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MONOTONIC PERMUTATIONS OF CHAINS

TaOMAS J. SCOTT

An automorphism (opp) of a chain 2 is a permutation g
of 2 which preserves order in the sense that o < ¢ iff wg <7g.
An anti-automorphism (orp) is a permutation © of 2 which
reverses order in the sense that o < 7 iff wk > zk. A permu-
tation which either preserves or reverses order is called
monotonic, and the group of all monotonic permutations is
denoted by M(2). M(Q) is ordered pointwise, i.e., g < hiff vg =
oh for all we 2. This yields a po-set but not a po-group. How-
ever the subgroup A(2) of all opps of 2 forms a lattice-
ordered group (l-group). A subgroup K of M(f2) is called
l-monotonic if K/ = KN A(R) is nonempty, i.e., if K contains
an orp, and if G(K) = K N A(Q) is a transitive [-subgroup of
A(2). The group M(92) is l-monotonic iff 2 is homogeneous
and admits an orp. The opp group G(K) has index 2 in K
and is o-isomorphic to K'. Thus K' is also a lattice and
there exist orps k£ in K’ such that k> = 1. The stabilizer of
a point ac? is M,={meM|am = a}, and the paired orbit
of 4is 4' = {ag|ae dg for some ge G}. The Main Theorem 8
shows that a K,-orbit is the union of a G.-orbit and its
paired G,-orbit.

An l-subgroup H of A(Q) is extendable if there exists an
l-monotonic group (K, 2) such that G(K)= H. Regular
abelian opp groups and full periodically o-primitive groups
are uniquely extendable. There exist both extendable and
nonextendable o-2-transitive groups. A characterization of
o-primitive /-monotonic groups is given.

The transitivity of G(K) forces all (G(K)).'s to be conjugate in
G(K), and also forces all K,’s to be conjugate in G(K), so that most
statements about these stabilizer subgroups are independent of the
choice of @. Transitive l-subgroups of A(2) have been studied exten-
sively by Holland [3], [4], and [5]; Lloyd [6]; and MecCleary [7], [8],
[9], and [10]. Standard results about po-groups and l-groups can be
found in [1], while standard results about permutation groups can be
found in [12]. We make minimal use of these results since the main
theme of this paper is the interplay between orps and opps.

2. Basic structure theory. Let 2 be a totally ordered set (chain)
containing more than one point. Points of 2 will be denoted by lower
case Greek letters; subsets, by upper case Greek letters; and permu-
tations, by lower case Roman letters. The image of 3¢ 2 under the
permutation f will be denoted by &f, so that if ¢ is also a permu-
tation, B(f9) = (8f)g.
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Since 2 is totally ordered, a permutation g is automatically an
opp (orp) provided only that w < v implies wg < 7g(wg > 7g) for all
w,7ef. If k and m are orps of 2 and a and b are opps of 2, the
following facts are easily verified:

(1) ab, km, and a™* are opps;

(2) ak, ka, and k™ are orps.

It follows from these facts that M(Q) is actually a group under
composition, and that A(2) is a subgroup. It is well known that
A(2Q) is a lattice-ordered group under the pointwise order, with
B(f V g) = max {Bf, Bg} and B(f A g) = min{Bf, Bg}. A group G is
called a po-group iff G is a po-set such that a, b, ¢, de G with b < ¢
implies abd < acd. M(R2) is not a po-group, for if b < ¢ are opps of
Q2 and k is an orp of 2, then bk = ck.

If Q is equipped with the order topology, then it is clear that
the orps and opps of 2 are homeomorphisms of 2. There exist orps
of the integers without fixed points, but if % is an orp of a chain Q
such that («, ak) is connected, since the continuous image of connected
set is connected, k& has a fixed point in («, ak).

The intial number of a cardinal number is the smallest ordinal
number of that cardinality. An ordinal number w; is regular if it
is an initial number and all of its cofinal subsets have cardinality ;.
Following [9] we say that a point a € 2 has character cs if @, is the
unique regular ordinal which is o-isomorphic to a cofinal subset of
{oe 2|0 < a} (or equivalently, if ¥; is the smallest cardinality of
any cofinal subset of {oc 2|0 < a}), and dually for w,. A chain is
homogeneous if A(R) is transitive. A point of 2 has symmetric
characters if its left character equals its right character. A necessary
condition for a homogeneous chain 2 to admit an orp is that points
of ©Q have symmetric characters. Examples of chains with nonsym-
metric characters are easy to produce, e.g., the semi-long line with
points of character c,,.

In the sequel all chains will be homogeneous and will admit orps.
A monotonic group (K, 2) is t-monotonic if G(K) is transitive on 2.

THEOREM 1. If (K, Q) is monotonic, then (K: G(K)) = 2, so that
G(K) is normal in K.

Proof. 1t follows from facts (1) and (2) that if k, me K’ km™
is an opp. Since G = G(K) is the group of all opps in K, km™ is in
G, so that Gk = Gm. Hence (K:G) = 2.

THEOREM 2. If (K, Q) is t-monotontic, then for any acf, (K,:
(G(K))) = 2.
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Proof. Since G = G(K) is transitive and K contains at least one
orp k, if ae 2, there exists ge G such that akg = @. Thus K, is
not empty. The result now follows from a proof analogous to the
proof of Theorem 1.

An opp group (G, 2) is called regular if G is transitive and G, =
{1} for one (and hence, every) ac Q.

COROLLARY 3. If (K, 2) is monotonic, G(K) is regular and a €
2, then K contains precisely one element.

THEOREM 4. If (K, 2) is monotonic and G = G(K), then left
maultiplication by a fized orp r e K’ provides an o-isomorphism (order
preserved both ways) from G onto K'.

Proof. If k < me M(Q) and p is any permutation of 2, apk <
apmand ap 'k < ap~'m. Thus pk < pm and p~k < p~'m. It follows
from Theorem 1 that if re K', »G = K' and rK’' = G = G. Thus
if g,heG, g=h iff rg <rh; and similarly if k&, meK' k< m iff
rk < rm. Thus left multiplication by » is an o-isomorphism from G
onto K'.

COROLLARY 5. If (K, 2) is monotonic and G(K) is an l-subgroup
of A(Q), then K' is a lattice with a(k N\ m) = min {ak, am}, and
dually for suprema.

Proof. Since every o-isomorphism of a lattice is a lattice iso-
morphism, the first statement follows from Theorem 4. If k, me K',
by Theorem 1, m = ka for some acG(K). Since 1 A acGK), it
follows from Theorem 4 that k\(1 Aa) =k AmeK'. If ac alk A
m) = ak(l A a), and since ake 2 (and 1 A a e G(K) where infs are
pointwise), ak(l A a) = ak N\ aka = min {ak, am}. A dual argument
shows that a(k vV m) = max {ak, am}.

COROLLARY 6. When ordered pointwise, the orps of any chain
(homogeneous or not) form a lattice.

Proof. A(2Q) is an l-permutation group.

The following lemma uses the lattice properties of M(2) to establish
the existence of orps which square to the identity. These orps will
be very useful in §3, and in the upcoming example which shows that

this nice behavior is not valid for ¢-monotonic groups.

LEMMA 7. If k is an orp of any chain 2, then (k AN k) =1=
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Proof. If k is an orp of Q, M(Q) is monotonic so that k A k™' e
M’ by Corollary 5. If BeQ and Bk < Gk, since k™' is an orp,
Bk™* = B. Thus by Corollary 5, 8(k N k™) = gk™'(k N\ k') = min {B,
Bk™? = B. Similarly if gk < Bk™, we have gk A k')’ = B so that
(k N k™) =1. The dual argument shows that (¢ VvV k™) 2 = 1.

If (G, Q) is a transitive [-permutation group and o0€ 2, the G,-
orbit containing ¢ is {0g|g e G,}. It is easy to show [7, Proposition
1] that the orbits of G, are convex. Thus the G,-orbits partition Q
into convex subsets, and this set inherits the natural total order, i.e.,
if 4 and 4 are G,-orbits, then 4 < 4 iff 6 < v for all 6e 4, ved.
Furthermore, this natural total order is independent of « [7, Theorem
9]. We define for each G,-orbit 4, a patred orbit 4 = {ag|a e 4g},
and always use the notation 4’ to refer to pairings with respect to
some distinguished point «. It is shown in [12, §16] and [7, Theorem
9] that 4’ is indeed a G,-orbit, and in [7, Proposition 4] that the map
4— 4" is an o-anti-isomorphism of the set of G,-orbits with the pro-
perty that 4” = 4 for any G, -orbit 4.

If ge2 and BG, = {8}, then B is called a fized point of G,. If
BG, # {8}, {8G.} is a long G.-orbit which must necessarily be infinite.
A G -orbit 4 is called positive (negative) iff 6 > a(6 < a) for each
o0ed, and {a} is called the zero G,.-orbit.

The following theorem describes the relationship between the
G(K),~orbits and the K, ,-orbits of an l-monotonic group (X, 2).

THEOREM 8 (Main Theorem). If (K, Q) is l-monotonic, G = G(K),
4 18 a Gorbit, and ke K., then 4k = 4'. Thus a K,-orbit is the
union of a G.orbit and its paired G.-orbit.

Proof. 1If k, me K, since km™e G,, dkm™ = 4 and 4k = dm. It
follows that 4K is the union of G,-orbits, for suppose that I" is a
G -orbit not contained in 4% which meets 4k. Then if veI'\4k and
Bel’ N 4k, there exists g e G, such that 8g = v. But then 4kg # 4k,
which is a contradiction since kg ¢ K,. Thus 4k is the union of G,-
orbits.

Suppose ok, k€ 4k. Then since 4 is a G,-orbit, there exists g ¢
G, such that 69 = z. Thus 6k(k™gk) = dgk = tk, and since k'gk € G,
0k and 7k are in the same G,-orbit. This shows that 4k is a G,-orbit.

We note that both pairing and %< K, provide an involution of
the set of G,-orbits, so that we may assume that 4 is a positive G-
orbit. To show 4k = 4', first suppose 4’ < 4k.
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If 6 ¢4, there exists g€ G such that g = a, and from the definition
of pairing we have ag = v ¢ 4’ so that g < 6k. But G is a transitive
l-group, so there exists h e G such that 0kh = . Now ¢g'=g*' A
h=f and a = dokh = okf; also akg™kf = ag™'kf = okf = a. But
sinee g7* = f, 6kg™' > 0kf = «, so that 6kg~*kf < af. Since pairing
is an orp of the G,-orbits and 4k > &', (dk) < 4” = 4. Since (0k)f =
a, from the definition of pairing we have af e (dk) < 4. Thus
okg'kf < af e (4k)’ < 4, and this is a contradiction since kg 'kf € G,
and 4 is a G, -orbit.

If 4k < 4" a dual argument leads to a contradiction. This com-
pletes the proof of Theorem 8.

COROLLARY 9. If (K, Q) is l-monotonic and G = G(K), the paired
G.-orbits are o-anti-isomorphic.

Proof. The o-anti-isomorphism is achieved by means of any k€ K.

Transitive l-subgroups G of A(2) such that fixed points of G, are
never paired with long G,-orbits were called balanced in [7]. Examples
of unbalanced I-permutation groups can be constructed, but it follows
from Corollary 9 that if (K, 2) is l-monotonic, then G(K) is balanced.

A monotonic group (K, 2) is called c-monotonic if G(K) is coherent,
ie.,, @ < Be 2 implies that there exists 1 < g € G(K) such that ag =
B. The chain of implications l-monotonic — c-monotonic = t-mono-
tonic = monotonic is easy to verify. The following is an example of a
c-monotonic group (K, £2) which not only has no orp % such that > =1
but also does not have the orbit pairing property of Theorem 8.

Suppose H is the subgroup of the linear group of the reals which
consists of the elements {ax + B|a is a positive rational and g is any
real number}. An element g of H is positive iff « =1 and g > 0.
Then H is a coherent opp group, but not an Il-permutation group.
Let & be the orp of the reals which sends each real number a to
—12a. Since ak® = 2a, k*c H. If he H there is a positive rational
number 7 and a real number B such that ak = ta + @ for each real
number «@. Hence akhk = 2ta — V28, so that khk e H for each h €
H. The element g of H defined by zg = 7/2 has the property that
k™ = kg, so that khk e H for each h e H. Since ki*ce Hif K = {k, H),
it is easy to show that G(K) = H. (In fact this result follows from
Theorem 10.) Thus K is c-monotonic, and if m e K], there exists a
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positive rational number 7 such that am = —1"2va for each . Since
am? = 2v%a and V' 2 is irrational, m® = 1.

If re K’ there is a positive rational number 7 and a real number
N such that ar = —1V2pa + ) for each a. But then if 7* = 1, since
0 = 0r* = M1 — V/27), either » =0 or V2 is rational, and because
of the above, both of these statements lead to contradictions. Thus
no orp in K squares to the identity.

Since the positive rationals are an orbit of H,, the orbits of H,
are not convex; and furthermore, since the positive rationals are paired
(in H,) with the negative rationals, K clearly does not have the orbit
pairing property of Main Theorem 8.

3. Extendable l-permutation groups. If H is an l-subgroup of
A(Q), an orp of k of Q will be said to extend H iff G({k, H)) = H.
If % extends H, we note that for any ac H, ka also extends H. If
(K, 2) is l-monotonic and G(K) = H, K will be called an extension of
H, and H will be called extendable. The following theorem provides
a computational necessary and sufficient condition for extendability.

THEOREM 10. An orp m extends an l-subgroup H of A(2) iff m
normalizes H and m?e H.

Proof. If H is extendable, any m e K\H normalizes H, and
clearly, m’e H.

Conversely, if such an orp m exists, mgm—e H for each gec H,
so that since m’e H, mgm = mgm™m*<c H. Similarly m™'gm™" e H.
Since only words which contain an even number of m’s or m™'’s are
opps, it follows that m extends H.

THEOREM 11. Suppose that (H, Q) is regular. Then H is extendable
1 H is abelian; and then H uniquely determines its extension.

Proof. If K is an extension of H and H = G(K) is regular, we
know by Corollary 3 that there is precisely one ke K]. Since each
B e is an H,-orbit, we know by Main Theorem 8 and the definition
of pairing that gk = B’ = ag, where g is the unique element of H
such that Bg = a. We next show that this orp % extends H iff H
is abelian.

Since k fixes «, k* fixes & so that by regularity, k*=1 and %k =
k™. It suffices (by Theorem 10) to show that kgk ¢ H for each g ¢ H.

From the definition of & we have akgk = agk = (ag) = ag™ for
any g in H. If e, there is a unique % in H such that gk = a.
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Thus Bkgk = ahgk = (ahg) = ag™h™'. But since H is abelian ag™'h ™" =
ah™'g™ = Bg~'. Thus for each ¢g<c H, we have kgk = ¢g~* so that k
extends H. Also H uniquely determines its extension, since & must
belong to any extension of H, and thus, all extensions are simply
extensions by k.

If H is not abelian, by regularity there exist ¢, d ¢ H such that
ve'd™ %= vd7'¢™t for any ve 2. Then picking v such that ve = «, we
have akdk = adk = (ad) = ad™; but since ve = «, vkdk = acdk =
(aed) = ad ¢ +#+ ac™'d™ = vd~*. Thus kdk agrees with d™' at a but
not at v; so by regularity, kdk ¢ H. Thus since k¥ must belong to any
extensicn of H, H is not extendable.

COROLLARY 12. Suppose that (K, 2) is montonic and G = G(K)
is regular. Then for any me K and ge G, m* =1 and mg = g~ 'm.

Proof. In the proof of Theorem 11 we actually showed that for
any heG, khk = h™ where k is the only orp in K. Thus (kh) =1
and since k= k™, kh = h™'%k. If mecK’, by Theorem 1 m = kf for
some fe@, so that m?> = (kf)* = 1. Now if ge G, mg = (kf)g so that
since fg e G, (mg)* = (k(f9))* = 1, and since m* = 1 we have mg = g~'m.

If F' is any group of permutations on @, then a convex F-con-
gruence on Q is an equivalence relation @ on 2 such that each Q-
class is convex, and such that if aQg then afQgBf for each fekF.
If IL is any t-monotonic subgroup of M(RQ), it follows from the transi-
tivity of G(L) that all convex L-congruence classes for any one convex
L-congruence are o-isomorphic. If Q is a convex L-congruence, we
call each Q-class an o-block of L; thus an o-block of L is a nonempty
convex subset 4 of 2 such that d4m = 4 or 4mnN 4 = {} for each
meL. L is called o-primitive iff the only convex L-congruences are
trivial ones.

A subgroup G of A(Q) is o-2-transitive iff whenever « < 8 and
7 < 9, there exists g ¢ G such that g =7 and B¢ = 6. It is clear
that if (H, Q) is an o-2-transitive opp group, then H is o-primitive.
Proposition 24 [7] states that a regular opp group (H, Q) is o-primitive
iff H is isomorphic as an ordered group to a subgroup of the additive
reals.

The easiest example of a transitive [-permutation group which is
neither o-2-transitive nor regular is the group (G, 2), where 2 is the
reals and G = {g e A(Q)|ag+1=(a+1)g for all e Q}. Some comments
on this group will facilitate the understanding of the next few theorems.
The long orbits of any G, form a chain o-isomorphic to the integers
(in fact, the long G,-orbits are the intervals (n, » + 1) where n is an
integer). The o-permutation z defined by az = a + 1 generates (as
a group) the centralizer Z,.G, and z is called the Q-period of G.
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Because of this periodicity, the action of g€ G on any long G,-orbit
determines its action on all of 2. The long G,-orbit 4;, is “one
period up” from 4; in the sense that 4,z = 4;,,.

McCleary’s Theorem 40 [7] states that any transitive o-primitive
l-permutation group which is neither o-2-transitive nor regular looks
strikingly like (G, 2). These groups were called periodically o-primitive
in [7]. Here, more precisely, is what Theorem 40 says.

Let (G, Q) be an o-primitive transitive l-permutation group which
is neither o-2-transitive nor regular, and let «c Q. Then the long
orbits of G, form a chain o-isomorphic to the integers. Suppose 4, =
(4,)), is the first positive long orbit of G, 4,., is the first long orbit
greater than 4;, and @; is the sup of 4;. Either there is a positive
integer » such that sup 4; = @ 2 iff 7 = 0 (mod »), and we say that
G has Config(n); or sup 4; = w; €2 only when j =0, and we say
that G has Config(«c). The o-permutation Z of 2, 2 the Dedekind
completion (without end points) of 2, such that az = sup (4)). = @,
for each ac 2 is called the 2-period of G in the sense that it genera-
tes (as a group) the centralizer Z,5G; so that (5z)g = (Bg)z for all
Be, geG. If G has Config(n), z = 2" is called the Q-period of G.
G is called full if G is the entire centralizer Z,gz?.

(D EE
i CoNFIG (2)

LeEmMA 18. Suppose that (F, 2) is a periodically o-primitive
l-permutation group and t is either the Q-period or the Q-period of
F. Then if an orp k extends F,tk = kt™*, i.e., if 5 1s one period
up from 7, Bk is ome period down from Yk. Conversely if (H, Q) is
Sull pertodically o-primitive with t either period of H, and k is an
orp of 2 such that th = kt™', then k extends H.

Proof. Suppose t is the Q-period of F. If k extends F, then
for some a € F, m = ka fixes . Since @, is fixed by F, for each
integer n, it follows from Theorem 8 that @,m = @_,. Thus atm =
om = b_, = at™ = amt™. If B e, since F is transitive, Bf = «a for
some feF. Then Bfmt™" = amt™ = atm = Bftm = Btfm since t
centralizes F. Since k (and hence m) extends F, there exists ce F
such that fm = me. But then gfmit™ = Bmet™ = Bmt~'¢, and since
also Sfmt™ = Btfm = Gtme, we have gtm = Bmt™. Thus tm = mt™
and since m = ka, we have tka = kat™ = kt~'a so that tk = kt™* as
desired.

Conversely suppose (H, Q) is full and ¢ is the 2-period of H. If
k is an orp such that tk = kt™, it follows that ¢ 'k =kt and ¢t 'k = k™ '¢.
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Since H is full, using Theorem 10, k& extends H iff for each g in H,
kgk™, k~'gk, and k* all commute with ¢. If ge H, kgk™'t = kgt ™'k~ =
thgk™. Thus kgk™ (and similarly k'gk and %*) commutes with ¢.
Thus k& extends H. The proof for the corresponding Q-period is
similar.

LEMMA 14. Suppose (H, Q) is periodically o-primitive with finite
Config (n), 4, is the ith positive H,-orbit, and ¥ = 4, U---U 4,.
Then 2 has an orp +ff ¥ has an orp.

Proof. Since H has Config(n) if z is the Q-period of H, aze®
so that if m is an orp of @, « < az and azm < am. Since H is
periodically o-primitive, A(2) is o-primitive. Since A(%2) is not periodic
[6], it must be o-2-transitive. Thus there is a g in A(Q) such that
azmg = o and amg = az. Thus mg induces an orp on 7.

Since H has Config (n), z is actually in A(2). Thus if m is an
orp of ¥, we define a function k by

Bk =1 _

(6= ym)e™" it Be¥, = Uz'
b, =@, if f=d,e0 } '

Since the long orbits and fixed points of H, partition 2, and m is an
orp of ¥ k is an orp of 2 which is essentially the “period extension”
of m to 2.

THEOREM 15. If (H, Q) s full periodically o-primitive with finite
Config (n), and 2 has an orp, then H is uniquely extendable.

Proof. If acQ and ¥ is as in Lemma 14, then by Lemma 14
¥ has an orp m which we periodically extend to the orp & of 2 as
in Lemma 14. To show that H is extendable it suffices by Lemma
13 to show that if z is the 2-period of H, then zk = kz~'. If Be 4,
t=an+b,0=0b<mn, then Bze¥,,, = ¥z**" so that by the definition
of k, Bzk = (Bz)z *'mz™* = (B(z™*mz""Y))z~* = Rkz~*. Similarly if
B = w,, €L, Bzk = Bkz™* so that zk = kz™*, and thus k extends H by
Lemma 13.

If & and r both extend H, it follows from Lemma 13 that zk =
kz™* and zr = rz~*. By Theorem 1, r = ak for some a ¢ A(2), so that
zak = zr = rz7" = akz™' = azk, i.e., za = az. Thus a € H since H is full,
and it follows that H is uniquely extendable.

If 4 and I" are subsets of a chain 2, we write 4 < I" iff 6 < v
for all 0e4,vel". Let « be an ordinal number. An a-set is a chain
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2 of cardinality ¥, in which for any two (possibly empty) subsets
4 < I'" of cardinality less that Y,, there exists we 2 such that 4 <
w<I. If w,is a regular ordinal, then (assuming the generalized
continuum hypothesis) there exists an a-set, and it is unique up to o-
isomorphism [2, pp. 179-181]. Reversing the ordering on an a-set
yields an a-set, so by the uniqueness of a-sets, every a-set possesses
an orp.

It is shown in [8, Lemma 22] that if H is a periodically o-primitive
l-subgroup of A(R) and 4, = (4,)); is an a-set, then all long Hz-orbits
4; are a-sets. Theorem 24 [8] states that if » =1,2, -+, or o, and
4 is an a-set (where w, is a regular ordinal number) then there exists
a unique (up to o-permutation group isomorphism) full periodically o-
primitive group (H, 2) having 4 as the first positive orbit of a stabilizer
subgroup G; and having Config (r). We have

THEOREM 16. Let n= 1,2 ---, or oo, let w, be a regular ordinal
number, and let 4, be an a-set. Then the unique full periodically
o-primitive l-permutation group (H, 2) having 4, as the first positive
orbit of a stabilizer subgroup H, and having Config (n) is uniquely
extendable.

Proof. Suppose that = is finite, 4, be the ¢th positive orbit of H,
and ¥ = 4,U---U4,. Since each 4, is an a-set, it has an orp and
furthermore, 4, is also o-isomorphic to 4; for any integer j; therefore
¥ has an orp. Thus 2 has an orp by Lemma 14 and H is uniquely
extendable by Theorem 15.

If n = oo, one can use the 2-period zZ of H and a special property
of a-sets (namely Lemma 23 [8]) to show that H is uniquely extend-
able by a proof similar to the proof of Theorem 15.

A chain 2 1is 0-2-homogeneous iff A(R2) is 0-2-transitive. The support
of me M(2)is {Be2|8m #+ B}. An l-ideal of an l-group G is a convex
normal l-subgroup of G. We make the following definitions:

B(2) = {g € A(2)|g has bounded support}
BA(Q) = {g € A(2)|g has support bounded above}
BB(2) = {9 € A(2)|g has support bounded below}.

It is shown in [3, Theorem 6] that when 2 is o-2-homogeneous, B,
BA, and BB are all o-2-transitive l-ideals of A(2). We have the
following theorem.

THEOREM 17. Suppose that 2 is 0-2-homogeneous and has an orp.
Then B(Q) is extendable, but in general, mot uniquely extendable.
Furthermore BA(Q) and BB(R) are not extendable.
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Proof. If m is any orp of £, it is straightforward to show that
m fixes v iff m~*hm fixes ym. Thus conjugation by any orp m fixes
B(2) and interchanges BA(2) and BB(2), so that BA(2Q) and BB(2)
are never extendable. If m is an orp of 2 which squares to 1 (such
an orp exists by Lemma 7 since M(R) is I-monotonic), since m™B(2)m =
B(2) and m* = 1€ B(Q), m extends B(2) by Theorem 10.

If @ is the reals, and the orps k, » of the reals are defined by:
ak = —a for each a; and an = —2a if @ = 0, an = — /2 otherwise,
then both %4 and » extend B(2). The extensions K = <k, B) and N =
{(n, B) are definitely not identical however, for = is clearly not in kB.

It follows from Corollary 9 that a necessary condition for (H, 2)
to be extendable is that the paired H,-orbits be o-anti-isomorphic which
implies that H must be balanced. Balanced is not sufficient for
extendability since BA and BB are both balanced whenever 2 is o0-2-
homogeneous.

In [11] the generalized monotonic wreath product is constructed
(along the same lines as the generalized ordered wreath product
constructed in [5] but different in one crucial way), and it is shown
that an l-monotonic group can be “nicely” embedded in the generalized
monotonic wreath product of its “o-primitive components”. Thus a
study of o-primitive l-monotonic groups is called for.

If (K, £) is an o-primitive l-monotonic group, G(K) is either o0-2-
transitive, the regular representation of a subgroup of the reals, or
periodically o-primitive. If G(K) is o-2-transitive, then K is actually
2-transitive, i.e., if a, B, v, 6 € 2, there exists k¢ K such that ak =
vyand Bk=0. If «a < B and v > 6 and k is an orp, then ak > Bk
so there exists g € G(K) such that akg = v and Bkg = 6. The other
cases are similar, and it follows that K is 2-transitive. It is shown
in [8] that when A(Q) is o-2-transitive, it is actually o-n-transitive
for n = 3. Since an orp can have at most one fixed point, M(2) is
not 3-transitive.

If G = G(X) is the regular representation of a subgroup of the
reals, Corollary 12 shows that if ke K’, k* = 1 and kg = ¢g~'k for any
geG. If G = G(K) is periodically o-primitive with 2-period Z, and
ke K’, since k extends G, zk = kZ™* by Lemma 13. We summarize
these results in

THEOREM 18. If (K, 2) is an o-primitive l-monotonic group and
G = G(K), then either:

(1) G is the regular representation of a subgroup of the reals,
and if keK',geG, k=1 and kg = g7'k; or

(2) G is o-2-transitive, and K is 2-transitive; or

(3) G s periodically o-primitive with 2-period z, and zk = kz™
for any ke K'.
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