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UNIMBEDDABLE NETS OF SMALL DEFICIENCY

A. BRUEN

We construct some new geometrical examples of unim-
beddable nets JV of order p2 with p an odd prime. The defi-
ciency of N is p — j where either j — 0 or j = 1. In particular,
the examples show that a bound of Bruck is best possible
for nets of order 9,25. Our proof also shows that deriving
a translation plane of order p2 is equivalent to reversing a
regulus in the corresponding spread.

2* Background, summary* Let N be a net of order n, degree
k so that N has deficiency d = n + 1 — k. Let the polynomial f(x)
be given by f(x) = x/2[x3 + 3 + 2x(x + 1)]. The following result is
shown in [1].

THEOREM 1 (Bruck). Suppose N is a finite net of order n, de-
ficiency d. Then N is embeddable in an affine plane of order n
provided n > f(d — 1).

Thus a net of small deficiency is embeddable. However, as is
pointed out in [1], little is known concerning the bound above. It
is our purpose here to remedy this. In Theorem 2 we describe a
construction used in [2] to obtain maximal partial spreads W of
PG(3, q). W yields a net N of order q2 and deficiency q — j where
either j = 0 or j — 1. Our main result is that JV is not embeddable
if q = p is an odd prime. This will show that Brack's bound is best
possible for nets of order 9,25 and is fairly good, if not best possible,
for other nets of order p2.

3* The construction* For definitions and proofs of Theorems

2, 3 we refer to [2].

THEOREM 2. Let S be a spread of Σ = PG(3, q) with q ^ 3, such
that S is not regular. Let u be a line of Σ with u not in S, such
that the q + 1 lines A of S passing through the q + 1 points of u do
not form a regulus. Let Wλ be the partial spread of Σ which is got
by removing A from S and adjoining u: in symbols WΊ — H U {u}
where H = S — A. Then there exists a maximal partial spread W
of Σ which contains Wλ. Furthermore, either

(i) W = W, so that I W\ = q2 - q + 1 or
(ϋ) W = WΊ U {v} where v is a line of Σ which is skew to each

line of WΊ. In this case \ W\ = q2 — q + 2.

THEOREM 3. For any (prime power) q ^ 3 there exist examples of
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case (i). For any odd q with q Ξ> 5 there exist examples of case (ii).

We can think of Σ in terms of a 4-dimensional vector space
V' — V4(q) over GF(q). The points and lines of Σ are precisely the
1-dimensional and the 2-dimensional subspaces of V respectively. The
lines or components of W in Σ correspond to the components of a
maximal partial spread W of V, that is, a maximal collection W of
2-dimensional subspaces of V such that any 2 distinct members (com-
ponents) of W have only the origin of V in common. For a proof
of the next result see [7, p. 8], [4, p. 219].

THEOREM 4. Let U be a partial spread of V = VA(q) having ex-
actly k components. Then there is defined a net N = N(U) of order
q2 and degree k. The points of N are the q* vectors in V. The lines
of N are the components of U and their translates (cosets) in V.
Furthermore, if U is a spread of Vy then N(U) is a translation
plane.

Our main result is that if W is the maximal partial spread of
Theorem 2 and q is an odd prime, then N(W) is not embeddable.

4* The main result* In what follows, if J is a set of vectors,
then {J} will denote the subspace spanned by the vectors in J.

LEMMA 5. Let Σ = PG(3,q) and let (F, +) = V4(q) be the cor-
responding vector space. Let a, 6, c be 3 distinct and pairwise skew
lines of Σ. Then we may choose a basis eu e2, e3, e4 of V in such a
manner that a corresponds to {ey, e2}, b corresponds to {ez, βj and c cor-
responds to {eι + β3, e2 + e4}.

The following is crucial in our argument.

THEOREM 6. Let n be a square and let N be a net of order n and
deficiency λ/ n + 1, which is embedded in an affine translation plane
π. Suppose further that N is embedded in another affine plane πx.
Then πι is also an affine translation plane.

Proof. πι is related to π by Ostrom's technique of derivation
(see [2, p. 383] and [6, p. 1382]). From this the result will follow, for
it is easy to show that a plane π1 obtained by deriving a translation
plane π is itself a translation plane [4, p. 224].

We revert to the notation of Theorem 2. Recall that If is a
maximal partial spread of Σ = PG(3, q) with q ^ 3. W = H (J {u, v}
where (sometimes) u = v. H is a partial spread contained in the
nonregular spread S of Σ. H contains exactly q2 — q lines. Since
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q ^> 3 we have \H\ — q2 — q > 3. Thus if contains 3 pairwise skew
lines a, b, c which we will refer to as the fundamental components.
Corresponding to Σ we have V = V4(q). As in Lemma 5 we have a
basis el9 e2, e3, e4 of V with a = {e1} e2}, b = {β3, ej, c = {e1 + e3,

 62 + e4}.
Let L = {β1? e2} and ΛΓ = {e3, β4}. We can write F = L 0 M the direct
sum of L and M. Each vector in F is uniquely expressible as an
ordered pair (x, y) with x in L, y in M. The fundamental components
are then sets y = 0, x = 0, y = x respectively. In the sequel it will
be convenient to identify M with L and write V = L 0 L. We also
let 0 denote the null vector in L, so that (0, 0) is the null vector
of V.

THEOREM 7 (Main Result). Let W be the maximal partial spread
of PG(3, q) constructed in Theorem 2. Assume that q = p ^ 3 is a
prime. Then the net N = N(W) obtained from W as in Theorem 4
has order p2 and deficiency p — j where either j = 0 or j = 1. More-
over, N is not embeddable in a plane.

Proof. By way of contradiction assume that N is embeddable
in an affine plane πλ. Choose the origin of πι to be the origin of V.
In the construction of W recall that HaS. Denote the translation
plane obtained from S by π. Thus iV(jHΓ) c π. Also N(H) c N( W) c πλ.
Therefore, by Theorem 6, πγ is a translation plane. We may use the
fundamental components α, b, c to set up Hall coordinates for πι using
the set L (see [5]). Actually it is easy to see that a vector λ has
in πx Hall coordinates (s, t) if and only if λ has vector space coordinates
(s, t) in F = L 0 L . Also the Hall addition is precisely the vector
space addition + on L (see [7, p. 4]). Thus the translation plane πγ

is then coordinatized by a quasifield Q = (L, +, •)• Those lines of
π1 through the origin which are also lines of N = N( W) correspond
to the components of W. Let { be a line of πι through the origin
of πL such that I is not a line of N. Then I consists of all points
with coordinates of the form (x,x.m) for some m in L. Since Q is
a quasifield we have (x + y).m — x.m + y.m. Therefore ί is a set
of p2 vectors in V which is closed under addition. Since p is a
prime, I is a 2-dimensional subspace of V. And I has only the origin
of V in common with any component of W. Thus I yields a line of
PG(3, q) which is skew to each line of W. But this is a contradiction,
since W is maximal.

Comments. 1. Our argument in Theorem 7 above can be modified
to show the following. Let πγ be obtained from the translation plane
π of order p2 by deriving with respect to a derivation set D of p + 1
points on the line at infinity. Then the p + 1 lines of π joining the
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origin to D yield a regulus in the spread corresponding to π. Thus,
in this case, derivation implies reversing a regulus. It can be shown
(see [2]) that reversing a regulus implies derivation for translation
planes of order g2, whether or not q is a prime. Thus the procedures of
derivation and reversing a regulus are equivalent for the case of trans-
lation planes of order p2. However, as is proved in [3], they are not in
general equivalent if q is not a prime. The reason is that I above
is not always a subspace in this general case. So it is not clear
whether or not N is embeddable if q is not a prime.

2. For q — p we have shown that N — N(W) is unimbeddable.
However except for p — 3, 5 we do not know whether N(W) is con-
tained in a larger net or even whether there exists a transversal T
of N (that is, a set of p2 points of N no two of which are joined by
a line of JV) However, it follows from the work in [2], [6] that T
would have to be an affine subplane of π having order p.

3. For p = 3, N(W) has deficiency 3 or 2. By Theorem 3.3 in
[2], N(W) must have deficiency 3. We have shown that N(W) is
not embeddable. It follows that N(W) is not contained in any larger
net, and that the bound in Theorem 1 is best possible for nets of
order 9.

4. For p = 5 we can obtain an unimbeddable net N — N(W) of
deficiency 4 using Theorem 3. By Theorem 1, N is not contained in
a larger net and so Brack's bound is also the best possible for nets
of order 25. Another way of putting it is to say that we have
produced a maximal set of 20 mutually orthogonal latin squares of
order 25.
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