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A PHRAGMEN-LINDELOF THEOREM WITH
APPLICATIONS TO .# (u, v) FUNCTIONS

TaoMAS L. KRIETE, III AND MARVIN ROSENBLUM

A well-known theorem of Paley and Wiener asserts that
if f is an entire function, its restriction to the real line
belongs to the Hilbert space & *L*—r, 7) (wWhere & is the
Fourier-Plancherel operator) if and only if f is square
integrable on the real axis and satisfies | f(2)]| < Ke*"™? for
some positive K. The “if” part of this result may be viewed
as a Phragmén-Lindelof type theorem. The pair (ei**, ¢i*®)
of inner functions can be associated with the above mention-
ed Hilbert space in a natural way. By replacing this pair
by a more general pair (u, v) of inner functions it is pos-
sible to define a space .#Z(u, v) of analytic functions simi-
lar to the Paley-Wiener space. For a certain class of inner
functions (those of “type €”) it is shown that membership in
A (u, v) is implied by an inequality analogous to the ex-
ponential inequality above.

A second application of our results is to star-invariant
subspaces of the Hardy space H?. It is well known that if
% is an inner function on the circle and f is in H?, then in
order for f to be in (uH?*" it is necessary for f to have a
meromorphic pseudocontinuation to |z| > 1 satisfying

| fors gLl o5,
1—1z]%

If u is inner of type @, it is proved that this necessary con-
dition is also sufficient.

Let I' = {¢": 0 < 0 < 27} be the unit circle and
R={r: —w << «}

the real line considered as point sets in the complex plane C. Let D
and D_ be the interior and exterior of the unit circle and let 2 and
2_ be the open upper and open lower half-planes in C. A function
@ is outer on D or 2 if @ is holomorphic on D or 2 and of the
form

O(2) = exp Sr efe f zkl(e“) o(dé), ze D,

e*

or

O(z) = expi.g 1+t k(t)dt, ze 2,
mwr JR t — 2
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where k, k, are real with ke L'I"), k.€ L'(R), and ¢ 1is nor-
malized Lebesgue measure on I. A function F on D or 2 is in
Nt if F is holomorphic on D or 2 and if there exists an outer
function @ that is not identically zero and such that @OF is a
bounded holomorphic function on D or 2. If Fis in 9" on D or 2,
then f(e”) = lim F'(re*’) exists for almost all ¢’ ¢ I, or

f(@) = 1121 F(x + iy)

exists for almost all ¢ in R. Such f form the class .#"* of fune-
tions on I" and R respectively. We shall systematically use capital
letters F, G, -+ for functions in M and lower case letters f, g, ---
for the corresponding functions in _s"*.

Every outer funection is in M*. A function U in N* is inner if
|| =1 a.e.. Every function F in 9+ has a factorization of the
form F = UG, where U is inner and G is outer.

Suppose U and V are inner functions, say, on Q. _Z(u, v, R) is
the set of functions f on R such that uf and »f* are in _#"* on R.
(f* is the complex conjugate of f). _#Z(u, v, I') is similarly defined.
As shown in [5] one can associate with each f in _#Z(u,v, R) a
unique function F' separately meromorphic in 2 and ©Q_ such that
UFeNt, VFeN*, and

(1) flw) = lifrl F(x + iy) = lifrol F(z — 1y)

for almost all # in R, where F(z) = F*(z*), 2ze 2. If F is mero-
morphic in 2, then an extension of F' to a meromorphic function on
Q U Q_ satisfying (1) is said to be a meromorphic pseudocontinuation
(relative to R) of F. Similarly, to each f in _#Z(u, v, I') one as-
sociates a unique F meromorphic in DU D_ such that UFeN,
VFe N+, and

(2) [ = lim F(re’) = lifn F(re?)
rit rli1

for almost all ¢”’e I’ where F(z) = F*(z*), ze D. Meromorphic
pseudocontinuation is defined relative to I” in 2 manner analogous to
the R definition.

Considerations about _#(u, v, R) may be motivated by examin-
ing the special case when U(z) = V(2) = ¢*, 7 = 0. Then

A (w, v, R) N L(R)
is the class of functions that are the restrictions to R of entire
functions of exponential type < ¢ such that S | F(z) Pde < . Such
R

entire F' can be characterized by this integral condition together
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with the inequality
|F() "< K|y|™|sinh 27y)]|

for all ze 2 U 2_, where K > 0. The object of this paper is to ex-
tend this type of function-theoretic characterization to more general
A (4, v) classes. The above mentioned application to star-invariant
subspaces arises from the fact that M(1, v) N L¥(R) = H*(Q)ovH* (L),
where H*(Q) is the Hardy space of the upper half-plane. In §3 and
4 applications are given to factorization problems for nonnegative
operator-valued functions and to generalized Paley-Wiener represen-
tations.

1. A Phragmén-Lindelof Theorem. In this section we shall
derive a Phragmén-Lindelof type theorem for certain functions
holomorphic on D, and then transcribe the result to obtain a like
theorem for functions on 2. A rather different Phragmén-Lindelof
type theorem is discussed by Helson in [2, p. 33].

Recall that a Blaschke product B on D has a representation

(3) B@) = IL=:Bi@), Bie) = 2o B2 ze D,

|2;1 1 — 2z
where 3;..(1 — |2;]) < . We take z}¥/|z;| =1 if z; =0. The
support supp B of B is the intersection of I" with the closure of
{#;};2:- A singular inner function S has a representation

(4) S@ =exp(~ | LEEu@g), zeD,

\ re* — 2z
where u is a positive singular measure on I. The support supp S
is the closed support of the measure p.

Any inner function U on D can be factored in the form U =
¢BS, where ceC, |¢| =1, B is a Blaschke product and S is a singu-
lar inner function. The support supp U of U is supp B U supp S.

A closed set N on I' is a Carleson set if N has zero Lebesgue
measure and if the complement of N in I" is a union of open arcs
I; of lengths ¢; such that >;.,¢;loge; > — oo,

THEOREM 1.1. (Carleson [1]). A closed subset N of I' is a Car-
leson set on I' if and only if there exists an outer function G on D
that satisfies a Lipschitz condition and such that

g(e¥) = lim G(re®)
rt1

vanishes on N.
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DEFINITION 1.2. An inner function U on D is of type € if

(i) supp U is a Carleson set, and

(i) 3z [dist (z;, supp U)] < oo,
where {z;};<, are the zeros of U in D repeated according to multipli-
city.

LeEmMA 1.3. Let B be the Blaschke product given by (3) and
suppose B is of type €. If G is a Lipschitz outer function on D
such that g(e’?) = lim,,, G(re'’) vanishes on supp B, then

(5) 50— 120 |1 - 27679 F o) < e .

721

Proof. Since G is Lipschitz there exists K > 0 such that
g(e®) | = K|e’ — \|
for all ¢ in I" and X\ in supp B. Thus for ) in supp B,
L =12 S [(1 — 2zfe”)g(e") [ o(db)
S U— o P E |- 26 @ = N} o(d) .
Applying Parseval’s equality to the Fourier series for the function
(1 — zfe?) ™ (¢ — ) shows that this last expression is equal to
K*(|z; = M+ (1 —[2]).

Since ;.. (1 — [2;) < « and we are free to let N vary over
supp B this inequality implies (5).

The following theorem is our Phragmén-Lindelof result for func-
tions on D.

THEOREM 1.4. Let U be an inner fumnction of type € on D.
Suppose F 1s holomorphic in D and there exists M > 0 such that
(6) [ FRP=MQI—-[12P)7QA—-URIM zeD.

Then FeNt.
Proof. U has the factorization U = ¢BS, where [¢| =1, B is a

Blaschke product of type & and S is a singular inner funection of type
€. We have

(1) A=1zpH7A=1U@B
=@—-12H"A—-1BEMH+IBEIFA-[2)7A -85k
=A-]zh7"A—-1B@AMNH+ A -2 A-[SEI) 2eD.
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If B is given by (3), then
1-1B@I=1-1B@I+3 |TBE| 1- B
SSA-1BED.
Thus _
(8) -l - |B@NSSU-mpIl-a,

If S is given by (4), then
[S(z) P = exp{—Z gr(l — |z |e* =2 l“zp(dé)}, zeD.

Applying the elementary inequality (1 —e™*)/h) < a if a, h = 0, with
h=1—|z and @ = 2 S | — 2= p(de) yields
r

(9) (A—1]2zH"A— SR §2§r|6“7zi‘2;¢(d5), 2eD.

Suppose now that (6) holds and let G be a Lipschitz outer func-
tion such that g(e¥) = lim,,, G (re¢’’) vanishes on supp U. We have
from (6) — (9) that

IGAFRF=ME A~ 201 - 22[7GE)F
+ 2MSr!e“ — 27| Ge) | (), 2E D .
But for some K > 0
|G(z) "= K*|e* —z |7 if e*esupp U,
and g is supported on supp S < supp U. Thus for all ze D
1 GAF @)= M350 — 12 F)|1-22[7 6@ P+ 2MK* (T .

It now follows from Lemma 1.3 that

sup Srl G(re?)F (re'?) [ 0(df) < oo )
so GFe H*. 1t is easy to multiply G by an outer function G, and
obtain G,GF bounded, and so F' is in *.

We shall next recast Theorem 1.4 for functions holomorphic on
Q. Any inner function U on £ has a factorization U = ¢BSV?,
where ce C, |¢| =1, B is a Blaschke product on 2, S is a singular
function on 2, and V*(z) = e¢'**, where 0 < ac R. Then supp B is
defined to be the set of limit points on R U {cc} of the zeros of B,
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and supp S is defined to be the support of the singular measure in
the representation for S analogous to (4), (Hoffman [3] p.132-133).
We define supp V* to be empty if a =0, and {c} if @« > 0. The
support supp U of U is supp B supp S U supp Ve

A closed subset N of the extended real line RU{} is a Carleson
set if N N R has Lebesgue measure zero, « € N, and the complement
of Nin RU{} is a union of open intervals

Ij:(a’i’bj)’_oo éa’]‘<b1§oo’ j=1,2,"'

such that >3;,,0;log d; > — o, where

b — a. .
3' = A =) N = 1’ 2, cee
Carnrae e

We understand in the above that oo/ = 1
Now let a: D — Q U {c} be the mapping defined by
a@ =11+ 21 —2)™

if 21 and a(l) = «, and let @ be the inverse of a. Then if
2, %, € 0,

5 —al
(o + i 2+ aF

| B(z) — B(z) [P = 4

Moreover B8 maps (—oo, ] onto I" and N is a Carleson set on
R J{} if and only if B(N)U {1} is a Carleson set on I'. If U is
inner on 2 then U- a is inner on D and supp (U- a) = B (Supp U).
Furthermore if {z;};5, is the sequence of zeros of U, then {5(2;)};s: is
the sequence of zeros of U o a.

DEFINITION 1.5. Let U be an inner function on 2. U is of type
@ if supp U U {c} is a Carleson set on R U {c} and

inf 'zj — le < oo,
jzg1<).egllppU A+ A+ |z Iz))

where {z,};», is the sequence of zeros of U in £ repeated according
to multiplicity.

The following lemma follows from the above discussion.

LeMMA 1.6. Let U be inner on 2. Then U is of type € if and
only if Uoa is of type € on D.

We can now recast Theorem 1.4 for the half-plane.
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THEOREM 1.7. Let F be holomorphic in 2 and suppose that U is
inner of type € im Q. Suppose that there exists K > 0 such that

(10) [FR)P=KImz)™ 1L+ [2) 1 - [UR)[) for ze Q.
Then FeNt on L.

Proof. Set G = Foa, so G is meromorphic on D and

1GR) [P = K[Ima@]" 1+ [a@) )1 - [Ua@) ), 2eD.

We can replace 1+ |a(z)|® by |7+ a(2)|* and the inequality still
holds but for a different constant K. Now

Ima) =1 —-12zP)|1— 2|
and
i+ a@) P =4]1-2[",
S0
IGRIF=K 11—z Q- |Ulap)[), zeD.

But by Lemma 1.6 U- « is of type &, and thus Theorem 1.4 implies
that Ge N+ on D. We then deduce that FF = G- g is in T on 2.

2. The classes .# (u,v, I') and _# (4, v, R). Suppose U is
inner in D. Then U has a meromorphic pseudocontinuation to a
function U on D U D_ that is given by

B U(z), zeD
(1) UR =1y ur@y, zeD..

If supp U=+ I, then U on D has a single valued meromorphic con-
tinuation to D_ that coincides with U as given by (11). If F is
meromorphic on D_ then F(z) = F*(z*~') defines F' to be meromorphic
on D. Of course F need not be a pseudocontinuation of F.
Analogous definitions are made for 2. Suppose U is inner on 2.
Then U has a meromorphic pseudocontinuation on 2 U 2_ given by

U(z) ze
(12) V& =1y @y zeqa..
If F is meromorphic on 2, then F(z) = F*(z*) defines ¥ to be mero-
morphic on Q_.

We say that F is 0 on D if Fe®N* on D and F(0)=0. _y77is
defined to be the set of all f such that f(¢*’) = lim,,, F(re) a.e.,
where F e on D.

Suppose U, V are inner functions on D. _# (u, v, I') is the set
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of all functions f on I" such that ufe _#"* and vf*e +#77. _#;(u,
v, I') can be characterized as follows: fe_#(u, v, I') if and only if
there exists a function F separately meromorphic in D and D_ and
such that

(13) F(e?) = lim F(re’) = lim F(re’) a.e.,
ri1 rl1

with

(14) UFefR*on D and VFe® on D.

In case U and V are of type & we can deduce (14) from an in-
equality involving F, U and V.

THEOREM 2.1. Suppose U and V are of type €, and F is mero-
morphic vn D and has a meromorphic pseudocontinuation to a func-
tion F on DU D_. Further suppose there exists K > 0 such that

(15) FRP=KA-[20)7(U@[F—=[VE®@P), 2]+ 1
Then f(e) = lim,,, F(re?) e 7, (u, v, I').

Proof. If F satisfies (15) on D then
[ URFER[FP=K1L- 2" L-[URVE P,
so UF et by Theorem 1.4.
If F' satisfies (15) on D_, then for all ze D,
V@F@P=K[zFQL—[2D701~-|URVEP)

soNVF'e N by 1.4. But we also deduce that V(0)F(0) =0, so
VFeNR;. It therefore follows from the characterization of _7; (u, v,
I") given in (13) and (14) that fe_+ (u, v, I').

In case f e LXI'), i.e., in case S | f*do < =, we have a stronger

result.

THEOREM 2.2. Assume that U, V are inner of type € on D and
felXI). Then fe_#z,(u,v, I') if and only if there exists a fumnc-
tion F satisfying the hypotheses of Theorem 2.1 such

f(e?) = lim F (re') a.e..
r11

Proof. It follows from Theorem 2.1 that if F satisfies (15) then
fe _#Z(u,v, I'). Conversely, suppose f €. (u,v, ") L¥I"). Then

ufe 1+ (LX) = H* and vf* e _p~i 0 LA) < H* with S vf*do = 0.
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Thus uf and vy*f* are in (wvH** N H?, where y(¢¥) = ¢¥.
Now any ge (uvH?* N H* is the boundary value function of

G(x) = S (1 — 2e7)7 (1 — w(e)*(e*) U (R V (2)g(e*)a(dé), ze D .

But then it follows from the Schwarz inequality that
(16) IGRFF=K1—[2)"A-[URVE®, zeD,
where K = S | g [*do.

By applying (16) to g = uf and g = vy*f* we obtain
) JURDFAF=K1-[2)7A-[U®V(E@), zeD,
and
18) [VRFRIF=K[zFL—-[12D7Q—-|U@VE ), 2zeD,

where K = Sr | f [P do.

It is easily seen that (17) and (18) together is equivalent to
(15).

COROLLARY 2.3. Assume that V is tnner of type € on D and
feH*on I' Then fc(wHY* if and only if there ewists a meromor-
phic function F on D U D_ such that

(19) [ = li}rn F(re) = lilm F(re) a.e.,
for which there exists K > 0 with
|Fe)f =K1 —[2)"1—-|V{®]I) 2zeDUD-.
Proof. Note that (vH** N H®* = _#,1, v, I'), and use 2.2.

COROLLARY 2.4. Assume that U, V are inner of type € on D
and feLXI). Then fe _#Zw,v,I') of and only if there exists a
function F meromorphic in D with pseudocontinuation F such that
(19) holds and there ewists K > 0 such that

[FRPF=KQL—-[2z)7(URI[T—[2VE@) ), 2zeD.
Proof. Note that _#Z(u, v, I') = _#;(u, xv, I').

The same kind of problem can be considered on 2 with minor
modifications in the proofs.

THEOREM 2.5. Suppose F is meromorphic on 2 and has a mero-
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morphic pseudocontinuation to a function F on 2 U Q.. Assume that
U and V are inner functions of type € on 2. Further suppose that
there exists K > 0 such that

|[FRPF=EK(Imz)" 1+ [z (URI[*—-[VE@I[), ze2nL_.
Then f(x) = lim,,, F(x + iy) € 4 (u, v, R).

THEOREM 2.6. Assume that U, V are inner of type € on 2 and
feL*R). Then fe _#(u, v, R) tf and only if there exists a function
satisfying the hypotheses of Theorem 2.5 such that

fx) = lilm F(x + 1y) a.e..

3. Factorization of nonnegative functions. In this section we
shall reformulate an operator factorization theorem of the type set
down in [5] in terms of inequalities of the type discussed in § 1 and
2. Throughout & is a complex separable Hilbert space and B(%’) the
space of bounded operators on 2°. We shall restrict ourselves to
considerations involving £ rather than D in order to simplify the
exposition. Following [5] we say that a holomorphic function F' on
Q taking values in B(%¥) is in N}, if there exists a nonzero com-
plex-valued outer function @ such that @F is a bounded holomorphic
function on 2 that takes values in B(¥). Any F in 9., has
strong boundary values a.e., that is, the limit lim,,, F(z + iy) = f(x)
exists a.e. in the strong operator topology.

We say that a holomorphic function G in N} ., has a meromor-
phic pseudocontinuation G if G is meromorphic in £_ and the strong
limits lim,,, G(x — 7y) and lim,,, G(x + %y) exist and are a.e. equal.
For such G we define G by G(z) = G*(z*), ze 2 U 2_.

THEOREM 3.1. Let U be a complex-valued imner function on Q
and F a meromorphic function on 2 taking values in B(¥) such
that UF € N}« Then F(x + ty) has strong boundary values f(x) a.e.
as y ] 0. Assume that {(f(z)c,c) = 0 a.e. for each ¢ in &.

Then F has a factorization F(2) = G(2)G(R), zc R, where G is
i Nie, and has a meromorphic pseudocontinuation G such that
UG eRiw). If there is real interval I such that f( .) 18 a.e. bounded
on I and U is analytically continuable across I, then G s analytical-
ly continuadble across I.

Proof. This theorem is a summary of results proved in [5].

THEOREM 3.2. Theorem 3.1 may be modified as follows:
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(i) The hypothesis “UF € N} ,” may be replaced by the stronger
hypothesis “there exists K > 0 such that

(20) NF@R s KIm2)7 A+ [2) (TR - [UR )
Sor all z in Q7.

(ii) If in addition one assumes that r {f(®)e, ¢y dx < o for

all ¢ in &, then G can be chosen to in addition satisfy
21) KGR, P = K(Im2)7 (1 + [2) A = [UR) ), ce?
for some K, > 0 (K, depends on ¢) and all ze€ 2 U Q_.

Proof. The proof of 1.4 shows that (20) implies that UF € N} ...

Assume the hypotheses of (ii). Now f = g*g, where g(x) are
the strong boundary values of G(x + iy) as ¥ |0 and y 1 0. We have
[<g(-)e, ey P = lgC)elfllell = {f(-)e,er [l for all ¢ in &, so
{g(+)e, ¢> € L*(R) for all ¢ in &. (21) now follows from Theorem 2.6
and the fact that {g()c,cde 71, u, R).

As an example suppose F'(+) is an entire function taking values
in B(¥) such that (F(x)c,¢) =0 whenever cc % and xz€R, and
there exists 7 = 0 and K > 0 with

|F@E <Ky QL+ |2]) sinh2cy, 2 =2 + iyeQ.

Then F is factorable, F(z) = G(¢)G(2), where G(-) is an entire
function taking values in B(%’). This follows from Theorems 3.1
and 3.2 (i) with U(z) = ¢'*. G(-) is entire by the last statement in
Theorem 3.1. It also is deducible from Theorem 3.6 of [5].

If in addition to above F'(-) satisfies Sm {F(x)e, ¢y dx < oo, then
by (21) G satisfies

IKG@)e, ey = Ky 1+ [2[) (L —e™),

for all z =z + vy with y % 0 and ce &. K, is a constant depending
on c.

4. A Fourier type transform and the Paley-Wiener represen-
tation. As before let U and V be inner functions in 2 and denote
the space .7 (u, v, R) N L*(R) by _#*u, v, R). This space is easily
seen to be a Hilbert subspace of L*(R). As noted in the introduction
e, e, R) is the restriction to the real axis of a classical Paley-
Wiener space of entire functions. That

A (e, e, R) = & *L*(—r, 1),
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(where & is the Fourier-Plancherel operator on L*(R)), is the content
of a well known theorem of Paley and Wiener.

In [4] one of the present authors generalized this theorem to
give an integral representation for any of the spaces _Z*u, v, R).
In this section we combine this result with Theorem 2.6. First we
shall set down some basic facts from [4]. For simplicity we assume
that U and V have no zeros and are normalized so that U(7) and
V(i) are positive. U then has a factorization U(z) = S(z)e’* where
S is a singular inner function in £ and a = 0. Using the usual
representation for singular inner functions we can combine the two
factors in the following convenient form:

22) Uz) = exp ( i SR* %z_ @)

where g is a finite positive measure on the extended real numbers
R* = R U {} whose restriction to R is singular and with pg({c}) =
a. In the integrand, and elsewhere below, we always take
(2 «0)/> = z for any complex z. V has a similar representation with
corresponding measure 7.

Let 7 be the total variation of ¢ and suppose that o is an R*-
valued measurable function defined on [0, z] such that m(a (E)) =
Ht(E) for every subinterval E of R*. For example, we could take
a(t) = inf{ze BR*: p((—o, s]) = ¢t}. Extend the definition of a to
[0, o) by setting a(t) = « if ¢ > 7. For each ¢ = 0 let

Ui(z) = exp( 7 S:%do&) .

It is clear from (22) and a change of variables that U, = U. More-
over, U, is an inner function for each ¢ and U, divides U, if
0=s<t.

In a like manner one can associate o,b:[0,0] —R* and V,
(analogous to 7, a and U,) with the inner function V. Note that
V,=V. U, and V, have pseudo-continuations to £2_ given by (12).
For any z in QU Q_ let

b(t) — =

H;‘—(t) = Vt(z) -b(th—

and

L ~oalt)y + 1
H(t) = U,(2) roOETE t=0.

Now let H*®2) and H?*(_) denote the usual Hardy spaces of
functions analytic in 2 and Q. respectively, which can also be con-
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sidered as orthogonal complements of each other in L*R). It was
shown in [4] that the mappings W, and W, given by

(W) () = @)~ | H (ha(®)dt, Imz > 0
and

(Wig) @ = @)~ |” H-(®g)dt, Imz <0,

are isometries from L*0, «) onto H?*(2) and H?*(2_) respectively.
Let E: L*(— o, 0)— L*0, o) be the operator (Eg)(t) = g(—1).
The W,E @ W, can be considered as a unitary operator from

L} (=2, 0) @ LX0, =) = L(R)

onto H*R2_.) P H*L) = L(R). This operator takes L*(—s, t) onto
¥ u,, v, R) for all s, ¢ =0. If ¢ and v are supported on the single-
ton {c} or, equivalently, if a(tf) = b(t) = - a.e., then W,EP W, is
the adjoint of the Fourier-Plancherel operator. Combining this with
Theorem 2.6 yields the following result.

THEOREM 4.1. Let U and V be inner functions of type €. Let
F be analytic in QU 2_ and suppose that the two sided boundary
Junction f(x) = lim,_, F(x + 1y) exists a.e. and lies in L*(R). Let
s,t = 0. Then the following are equivalent.

(1)

[F@FP=KIm2)7 1A+ [z)(UR[T—|V)[), 262U 2.

(ii) There ewist a.e. unique functions g, in L*0,t) and ¢, in
L0, s) such that

F) = @ | Hr@ew) do
+ (2n) S H-(w)g,(@)dz, Tmz = 0 .
Moreover, || f 1 = |l g5 + Il 9. I3

Added in proof. We refer the reader to the papers.

6. H. S. Shapiro, Generalized analytic continuation, Symposia on
Theor. Phys. and Math. Vol. 8, Plenum Press, New York (1968),
151-163.

and,

7. R. G. Douglas, H. S. Shapiro and A. L. Shields, Cyclic vectors
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and invariant subspaces for the backward shift operator, Ann. Inst.
Fourier, Grenoble, 22 (1970), 37-76,
for more detailed information on meromorphic continuation and (wH?)*.
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