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POWER-ASSOCIATIVE ALGEBRAS AND RIEMANNIAN
CONNECTIONS

ARTHUR A. SAGLE

Let G/H be a reductive homogeneous space with the correspond-
ing Lie algebra decomposition g = m + k& where the complementary
subspace m satisfies the condition (ad H)m C m. It has been shown
that the G-invariant connections on G/H correspond to certain non-
associative algebras (m, @) and that these algebras, in turn, cor-
respond to certain local analytic multiplications on G/H. These cor-
respondences generalize many of the results of Lie theory; it has
been shown, for example, that there is a change of coordinates at
¢ = eH which makes the algebras associated with a local multiplica-
tion anti-commutative. However, if G/H has pseudo-Riemannian
structures and we require that the change of coordinate maps be
local isometries, then the existence of a change of coordinates which
gives an anti-commutative algebra is no longer guaranteed. Thus
it is natural to ask when an algebra (m, @) inducing a pseudo-
Riemannian connection is anti-commutative and it is shown in this
paper that a necessary and sufficient condition is basically that
(m, @) be power-associative.

1. Basics. Let G be a connected Lie group with Lie algebra g¢
and let H be a closed (Lie) subgroup with Lie algebra h. Then the
pair (G, H) or (g, k) is called a reductive pair if there exists a sub-
space m of ¢ such that ¢ = m + h (subspace direct sum) and
(ad Hym cm. The corresponding analytic manifold M = G/H is
called a reductive homogeneous space and m is identified with the
tangent space M;. For a reductive space with a fixed Lie algebra
decomposition g = m + h it is shown in [2], [6] that there is a 1-1
correspondence between G-invariant connections 7 and nonassociative
algebras (m, ) with ad H C Aut(m, ). (o is the bilinear algebra
multiplication on m and Aut(m, @) is the automorphism group of the
algebra (m, @).)

A G-invariant pseudo-Riemannian connection on a reductive
homogeneous space G/H corresponds to an algebra (m, @) with a
nondegenerate symmetric bilinear form C such that for all X, Y, Zem
and Ueh

(1) Clad U)X, Y)+ C(X,(ad U)Y) =0 and
(2) ClaZ,X),Y)+CX,a(Z,Y)=0.
We denote such algebras by (m, a, C) and they are discussed in
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[4],[6],[7]. In particular since the torsion tensor is zero we have
from [2] that for X, Yem

(3) a(X,Y)—a(Y, X)=XY

where we use the notation XY = [X, Y ],.(resp. (X, Y)) for the pro-
jection of [X, Y] in g onto m (resp. ). Thus the algebra (m, «, C)
is reductive Lie admissible [5] and in particular for h = {0} the
algebra (g, &, C) is Lie admissible [1].

As an example let 7: G — G/H be the canonical projection of G
onto the reductive space G/H. For any Xem the curves 7(t) =«
exptX are geodesics relative to the G-invariant pseudo-Riemannian
connection /' given by (m, «, C) if and only if a(X, Y) = (1/2)XY.
This connection is called the pseudo-Riemannian connection of the
first kind [2], [4] and we use the notation (m, (1/2)XY, B) for the
corresponding algebra where B now denotes the nondegenerate form.
In particular, let ¢ and % be semi-simple and let Kill denote the
Killing form of g. Since Kill|k X &k is nondegenerate we can write
g =m + h with m = h* relative to the Killing form. Thus (g, k)
is a reductive pair. The form B = Kill|m X m and the multiplica-
tion a(X, Y) = (1/2)XY give an algebra (m, (1/2)XY, B) which satisfies
conditions (1) and (2) and therefore induces a pseudo-Riemannian
connection of the first kind. (One, of course, considers B = —Kill
|m x m in case Kill|m X m is negative definite as is the case for
G = S0(n) and H = SO0(k).)

Now let the reductive space G/H have a pseudo-Riemannian
connection of the first kind given by the algebra (m, (1/2)XY, B)
and suppose G/H has another pseudo-Riemannian connection given
by the algebra (m, @, C). Then the nondegeneracy of B and C
implies the existence of an S e GL(m) such that

C(X,Y)=BlSX,Y)
for all X, Yem. Also by the symmetry and equation (1) we obtain
*) St=Sand [ad U, S] =0

for all U ¢ h, where b denotes the adjoint relative to B. In [3], [4], [6]
it is noted that the set, J, of endomorphisms of m satisfying (*)
forms a Jordan algebra relative to the usual multiplication S,-S,=
(1/2)(S.S. + S.S,). Also the formula for a is given by

2a(X, Y) = XY + S{X(SY) — (SX)Y]

where XY =[X, Y], is the multiplication in the algebra (m, (1/2)XY, B).
Many examples of the algebras (m, «, C) determined by the Jordan
algebra J are given in [4]. In the next section we discuss some of
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the algebraic identities which these algebras may satisfy. These
identities for the algebras (m, @, C) are related to isometric coordinate
changes and H-spaces (G/H, ) as discussed in [7].

2. Power-associative algebras. An algebra A over a field F' is
power-associative if every element X e A generates an associative
subalgebra F[X]; see [9]. We now assume the algebra (m, a, C)
discussed in §1 is power-associative and use the notation X*=
a(X, .-+, a(X, X)---) where X occurs » times; this notation is used
only for the algebra (m, a, C) and is not to be confused with the
product XY in (m, (1/2)XY, B). The following result indicates that
an algebra (m, @, C) which defines an invariant Riemannian connec-
tion on a reductive space G/H does not satisfy the “usual” identities
unless the algebra is anti-commutative; that is, unless the connection
is of the first kind.

THEOREM 1. Let (G, H) be a reductive pair with a corresponding
Lie algebra decomposition g = m + h.

(a) If the algebra (m, @, C) defines an tnvariant Riemannian
connection on G/H, then a(X? X)=«aX, X? if and only if
a(X, Y)=@1/2XY for all X, Yem.

(b) Let G/H have an invariant Riemannian connection of the
first kind which is determined by the algebra (m, (1/2)XY, B). If
the algebra (m, a, C) defines an invariant pseudo-Riemannian con-
nection on G/H, then the algebra (m, c, C) is power associative if
and only if (X, Y) = (1/2)XY for all X, Yem.

Proof. Since an anti-commutative algebra is power-associative,
we need only prove the converses of the above statements.

(a) From formula (2) the positive definite form C must satisfy
C(V,a(U, V)) =0 for all U, Vem. Now using this and formula (2)
we see that for any Xem

C(a:(X’ X)’ a(X; X)) = - C(X: CL'(X, a:(X’ X)))
= — 0, a(a(X, X), X))
=0.

where the identity a(X, X?*) = a(X? X)is used for the second equality.
Thus a(X, X) = 0. Using (3), we obtain a(X, Y) = (1/2)XY.

(b) If we are given an algebra (m, (1/2)XY, B) which induces a
Riemannian connection of the first kind and a second algebra (m, «, C)
which induces another pseudo-Riemannian connection, then, as
remarked in §1, we can write C(X, Y) = B(SX, Y) and 2a(X, Y)=
XY + SX(SY) — (SX)Y] for some SeGL(m). Using the fact
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that the positive definite form B satisfies B(ZX, Y) + B(X, ZY) = 0,
we now show that the algebra (m, @, C) has no nonzero idempotent
elements. For suppose E = a(FE, E); then from the above formula
E = S7[E(SE)] so that SE = E(SE). From this SE = E(E(SE)) and
therefore
B(SE, SE) = B(SE, E(E(SE)))

= —B(E(SE), E(SE))

= —B(SE, SE)
so that B(SE, SE) =0 and SE = 0. As S is nonsingular, E = 0.

Since the power-associative algebra (m, a, C) contains no idem-

potents, the associative subalgebra F[X] generated by any Xem is
nil [9; Prop. 3.3]; that is, for each X em, there exists a positive
integer p such that X? = 0 in the algebra (m,«,C). By power-
associativity if X"** = 0 for positive integers » and ¢, then

0=X""=qaX", X" = —;—X’X‘ -+ % [X7(SX?) — (SX")X'].
Thus using a(X, ¥) — a(Y, X) = XY we also see X" X' = a(X", X*)—
a(Xt X7) = X" — X" = 0 which implies
(4) X"(SX?") = (SXNHX*

whenever X" = 0,
We now show X°® = 0 implies X? = 0. For suppose X°® = 0; then
from formula (4) we obtain

X(SX? = (SX)X*.
Using the formula for a(X, Y) we note SX* = X(SX) and have
B(SX? SX* = B(X(SX), SX?)
= — B(SX, X(SX?)
= —B(SX, (SX)X?

—B((SX)(SX), X*)
=0

Il

using the anti-commutativity ZZ =0 in (m, (1/2)XY, B). Thus
SX* = 0 which implies X* = 0.

Next we show X' = 0 implies X" = 0 for » = 3 and consequently
by induction X" = 0 implies X* = 0. For suppose X"*' = 0; then
X' =0 and from formula (4) we obtain

X(SX") = (SX)X" and X"'(SX™) = (SX")X".

Using these we see
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B(X(SX"™), SX") = —B(SX*™, X(SX™))
= —B(SX*™, (SX)X™")
= B(SX"Y)X", SX)

and

B((SX)X", SX") = B(SX, XS "))
= B(SX, (SX* X" .

Thus using X" X =a(X"" X)—a(X, X")=X"— X"=0, we
obtain 2SX" = X(SX" ') — (SX)X"* and

2B(SX*, SX™) = B(X(SX") — (SX)X*, SX")
= B(X(SX*), SX™) — B((SX)X"", SX")
=0

and therefore X" = 0. Since the algebra (m, a, C) is nil, we have
for every X em that X? = 0 for some integer p. Thus by the above
0 =X?=a(X, X). Using (3), we obtain a(X, Y) = (1/2)XY.

REMARKS. The conclusion of Theorem 1 that a(X, Y) = (1/2)XY
need not imply the forms B and C are equal. However, let us
consider the algebra (m, (1/2)XY, B) as given where we can assume
B is just nondegenerate. Then the endomorphism S which deter-
mines C for another algebra (m, a, C) with a(X, Y) = (1/2)XY is in
the multiplication centralizer of (m, (1/2)XY, B). To see this first
recall that the multiplication centralizer, I, of the algebra
(m, (1/2)X Y, B) consists of those endomorphisms 7 of m satisfying
L(X)T = TL(X) for all Xem, where L(X):m—m: Y—XY. In
[9; p. 15] the multiplication centralizer is discussed in general. It is
proven that I" is a subalgebra of the algebra of all endomorphisms
of m and if the algebra (m, (1/2)XY, B) is simple, I" is a field. Now,
to see that S is in I" we use formula (2) and a(X, Y) = (1/2)XY and
note that

B(S(XY), Z) = C(XY, Z)
= 20X, Y), Z)
= —20(Y, a(X, Z))
= —C(Y, XZ)
= —B(SY, XZ)
= B(X(SY), Z) .
Since B is nondegenerate, S(XY) = X(SY); that is, SL(X) = L(X)S

which implies Se /. Conversely, a nonsingular endomorphism S in
I' N J determines an algebra (m, a, C) with a(X, Y) = (1/2)XY. In
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particular, if S is chosen so that C is positive definite, then the cor-
responding connection is Riemannian.

As an example, let the pseudo-Riemannian connection determined
by the nonzero algebra (m, (1/2)XY, B) be holonomy irreducible.
Then as discussed in [3], [4], [6], the algebra (m, (1/2)XY, B) is simple.
If we require that the algebra (m, (1/2)XY, C) be such that C is
positive definite, then the following computations prove S is sym-
metric relative to C. For X, Yem,

C(X, SY) = B(SX, SY)
= B(SY, SX)
= (Y, SX)
= C(SX, Y)

so that S° = S, where ¢ denotes the adjoint relative to C. There-
fore, S has a nonzero real characteristic root \ and the characteristic
root space n = {X em: SY = \ Y} is a nonzero ideal of (m, (1/2)XY, B);
this uses L(X)S = SL(X) for all Xem. Since (m, (1/2)XY, B) is
simple, we see » = m and consequently S = A\I; thus the original
form B must be definite in this case. More generally, if
(m, (1/2)XY, B) is semi-simple (that is, a direct sum of simple ideals),
then the corresponding S is diagonalizable. These semi-simple
algebras often occur when ¢g and % are semi-simple Lie algebras as
discussed in [4], [8].
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