INVERTING OPERATORS FOR SINGULAR BOUNDARY VALUE PROBLEMS

C. L. IRwin

Let S denote a Banach Space, B the bounded linear transformations on S, and let Q and A denote functions from $[0, \infty)$ into B with Q continuous. The objective here is to derive a Green's function K_{A} and hence an integral inverting operator R_{A} for the singular boundary value problem

$$
\left\{\begin{array}{l}
Y^{\prime}-Q Y=H \tag{1}\\
A(\mathbf{0}) Y(\mathbf{0})+\lim _{n \rightarrow \infty} A\left(\boldsymbol{c}_{n}\right) Y\left(\boldsymbol{c}_{n}\right)=\mathbf{0}
\end{array}\right.
$$

where $\left\{c_{n}\right\}_{n=1}^{\infty}$ is a positive, increasing, unbounded number sequence and H is a continuous function from $[0, \infty)$ into S.

The method here provides Green's functions for singular boundary value problems associated with nonself-adjoint, as well as self-adjoint, linear differential expressions. The asymptotic boundary conditions in (1) permit one to extend some of the regular two-point boundary value problem techniques suggested by [3] and [4] to the singular case without being restricted to the Hilbert Space $L_{2}[0, \infty)$. Similar, but different, asymptotic boundary conditions are used by Coddington and Levinson in [2, Chapter 10], and by Benzinger [1].

As noted in § 3 of [3] there exists a unique continuous function M from $[0, \infty) \times[0, \infty)$ to B so that if each of x, t, and u is in $[0, \infty)$,
(i) $\quad M_{1}(x, t)=Q(x) M(x, t)$ and $M(t, t)=I$
(ii) $M(x, t) M(t, u)=M(x, u)$
(iii) if H is a continuous function from $[0, \infty)$ to S and α is in S, then the only function Y such that $Y^{\prime}-Q Y=H$ and $Y(0)=\alpha$ is given by

$$
Y(x)=M(x, 0) \alpha+\int_{0}^{x} d t M(x, t) H(t)
$$

for all x in $[0, \infty)$.
Definition. A is a determinate boundary condition function for Q on c_{1}, c_{2}, \ldots means that if H is a continuous function on $[0, \infty)$ and Y is a solution of the boundary value problem (1) for the nonhomogeneous term H, then Y is unique.

Notation. If A is a boundary condition function for Q on c_{1}, c_{2}, \cdots and n is a positive integer, let T_{n} denote the transformation
$\left[A(0)+A\left(c_{n}\right) M\left(c_{n}, 0\right)\right]$.

Theorem 1. A is a determinate boundary condition function for Q on c_{1}, c_{2}, \cdots if and only if the convergence of $\left\{T_{n} \alpha\right\}_{n=1}^{\infty}$ to zero implies that α is the zero of S.

Proof. The proof follows from property (iii) of the M function and the linearity of the problem.

Notation. Let D_{0} denote the continuous functions with compact support on $[0, \infty)$.

Theorem 2. Suppose A is a determinate boundary condition function for Q on c_{1}, c_{2}, \cdots; the following two statements are equivalent.
(i) There is an integral inverting operator R_{A} with kernel K_{A} of the form

$$
K_{A}(x, t)= \begin{cases}M(x, 0) K_{A}(0,0) M(0, t) & \text { if } 0 \leqq t \leqq x \\ M(x, 0)\left[K_{A}(0,0)-I\right] M(0, t) & \text { if } 0 \leqq x<t\end{cases}
$$

for boundary value problem (1) so that D_{0} is a subset of the domain of R_{A}.
(ii) There is a transformation π in B such that if α is in S, then $\left\{T_{n}(\pi \alpha)\right\}_{n=1}^{\infty}$ converges to $A(0) \alpha$.

Proof. Assume (i) holds; if H is in D_{0} and $U=R_{A} H$, then U is a solution of boundary value problem (1) and so

$$
\lim _{n \rightarrow \infty}\left[A(0) U(0)+A\left(c_{n}\right) U\left(c_{n}\right)\right]=0
$$

Let b denote a positive number so that if $x>b, H(x)=0$; then, if $c_{n}>b$,

$$
\begin{aligned}
A(0) U(0)+A\left(c_{n}\right) U\left(c_{n}\right)= & A(0) \int_{0}^{b} d t\left[K_{A}(0,0)-I\right] M(0, t) H(t) \\
& +A\left(c_{n}\right) \int_{0}^{b} d t M\left(c_{n}, 0\right) K_{A}(0,0) M(0, t) H(t) \\
= & T_{n}\left(K_{A}(0,0) \int_{0}^{b} d t M(0, t) H(t)\right) \\
& -A(0) \int_{0}^{b} d t M(0, t) H(t)
\end{aligned}
$$

and so

$$
\lim _{n \rightarrow \infty} T_{n}\left(K_{A}(0,0) \int_{0}^{b} d t M(0, t) H(t)\right)=A(0) \int_{0}^{b} d t M(0, t) H(t)
$$

Now, if α is in S, define H as

$$
H(t)=\left\{\begin{array}{lr}
M(t, 0)(2-2 t) \alpha & \text { if } 0 \leqq t \leqq 1 \\
0 & \text { if } t>1 .
\end{array}\right.
$$

H belongs to D_{0} and $\int_{0}^{b} d t M(0, t) H(t)=\alpha$, so (ii) holds with $\pi=K_{A}(0,0)$.
Now, assume (ii) holds; since A is a determinate boundary condition function for Q on $c_{1}, c_{2}, \cdots, \pi$ must be unique. Define K_{A} on $[0, \infty) \times[0, \infty)$ as

$$
K_{A}(x, t)= \begin{cases}M(x, 0) \pi M(0, t) & \text { if } 0 \leqq t \leqq x \tag{2}\\ M(x, 0)[\pi-I] M(0, t) & \text { if } 0 \leqq x<t\end{cases}
$$

and let R_{A} denote the integral operator with kernel K_{A}. Let H be in D_{0} and b denote a positive number so that if $x>b, H(x)=0$. Define U on $[0, \infty)$ as

$$
U(x)=\left\{\begin{array}{lr}
\int_{0}^{x} d t M(x, 0) \pi M(0, t) H(t) & \\
+\int_{x}^{b} d t M(x, 0)[\pi-I] M(0, t) H(t) & \text { if } 0 \leqq x \leqq b \\
\int_{0}^{b} d t M(x, 0) \pi M(0, t) H(t) & \text { if } x>b
\end{array}\right.
$$

Differentiation yields that $U^{\prime}(x)-Q(x) U(x)=H(x)$ for each x in $[0, \infty)$ and if $c_{n}>b$,

$$
\begin{aligned}
& A(0) U(0)+A\left(c_{n}\right) U\left(c_{n}\right) \\
= & T_{n}\left(\pi \int_{0}^{b} d t M(0, t) H(t)\right)-A(0) \int_{0}^{b} d t M(0, t) H(t)
\end{aligned}
$$

By the definition of $\pi, \lim _{n \rightarrow \infty}\left[A(0) U(0)+A\left(c_{n}\right) U\left(c_{n}\right)\right]=0$ and so (i) holds.
For the remainder of the paper suppose that A is a determinate boundary condition function for Q on c_{1}, c_{2}, \cdots, condition (ii) in Theorem 2 holds and K_{A} is defined on $[0, \infty) \times[0, \infty)$ by (2). (Condition (ii) is implied, for example, in case the sequence $\left\{T_{n}\right\}_{n=1}^{\infty}$ converges in norm to a regular element of B.) Let D denote the set of continuous functions H on $[0, \infty)$ such that $\int_{0}^{\infty} d t K_{A}(x, t) H(t)$ exists for each x and furthermore, if U is defined as

$$
U(x)=\int_{0}^{\infty} d t K_{A}(x, t) H(t) \quad \text { for } x \text { in }[0, \infty)
$$

then U is a solution of boundary value problem (1) for the nonhomo-
geneous term H. Let R_{A} denote the integral operator with kernel K_{A} and domain D; i.e., if H belongs to D

$$
\left(R_{A} H\right)(x)=\int_{0}^{\infty} d t K_{A}(x, t) H(t)
$$

Two aspects of the present development which differ from other treatments of Green's functions for singular boundary value problems are: (1) the Green's functions here are not necessarily square integrable in either place and (2) the domains of the associated integral inverting operators are not restricted to functions which are square integrable on $[0, \infty)$. However, the domain of R_{A} does depend upon the problem, i.e., upon the particular Q and A involved. This dependence is the subject of the following two theorems.

Two sets of continuous function on $[0, \infty)$ which are relevant to the description of D are defined as follows. Let D_{1} denote the collection of continuous functions H on $[0, \infty)$ for which there exists a solution of (1) for the nonhomogeneous term H. Let D_{2} denote the collection of continuous functions H on $[0, \infty)$ such that $\int_{0}^{\infty} d t(\pi-I) M(0, t)$ $H(t)$ exists.

It is clear that D is a subset of the intersection of D_{1} and D_{2}; not so obvious is the extent to which $D_{1} \cap D_{2}$ is contained in D.

Lemma. Suppose H belongs to $D_{1} \cap D_{2}$; let Y denote the solution of (1) for H and let $X(x)=\int_{0}^{\infty} d t K_{A}(x, t) H(t)$ for all x in $[0, \infty)$, then

$$
\begin{aligned}
T_{n}[Y(0)-X(0)]= & {\left[A(0) Y(0)+A\left(c_{n}\right) Y\left(c_{n}\right)\right] } \\
& +\left[A(0)-T_{n} \pi\right] \int_{0}^{c_{n}} d t M(0, t) H(t) \\
& -T_{n} \int_{c_{n}}^{\infty} d t(\pi-I) M(0, t) H(t)
\end{aligned}
$$

for each positive integer n.
Proof. Let n denote a positive integer; property (iii) of the M function provides that

$$
Y\left(c_{n}\right)=M\left(c_{n}, 0\right) Y(0)+M\left(c_{n}, 0\right) \int_{0}^{c_{n}} d t M(0, t) H(t)
$$

so

$$
\begin{aligned}
T_{n} Y(0) & =A(0) Y(0)+A\left(c_{n}\right) M\left(c_{n}, 0\right) Y(0) \\
& =A(0) Y(0)+A\left(c_{n}\right) Y\left(c_{n}\right)-A\left(c_{n}\right) M\left(c_{n}, 0\right) \int_{0}^{c_{n}} d t M(0, t) H(t)
\end{aligned}
$$

Also,

$$
T_{n} X(0)=\left[A(0)+A\left(c_{n}\right) M\left(c_{n}, 0\right)\right] \int_{0}^{\infty} d t(\pi-I) M(0, t) H(t)
$$

A straightforward computation provides the result of the lemma.
The domain D of the inverting operator R_{A} may be studied for the following three cases.

Case 1. There is an increasing sequence of positive integers n_{1}, n_{2}, \ldots such that $T_{n_{i}}^{-1}$ exists for all i and the transformation sequence $\left\{T_{n_{i}}^{-1}\right\}_{i=1}^{\infty}$ is uniformly norm bounded.

Case 2. There is an increasing sequence of positive integers n_{1}, n_{2}, \cdots such that $T_{n_{i}}^{-1}$ exists for all i, but no subsequence of inverses is uniformly norm bounded.

Case 3. There is a positive integer N such that if $n>N$, then T_{n}^{-1} does not exist.

Note. Case 1 above is a sufficient condition for a function A from $[0, \infty)$ into B to be a determinate boundary condition function for Q on c_{1}, c_{2}, \cdots.

Theorem 3. Suppose Case 1 above holds; if H is in $D_{1} \cap D_{2}$ then H is in D if

$$
\lim _{i \rightarrow \infty}\left[A(0)-T_{n_{i}} \pi\right] \int_{0}^{c_{n_{i}}} d t M(0, t) H(t)=0
$$

Proof. By the lemma and existence of $T_{n_{i}}^{-1}$ for all i, we obtain in the notation of the lemma that

$$
\begin{aligned}
Y(0)-X(0)= & T_{n_{i}}^{-1}\left[A(0) Y(0)+A\left(c_{n_{i}}\right) Y\left(c_{n_{i}}\right)\right] \\
& +T_{n_{i}}^{-1}\left[A(0)-T_{n_{i}} \pi\right] \int_{0}^{c_{n_{i}}} d t M(0, t) H(t) \\
& -\int_{c_{n_{i}}}^{\infty} d t(\pi-I) M(0, t) H(t) \quad \text { for each } i .
\end{aligned}
$$

H in D_{2} provides that $\lim _{i \rightarrow \infty} \int_{c_{n_{i}}}^{\infty} d t(\pi-I) M(0, t) H(t)=0$ and Y satisfies the asymptotic boundary condition so

$$
Y(0)-X(0)=\lim _{i \rightarrow \infty} T_{n_{i}}^{-4}\left[A(0)-T_{n_{i}} \pi\right] \int_{0}^{c_{n_{i}}} d t M(0, t) H(t)
$$

Now, if $\lim _{i \rightarrow \infty}\left[A(0)-T_{n_{i}} \pi\right] \int_{0}^{e_{n_{i}}} d t M(0, t) H(t)=0$, then $Y(0)-X(0)=0$
and so $Y=X$, i.e., X is the unique solution of (1) for H and so H is in the domain of R_{A}.

A subcase of Cases 1, 2, and 3 above is that the transformation sequence $\left\{T_{n}\right\}_{n=1}^{\infty}$ be uniformly norm bounded, which occurs, for example, with $S=E_{2}$ and $T_{n}=\left[\begin{array}{ll}1 & 0 \\ 1 & 0\end{array}\right] n$ odd, $\left[\begin{array}{ll}0 & 1 \\ 0 & 1\end{array}\right]$ if n is even.

TheOrem 4. Suppose $\left\{T_{n}\right\}_{n=1}^{\infty}$ is uniformly norm bounded; if H is in $D_{1} \cap D_{2}$, then H is in D if and only if

$$
\lim _{n \rightarrow \infty}\left[A(0)-T_{n} \pi\right] \int_{0}^{c_{n}} d t M(0, t) H(t)=0
$$

Proof. Let H denote a function in $D_{1} \cap D_{2}$; by the lemma

$$
\begin{aligned}
T_{n}[Y(0)-X(0)]= & {\left[A(0) Y(0)+A\left(c_{n}\right) Y\left(c_{n}\right)\right] } \\
& +\left[A(0)-T_{n} \pi\right] \int_{0}^{c} d t M(0, t) H(t) \\
& -T_{n} \int_{c_{n}}^{\infty} d t(\pi-I) M(0, t) H(t)
\end{aligned}
$$

for each positive integer n. Where Y denotes the solution of (1) for H and X is defined on $(0, \infty)$ by

$$
X(x)=\int_{0}^{\infty} d t K_{A}(x, t) H(t) \quad x \text { in }[0, \infty)
$$

Y satisfies the asymptotic boundary condition so

$$
A(0) Y(0)+\lim _{n \rightarrow \infty} A\left(c_{n}\right) Y\left(c_{n}\right)=0
$$

The transformation sequence $\left\{T_{n}\right\}_{n=1}^{\infty}$ is uniformly norm bounded and H is in D_{2} so

$$
\lim _{n \rightarrow \infty} T_{n} \int_{c_{n}}^{\infty} d t(\pi-I) M(0, t) H(t)=0
$$

So

$$
\lim _{n \rightarrow \infty} T_{n}[Y(0)-X(0)]=\lim _{n \rightarrow \infty}\left[A(0)-T_{n} \pi\right] \int_{0}^{c_{n}} d t M(0, t) H(t)
$$

The result of the theorem follows from A being a determinate boundary condition function.

The following example illustrates the subcase for a Case 1 problem and shows that the domain of R_{A} may be a proper subset of $D_{1} \cap D_{2}$.

Example. Let c_{1}, c_{2}, \cdots denote a positive, increasing, unbounded number sequence. Consider the singular boundary value problem associated with the differential expression $L y=y^{\prime \prime}$ and the boundary condition function A defined as

$$
A(x)= \begin{cases}{\left[\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right]} & \text { if } x=0 \\
{\left[\begin{array}{ll}
-1 /[1+\log (1+x)] \\
0 & x /[1+\log (1+x)] \\
-1
\end{array}\right]} & \text { if } x>0\end{cases}
$$

We have $Q(x)=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$ for $x \geqq 0, M(x, t)=\left[\begin{array}{cc}1 & x-t \\ 0 & 1\end{array}\right]$ for all numbers x and t and if n is a positive integer,

$$
T_{n}=\left[\begin{array}{ll}
\log \left(1+c_{n}\right) /\left[1+\log ^{\prime}\left(1+c_{n}\right)\right] & 0 \\
0 & 1
\end{array}\right]
$$

So, $\lim _{n \rightarrow \infty} T_{n}=I=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ and $\pi=\left[\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right] . \quad A$ is a determinate boundary condition function for Q on c_{1}, c_{2}, \cdots and K_{A} is calculated by equation (2).
Let $H(x)=\left[\begin{array}{l}0 \\ 1 /\left(1+x^{2}\right)\end{array}\right] x \geqq 0 . \quad H$ is in D_{1} since the function Y defined by

$$
Y(x)=\left[\begin{array}{l}
x \arctan x-\log +\left(1 x^{2}\right)^{1 / 2}+(\pi / 2) x-1 \\
\arctan x+\pi / 2
\end{array}\right]
$$

for $x \geqq 0$ is a solution of the singular boundary value problem with nonhomogeneous term H. Also, $\int_{0}^{\infty} d t(\pi-I) M(0, t) H(t)$ exists so H is in D_{2} and $\int_{0}^{\infty} d t K_{A}(x, t) H(t)$ exists for each $x \geqq 0$. The function X defined by $X(x)=\int_{0}^{\infty} d t K_{A}(x, t) H(t)$ for $x \geqq 0$ does not satisfy the asymptotic boundary condition and so H is in $D_{1} \cap D_{2}$ but not in the domain of R_{A}.

It remains to more completely describe how the domain of R_{A} depends upon the problem and to investigate the complex numbers λ for which one obtains an inverting operator $R(A, \theta, \lambda)$ for the singular boundary value problem

$$
\left\{\begin{array}{l}
Y^{\prime}-(Q+\lambda \theta) Y=H \\
A(0) Y(0)+\lim _{n \rightarrow \infty} A\left(c_{n}\right) Y\left(c_{n}\right)=0
\end{array}\right.
$$

where θ denotes a function from $[0, \infty)$ into B.

References

1. H. E. Benzinger, Green's functions on large intervals. Preliminary Report, Notices Amer. Math. Soc. 16 (1969), 114.
2. E. A. Coddington and N. Levinson, Theory of Ordinary Differential Equations, McGraw Hill Book Co., Inc., 1955.
3. J. W. Neuberger, Concerning boundary value problems, Pacific J. Math. $1 \mathbf{1 0}$ (1960), 1385-1392.
4. A. J. Zettl, Quasi-Differential Operators in Hilbert Space, M. R. C. Technical Summary Report No. 845, 1968.

Received February 11, 1970. This paper is part of the author's doctoral dissertation which was directed by Professor John W. Neuberger.

West Virginia University

