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COMPLETIONS OF BOOLEAN ALGEBRAS WITH
PARTIALLY ADDITIVE OPERATORS

YEN-YI WU

To generalize a result of Jόnsson and Tarski on perfect
extensions of Boolean algebras with operators, L. Henkin
has introduced the notion of ^-additive operation for p a
positive integer. Here we use this notion to extend the
analogous result of D. Monk which states that each equa-
tion without occurrences of the complementation sign has its
validity preserved when passing from a Boolean algebra with
operators to its completion.

We first point out very briefly the basic notions and results from
[1], [2], or [3] needed in the sequel. Then the theory of completions
of Boolean algebras with p r additive operators, fi9 is developed follow-
ing the pattern of [3]

1. A Boolean algebra 33 = <#, +, o , —, o, 1> is a completion of
a Boolean algebra 21 = <A, + , ° , —, 0,1> if ( i ) 21 is a subalgebra
of 33, (ii) for each subset X of A such that ΣξeXx exists in A,
Σξexx exists in B and Σ*exx — Σl&xx, (iii) 33 is the least complete
Boolean algebra having SI as a subalgebra. It is well known that
every Boolean algebra 21 has such a completion 33 and that for every
element x in B, x = Σx^yeAy.

nA denotes the set of all w-termed sequences x = (x0, , xn-D
of elements of A. We write, for x, y e %A, x ^ y if x{ <> yi for each
i < n. Furthermore, if j < n and x, y e nA, x — άy means that xk = yk

for all k < n and k Φ j . For p a positive integer and X g M., σpX
denotes {y e nA: y = x° + + xv~ι for some x°, , x*"1 e X}.

An operation / on nA to A is ( i) monotonic if, given any x, y e nA
such that x ̂  y, we always have fx ^ fy, (ii) ^-additive if, when-
ever I i w 4 has cardinal number ^ p + 1 and there is some j<n
such that x — όy for all x, y e X, we always have

f(ΣX) = Σ{fz:zeσpX},

(iii) completely ^-additive if, whenever X s nA, ΣX exists in nA and
there is some j < n such that x = όy for all x,yeX, then Σ{fz: z e σpX}
exists and equals f(ΣX). Φp(%) (or Φp if no confusion occurs) denotes
the set of all p-additive operations on 21, Φc

p(%) that of all completely
p-additive operations on % we write Φω for \JP^ΦP and Φ% for ( J P ^ Λ
It is clear from the definition that Φ% g Φp for each positive integer
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p. The basic result that if f eΦω then / is monotonic is proved in
[1] (Theorem 2.3).

Except when stated otherwise we assume hereafter that 21 and
33 are Boolean algebras, 23 is a completion of Si and / is an w-ary
operation on §1. An operation g on nB to B is said to be an exten-
sion of / if for all x e nA fx = gx. g \ nA denotes the restriction of g
to nA. Given an operation / on 2ί, Monk has defined in [3] an w-ary
operation / + on S3 by

f+x = Σ{fy: x^yenA}

for any x e B. It is obvious from this definition that / + is monotonic,
and that / + is an extension of / if / is monotonic.

2* First of all we modify an example in 2.6 of [1] so that it
will later be clear that our main theorem is indeed an extension of
Theorem 1.9 of [3]. Let A be the set of all finite or cofinite subsets
of 2ω. Define / on A by fx = x; x for all xe A (here x; x is the
relative product of the relation x with itself, so that for any ί, j e ω,
we have (ί, jyefx if and only if there is some k such that <i, kyex
and ζk,jyex). f is then an operation on A since fx is finite when x
is finite and fx = 2ω when x is cofinite. We claim that feΦc

2: Let
I g i and \JX exist in A. Then f(\JX)^fy for each yeσ2X
since / is obviously monotonic, so f(\JX) 2 \Jyeσ2xfv But also if
<Λ i>e/(UX)> then there is a keω such that ζi, kye\JX and
<fc, i )e | JX hence ζi,kyex for some xeX and ζk,jyex' for some
x' e X, and therefore <i, i> 6 (x U x')\ (x U a')» hence <ί, £> G Uyeσ2χj%, so
that f(\JX) S U,eσ2x/V. However, / is not in Φx, for let x = {<0, 1>}
and 1/ = {<1, 2>}; then fx=fy = φ, but /(a?Ul/) - {<0, 2>}.

THEOREM 1. If feΦc

v{%) then f+eΦc

p(?β).

Proof. Suppose feΦe

p(%) and XQnB such that for some j<n
we have x = y^ for all x,yeX. We must show that

Since / + is monotonic we have, obviously,

(1) f+(ΣX)^Σ{f+z:zeσpX}.

Let venA be such that v ̂  2 Ί . Then ^ ^ (JX),- = I Ϊ 6 A =
ΣXeχΣx^WeAw For each x e l and we A with w ̂  %, we now define
an ^-sequence vxw e nA by vΓ = vk if k Φ j and v™ = ̂  w, and note
that vxw ^ ». Then we have v = {vxw: a e l and w ̂  α;,-}, hence by
the complete ί9-additivity of /, we get
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fv=Σ {fy: y e σp{vxw: xeX a n d w £ xό}} .

Let now yeσp{vxw: x e X and w ^ α?, }. Then we have y e nA and

y = v°»° + + if*"1^"1

for some x°, , a;**"1 e X and w°, , wp~! e A, where for each ί<p,
wi <£ x). Therefore y ^ x° + + xp~\ and hence

fy = f+V ^ /+(^° + + x"-1) ̂  ^ {/+ :̂ z e σvX] .

Since this holds for each yeσp{vxw: xeX and w ^ ^}, we have
fv ^ Σ{f+z: zeσpX}, and since this inclusion holds for each venA
such that v ^ ΣX, we get

( 2 ) I7 {f+z: z e σpX} ^ ^ {/»: i X ^ v e nA) - / +

With (1) and (2) the proof is completed.
The assumption of Theorem 1 that / is completely p-additive can-

not be weakened to fe Φp:

T H E O R E M 2. If feΦc

p(β) and f \ n A is an operation on A then

Proof. This is immediate from the definition of complete p-
additivity and the fact that the sum is preserved from 21 to 33.

LEMMA 3. // p is any positive integer and x e nB, then

σp{y enA: y £ x} = {ye nA: y ^ x) .

Proof. Obvious.

THEOREM 4. If fe Φ£(23) and f \nA is an operation on A, then

/ = (/ ί nA)+.

Proof. For any x e nB, we have

fx = f(χ0J . . . , χn_J = f(ΣXQ^yoeAyo, , ΣXn_^yn_ieAyn^ .

Using repeatedly the fact that / is completely p-additive, we get

JX = 2<yQeσp{yoeA:yQ^%o}i ' * * > ^ yn_1eσp{yn^ίe A:yn^1^x

and then, by Lemma 3,

fx = ΣXQ^yQeΛi , ΣXn_1^yn_l£Afy = Σx^ye

n

Afy

Ά)y - (/ f nA)+x
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as desired.
As in [3] it follows now that each completely ^-additive operation

on 2t has exactly one extension which is a completely p-additive oper-
ation on SB, and so there is a one-one correspondence between the set
of completely ^-additive operations on SI and the set of the ones on
95 which extend those on 31.

Also established as in [3] is:

THEOREM 5.

( i ) + + - + .
(ii) . + = .
(iii) If / = A x {α}, then f+ - Bx {α}
(iv) If fx = Xi for each xenA (where ί<n), then f+x — xt for

each x e nB.

If / is any m-ary operation and g0, , gm^ are w-ary operations
on A, one composes them to obtain the operation f[g0, •••, flrw_J, i.e ,
the n-aτy operation h such that hx = f(gox, •••, gm-tx) for every
xenA.

THEOREM 6. If f is m-ary, feΦc

p($t) and gOf •• ,^OT_1 are n-ary
monotonic operations on A, then

Proof. Assume that the conditions of the theorem hold. If
xenB, we then have, as in the proof of Theorem 1.8 of [3],

/+bo+, , 0ί-i ]»

Also

f+l9t, , flfί-J« - f+(Σa^βnΛ goy°, , ^.^m-iβ^ Q™~ιym~ι)

By Theorem 1 we have / + € ΦJ(95) and using repeatedly this fact, we
get

Now if uemA is such that for each k<m,ukeσp{gky
k:x^ykenA},

then i£fc = Σi<pgky
k>i where for each i<p, ykfi e nA and ykΛ <Ξ a?. If

« = Σ{ykti: k<m and i < p } then «e WA and z^a? For k<mwe have
#fc;z ^ firfcj/*»* for all i < p, hence gkz ^ Σi<pgky

kΛ = i^ by monotonicity
of flffc. Thus

/ + ^ ^ /+(flτ0«, , ff«-is)
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Since this inclusion holds for each u with ukeσp{gky
k: x^>ykenA} for

each k < m, we have f+[gϊ, , g^]x ^ (f[g0, , gm-i]+%, and this
completes our proof.

In Theorem 6 the condition that f eΦc

p cannot be replaced by
feΦpj as the example following Theorem 1.7 of [3] shows.

THEOREM 7. Let /0, ••-,/,_,e ΦL(St) ami feί τ(/0, ...,/,_,) =
P(fo, * , /Λ-I) ^e a ^ equation which holds for all x e nA. Then the
corresponding equation r(/0

+, •• ,/fc"L1) = <o(/0

+, •• ,Λ+-i) feoMs /or aW

The proof of Theorem 7 is similar to that of 3.8 of [1] except we
use Theorems 5 and 6 here.

We adopt terminology slightly different from that in [1] and say
that a system SI = <A, +, , —, 0, l,/<><6/ is a Boolean algebra with
partially additive operators if <A, +, , —, 0, 1> is a Boolean algebra
and /i e Φω for each i e /, that 21 is completely partially additive if
/i e Φ^ for each i e J, and that 21 is complete if 2ί is completely par-
tially additive and BL% (the Boolean part of §1) is complete. We
may now extend the notion of completion to Boolean algebras with
partially additive operators and call a system

a completion of a Boolean algebra with partially additive operators
SI = ζA, +, , - , 0, l,/<>ίe/ in case SL3S is completion of £121 and
for each iel, gi — ft Theorem 2 then yields:

THEOREM 8. If % is a Boolean algebra with partially additive
operators which is completely partially additive, then there is a com-
pletion of 21 which is complete.

If we associate an equational logic L% with a class to which a
given Boolean algebra with partially additive operators 21 belongs,
and call a term σ of L% positive if the complementation sign does
not occur in σ, and an equation τ = p positive, if both τ and p are
positive, then we immediately obtain the following extensions of other
of Monk's theorems:

THEOREM 9. If $8 is a completion of a completely partially ad-
ditive Boolean algebra 21, then a positive equation τ = p holds in 21
if and only if it holds in 33.

THEOREM 10. With 2ί and S3 as in Theorem 9, if Γ is a con-
junction or disjunction of formulas of the form σ = 0 or σ Φ 0 where
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σ is positive, and if τ and p are positive, then Γ —> τ = p holds in %
if and only if it holds in S3.

Finally, Theorem 1.12 of [3] can also be extended to

THEOREM 11. Let 21, 23, @ be Boolean algebras tvith partially ad-
ditive operators, 21 completely partially additive, S3 a completion of
21, 21 a subalgebra of G?, G? complete and i?Z/2I a regular subalgebra
of BL& (i.e., a subalgebra for which the sum is preserved from 21 to
©). Then there is an isomorphism f from 35 into @ such that
Id \ Ac/(where Id is the identity map).

Proof. As in the proof of Theorem 1.12 of [3], if we define
fb = Σb^aeA a for any be B, then / is a complete Boolean isomorphism
into, and Id \ A ϋ / . To show that / preserves non-Boolean operations,
we may then use Theorem 2.8 of [1] and our Lemma 3.
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