^ [Go: Aa Π <?0]

so we must have [GQ: Aa Π Go] = ^o by definition of m0. Thus m0 = mα

and Aaf]GQ = A{ for some i. Say i f f ίl Go = A
Since Aa is abelian we have Aa^CG(χ{A^. On the other hand

[Ga: COa(AM ^ [G« n G° : Q J Λ ) Π GJ

= [Go: Ax] = mo = ma

since Ax is clearly its own centralizer in Go. Thus Aa — CGa(A^}. Now
αx S Gα. Hence if CrXAJ were nonabelian then α^ would contain
noncommuting elements in CGa{A^ = Aα. Since Aα is abelian, this is
not the case. On the other hand, if [G: CG(A^)] > m0 then Ga would
contain m0 + 1 elements in different right cosets of CG{A^ and hence
in different right cosets of

Ga Π Cβ(Ad = COa(Ad = Aa .

But [Ga: Aa] = m0 so we have a contradiction here and the result
follows.

LEMMA 9.3. Let G be a finitely generated group and let K be
any field. Suppose that K[G] satisfies a polynomial identity. Then
G is residually finite, that is Π N — <(1)> where N runs over all
normal subgroups of G of finite index.

Proof. By Corollary 7.2, G has a normal abelian subgroup A
with [G: A] < oo, Moreover A is finitely generated by Lemma 7.1.
For each integer m set Am = {xm\xe A}. Then Am is a characteristic
subgroup of A and hence a normal subgroup of G. Since A is finitely
generated we have clearly [A: Am] < oo and f|«=i ^» = <1>.

We now come to the second main theorem of this paper. Let X
be the finite valued function on the set of integers given by

J'(n) = (nl)J(n)

where J is the function of Theorem 8.2. The following result in char-
acteristic 0 is due to Isaacs and Passman in [7].
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THEOREM 9.4. Let K[G\ be a semiprime group ring which satis-
βes a polynomial identity of degree n. Then G has an abelian sub-
group A with [G: A] g J'(n).

Proof. Set m = J(n). By Theorem 6.2 [G: A{G)\ g n\ and thus
it suffices to show that A — A(G) has an abelian subgroup A with
[A: A] g m. Note that since K[G] is semiprime either K has charac-
teristic 0 or by Theorem 3.6 if has characteristic p > 0 and A has no
elements of order p.

Suppose by way of contradiction that A does not have an abelian
subgroup of index ^ m . Then by Lemma 9.2 there exists a finitely
generated subgroup H of A which has no abelian subgroup of index
^m. Now H has only finitely many subgroups of index ^ m by
Lemma 9,1 and say these are L19 L2, , Lt. By assumption each is
nonabelian so we can choose x{ e L', x{ Φ 1. Now by Lemma 9.3, H
is residually finite and thus for each ί we can choose JV* normal in H
with [H: Ni] < co and XiίNi Let N = f]Ni. Then N is normal in
H, [H: N] < oo by Lemma 1.1 and XiίN for all i.

By Lemma 7.5 K[H/N] satisfies a polynomial identity of degree
n. We consider H — H/N. If K has characteristic 0 then H has an
abelian subgroup B with [3: B] <£ J(π) ^ m by Theorem 8.2. Suppose
K has characteristic p > 0. Then by Lemma 2.2, Hf is a finite p'-
group. Since Hr = H'N/N we conclude that H' is also a p'-group
and thus by Theorem 8.2, H has an abelian subgroup B of index ^ m
in this case too.

Let B be the complete inverse image of B in H. Then HΏ.B^N
and E/AΓ = B. Since [iϊ: 5] - [H: B]^mwe have B - Li for some i.
Thus LJN' — B/Nis abelian and this is a contradiction since x{ e L ^ ^ l
and Xi & N. The result follows.

We remark in closing that the study of group rings satisfying
polynomial identities is far from complete. We have seen in Theorem
4.2, Corollary 7.2 and Theorem 9.4 that if either G is finitely generated
or if K[G] is semiprime, then K[G] satisfies a polynomial identity if
and only if G has an abelian subgroup of finite index. While the
examples of Theorem 4.5 are suggestive, it is still too early to venture
a guess at the answer in the remaining cases.
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