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WHAT IS THE PROBABILITY THAT TWO ELEMENTS
OF A FINITE GROUP COMMUTE?

DAVID J. RUSIN

We consider the probability that two elements of a finite
group commute. Explicit computations are obtained for
groups G with G' < Z(G) and G' Π Z{G) = {1}. We classify
the groups for which this probability is above 11/32.

I* Introduction* All groups considered will be supposed finite.
We will denote by Pr (G) the probability that two elements of the
group G, chosen randomly with replacement, commute. (This will
loosely be called the "probability of Gn.) That is,

Pr (G) — Number of ordered pairs (x, y) e G x G such that xy = yx
Total number of ordered pairs (x, y) 6 G x G

This concept has been considered by several authors, as indicated
in the bibliography. The most important formula we will need is
that Pr (G) = (k/\G\), where k = k{G) is the number of conjugacy
classes in G.

Let us fix our notation. If if is a subset (resp. subgroup, normal
subgroup) of G, we write H £ G(resp. H ^ G, H^G). For any
element x of G, [G, x] is a subset of G', while for any subset H of
G, [G, H] is the subgroup generated by all [G, x] with x e H. We
write C(H) and N(H) for the centalizer and normalizer of a subgroup
H ^ G. We denote the center and derived subgroups of G by Z(G)
and G', respectively.

For any subset HQG, let us write H* = {xeG: [G, x]QH} =
(G' Π JET)*. If H is a normal subgroup, then it is easy to check that
H*/H = Z(G/H); in particular, iϊ* is a subgroup of G. The ( )*
operation is meant as a partial inverse to the ( )' operation, since
(H*)' S H,HQ(HT, and (G')* = G (in fact, ((#*)')* - H*). Note
that BΊ £ H2 implies fl? S H2* and that {1}* = Z{G).

II* Groups of nilpotence class 2* When G' <; Z(G), we can
compute Pr (G) in terms of the group structure in G. If we write G =
G2 x G3 x , where Gp is a p-group, then we need only examine
Pr(Gp) for each p, and use the general formula Pr ( f f x ί ) = Pr (JBΓ)
Pr(jfiT), as noted in [4]. Thus, assume in what follows that G is a
p-group with G' ^ Z{G).

In this case, the subset [G, x] is actually a subgroup, since
[Vf %][y', ^] = WVy %]• Thus, when considering the possibilities for
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[G, x\, we need only consider the subgroups of G'; hence when we
speak of iϊ* here, it will be assumed that H is a group. Since
H <^ Z, H^G; so as noted earlier, iϊ* is a group. Since G is a
2>-group, both \H\ and |ίΓ*| are powers of p.

For brevity, set 3 = £Γ* - U*<* # * (that is, i ϊ is the set of
all elements for which [G, x] = H precisely, and not any proper sub-
group). We then have H* — \JK^H K disjointly, so that |JΪ*| =
Σ « * | £ | for any H^G'.

Now, given any partially ordered lattice, there exists a function
m (the Mobius Inversion function [6]) such that whenever two func-
tions / and g are such that

9(p) = Σ/(ϊ0, then f{x) = Σm{x, y)g{y) .

Applying this to the lattice of subgroupsof G' and to the functions
/ = I f ) I and g = \( )*|, we get that \H\ = Σiκ^m(K9 H)\K*\.

Next, the elements of H each have \H\ conjugates, so the total
number of conjugacy classes of G is ΣiwCff/l HΊ)» a n d thus

Pr(G) — — ^ y

= 7^7 Σ -±-(Σ,™(K,H)\K*\)
\G\ H^G' \H\ \KSH /

7^7 Σ
\G\ H^G' \H\

L v \τr*\( V
\H\

The Mobius functions for the subgroup lattices of p-groups
have been completely worked out [16]: If K is not normal in
H,m(K,H) = 0; otherwise, m(K, H) = m(l, H/K) = m(l, H°), say.
Since the lattice of subgroups of G' containing K is isomorphic to
the lattice of subgroups of G'jK, we get

Pr (G) - J L Σ \K*\( Σ

It is also shown in [16] that m(l, H°) for p-groups is zero unless
H° is an elementary abelian p-group of order p*t say; in that case
m(l, H°) = (-l)y( i~1)/2. Therefore, the only terms that contribute
to the above sum are those for which H° is an elementary abelian
^-subgroup of (G'/K). If we let L be the subgroup of elements of
order <5 p in G'/i£, then the formula above becomes

\H

This L is isomorphic to a vector space of dimension n over

GF(p). If m denotes the number of subgroups of order p' (sub-
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spaces of dimension j) then we have [6] ^ = p5 \ n "^ M~ M ~ 1

and ΓQΊ = ΓjΊ = 1. Thus, if (C,)' denotes the direct product of i

copies of the cyclic group of order p, then

For w = 0, this comes out to 1, while for n = 1, it is 1 — (1/p). For
% ̂ > 2, it becomes

(_-l)0p0(0-3)/2

L

= 1 + ( - 4- Y ( —Ί

[n-l
2)/2

L i J

n - 1

n — ΐ

- 1

- l Σ (-
l\Γn-l

Pi i

Σ
ft-1

=(*-!) Σ

This last sum may be evaluated. Define a function on the sub-
groups of (Cy*-1 by /({I}) = 1, /Off) = 0 if H Φ {1}; then define the
function g(H) = ΣXSH f(K)t which is identically equal to 1. If we
apply the Mδbius Inversion formula to this pair of functions, we get
f{H) = Σxsff m(K, H)g(K). Since n ̂  2, (C,)"-1 Φ {1}, so that

0 =

1

= Σ m(lf C

= Σ m(l,jff).

We have thus evaluated Σi*o<^(m(l, JEZ"0)/|JΪ0|). First, if n = 0,
(L = {1}), it equals 1; this is equivalent to Cr'/iΓ having no elements
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of order p, and hence that K = Gf. Second, if n = 1, the sum is
1 — (lip). This happens just when G'jK has a unique subgroup of
order p; since it is already abelian, G'jK is then cyclic and non-
trivial. Finally, if n ^ 2 (that is, all other cases), the sum is
zero. Therefore, our formula for Pr (G) becomes

Pr(G) = -rpTT Σ \κ\

it K=G'
. f Q,jK i g n o n t r i v i a l c y c l i c

0 otherwise .

We know that K* is a subgroup of G, and hence its order is a
power of p; therefore let us write |JSΓ*| = \G\/pn{K). Then our result
is:

(1) THEOREM. If G is a p-group with G' <̂  Z(G), then

IGΊ p
1 ' cyclic

Now we look for some limiting conditions on the exponents n(K).
We write n(Kt) = ̂  when the subgroups are indexed. These are
nonnegative integers, with n(K) = 0 iff K = Gr. Furthermore, since
we know Kx <i K2 implies (JKi)* ̂  ( 2̂)*> we must have nγ ^ ^2 in this
case.

Next, if Kt = Kj n Kk and £,-, Kh ^ iΓz, then we have {KόKk) ^ iΓ^
so K;Kί^(KsKk)* ^ iΓ,* and iΓ* n Jfί = £ ? . Hence,

so that we get n, + nk ^ nt + nt.
We also have the following

(2) PROPOSITION. If H is a p-group with Hf ^ Z(H) and ΐΓ
cyclic, then HjZ(H) = IL (Cp%i x Cp»<) -u iίfe αϊi % ^ &, α^d nL — &.
(where, pk — \H'\.) In particular, [H: Z(H)] is a square, and is at
least \H'\\

Before giving the proof, let us indicate why we need Proposition
2. We will use it on Theorem 1 as follows. Recall that n(K) was
defined so that \G\/pn{k) = \K*\. Thus,
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p <*> - \G/K*I = ff}
|2L /2ί.|

where £Γ = Cr/ίΓ. Note that H' = (?'/•£" is cyclic for the subgroups
K appearing in Theorem 1, and H' ^ Z(G)/K ^ K*/K = Z(ίΓ). Hence
by Proposition 2, all the M(JK") in Theorem 1 are even, and pnlK) ^
[(?': if]2.

Proof of Proposition 2. We prove this by induction on the rank
r of the abelian group H/Z(H). The proposition is certainly true
if r = 0. On the other hand, since H/Z(H) is never cyclic, r Φ 1.
Hence, we may assume r ^ 2. Write H/Z(H) = ( α ^ ) x <α2Z> x x

Because if is generated by Z(JBΓ) and the α*, and JEP <; J£(iί), we
have

if' - <[ai9 α,]: 1 ^ i, i ^ r> .

Since if' is cyclic of order pk, this implies in particular that some
[aif dj] has order pk. Without loss of generality, we may assume
that e = [al9 α2] is such an element. Since c e Z(H), [a?, α̂  ] = [au aj]m;
so since [aίf a3]

pk = 1 for all j but [a19 a2]
pk~ι Φ 1, af e Z(H) but af~ι <t

Z(H). Therefore, (a,Z) ^ Cpk. Similarly, (a2Z) ^ Cpk.
Since c generates JET', for each i and j we may write [aίf a,] =

cβ^. Then if we set bt = dίαΓ'̂ 'αί21' for each i > 2, we compute

and similarly [α2, &*] = 1. Since (α^) Π <αlf α2> ̂  Z(H), the order of
biZ(H) is the same as that of a,iZ(H); from this it is easy to check
that

H/Z(H) = <α^> x <α2^> x (b,Z) x . x <6rZ> .

Now let K^H be the subgroup Z" = (Z(H), 68, 64, , 6r>. It
is clear that i?(iϊ) £ Z(K); but conversely, since if = <JSΓ, αt, α2> and
[alf bi] = [a2, bi] — 1, we have Z(K) £ Z(ίZ"). Thus we may use the
inductive hypothesis on K:

(1) K' QH't so K' is cyclic
(2) if' Q H' £ J&CEΓ) = Z(K)
(3) if £ £Γ is also a p-group
(4) JS:/Z(JBΓ) = K/Z(H) = (b3Z) x . . . x (brZ) has rank r - 2 < r.

So, we may assume K/Z(K) = Π (C^ x Cp«<) for some set of %,.
Thus,
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H/Z(H) = (a,Z) x (azZ) x {bzZ) x . x (brZ)

= (Cpk x CPk) x Π ( C ^ x Cp*<) ,

as desired.

Ill* Groups with Gr Π Z(G) = {I}* Now let us turn to the
opposite extreme, where G' Π Z(G) = {1}. We need a

(3) PROPOSITION. If N^G and Nf)G' = {1}, then Pr(G) =
Pr (G/N).

Proof. From [8], it suffices to show that Pr (L) = Pr (L/N)
Pr (N) for all subgroups L = <iV, #, fe> where [#, fe] e AT. But all such
L are abelian: U is generated by the conjugates of [N, N], [N, g],
[N, h], and [g, h], while each of these lies in Nf]G' = {1}. Thus,
N ^ L and L/N are also abelian, so that

Pr (L) = Pr (L/iV>Pr (iSΓ) = 1 .

We may use this proposition in our case to conclude that Pr (G) =
Pr(G/Z); moreover, (G/Zγ = (G'Z)/Z=(G'xZ)/Z^G', and also Z(G/Z) =
((?' n Z)*/^ = {ψ/Z = Z/Z. Thus, Pr (G) = Pr (if) for some group
with K' ^ G', and Z(JBΓ) = {1}. Therefore, we must merely look for
Pr (K) for all such groups K.

(4) PROPOSITION. For any given Gf, then are at most a finite
number of groups K with K' ~ G' and Z(K) — {1}.

Proof. This will follows from the "ΛΓover C" theorem [5, p. 20],
which gives us that L = K/C(K') = N(K')IC(Kf) is isomorphic to a
subgroup of Aut(iΓ). Now, L' = K'C(K')/C(K'), so that we have
an abelian group L\L' = (K/C(K'))/(K'C(K')/C(K')) = K/(K'C(K')); if
n = rank (L/L')9 then Kj{KrC(Kf)) can be generated by n elements
XtiK'CίK')) with ^ e K.

Now we can use the result of P. Hall [5, p. 266] which states
that [C(Kf), C(K')] ^ Z{K). In our case, this means that [C(K')Y ^
Z(K) = {1}, i.e., C{Kf) is abelian; so if yeC(K'), then [K'C(K'\ y] =
{1}. Since K = (xlf x2, •-, xΛ, K'C(K')), this means that if y e C{K')
commutes with each ^(1 <; i ^ n) then ye Z{K) — {1}.

Therefore, for yί9 y2 e C(K')> if [yίf xt] = [y2, xt] for each i, then
ViXtVΓ1 — V&iV^f so that y^yi commutes with each xif and hence from
the above we know y^yi = 1, or ^ = ί/2. This tells us that \C(K')\
is at most equal to the number of values the w-tuple {[y, #J, 1 <* i <; n}
assumes as y ranges over C(K')9 which is therefore at most
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Π I [C(K'), xt] I s: Π I [K, xt] I ^ I K'\'.

Then, from \K\ = 1C(iT')1 |K/C(K')\, we have that \K\ ^ | K'\n \L\ ^
|jδΓ'| |Alltίr/)l|Aut (ίΓ')l Hence, with a given commutator subgroup G',
the orders of groups K with K' ~ G' and Z(K) = {1} are bounded by
a function of G' alone. This justifies the claim that there are only
a finite number of such groups.

There are further restrictions when Z{K) — {1}. For example,
no element x in Kf except x — 1 can be fixed under each automorphism
of L ^ Aut (Kf), since that would mean kxk~ι = x for all ke K, and
then xeZ(K) = {1}. Furthermore, L = K/C(K') is abelian iff iΓ ^
C{K'), i.e., iff iΓ is abelian. In that case, we must have \K'\ dividing
\C(K')\. In particular, if n - 1, then |ϋΓ;| ^ ICCiΓ')j ^ \K'\, and so
iί ' = C(K'). (Actually, this is even true when n > 1.)

We may use these observations on a specific class of groups to
get more detailed information than that supplied by Proposition 4.
For example,

( 5 ) PROPOSITION. If Kf is cyclic of prime order p, and Z(K) =
{!}, then K — <α, 6: ap = bn = 1, bab~ι = α r > , wAerβ w | ( p — 1) α ^ d r3' =
1 m o d 2> iff n\j.

Proof. Write iί r = <α>. Then Aut (Z"0 is cyclic, so that n = 1
and iΓ = C(iί;) as noted above. Further, L <£ Aut (iίr) is also cyclic,
say L = (bKf). We write |L | =% and note that n divides | Aut(iΓ)| =
p - 1. From |L | = w have 5%eiΓ' = <α>, say, bn = αs. If s ^ 0,
then <6> = <δ, α> = J^, so Z" would be cyclic, and then would not
have trivial center. Thus we have s = 0, and bn = 1. Next, note
that JBL'̂ JBL implies 6α6"16<α>, say bab^1 = ar. If rJ" Ξ 1 mod p,
then bjab~β = ar0 — α, so bj commutes with (b) and with <α>, so
bj e Z = {1}, and i = 0(mod n).

These are known as metacyclic groups. We remark that by
computing the number of commuting pairs of elements by brute
force, one sees that Pr (G) = (n2 + p — T)jn2p.

There are some cases in which there are no K with Kr = Gr and
Z(K) = {1}. As noted before, this happens if there is an xeG' — {1}
fixed under each automorphism in L <; Aut (G') One common case
in which this occurs is when Gr is isomorphic to C2n, n ^1; since Gr

has a unique element of order 2, that element is fixed under all
automorphisms, and hence must lie in Z(G). This also happens if
G' = C6.
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IV* Groups with Pr (G) > 11/32* In some cases it is possible
to find the possible set of values of Pr (G) in a given interval. We
shall do this for the interval (11/32,1]. We the use "degree equation"
from character theory [5, Chapter 5]. It states that \G\ = Σ i U ^ ,
where k is the number of conjugacy classes of G, and the nt are
positive integers; precisely [G: G'] of these are equal to 1. So,

^ [G: G'] + 4(fc - [G: G'])

= 4fc - 3[G: <?']

A; <;i-

so that

and so

Equation 6 enables us in principle to determine all possible values
for Pr (G) greater than any fraction p0, as long as p0 > 1/4; we
merely find all values of Pr (G) for those groups for which G' is one
of the groups of order less than 3/(4p0 — 1). For example, to compute
the values of Pr (G) > 11/32, we need only consider those G of order
less than 8, viz. G' = {1}, C2, C3, C4, C2, x C2, C5, C6, S3, and C7. (The
reason we stop at 11/32 is because continuing further would require
a consideration of the groups of order 8. There are many of these,
including some nonabelian ones, so we avoid them altogether.)

G' = {1} means G is abelian, so Pr (G) = 1. On the other hand,
G' ~ S3 is impossible, since S3 is a complete group and S3 Φ S3 [13].
Thus, we need only consider the seven remaining cases.

It turns out that even for a given G', the different possibilities
for G' Π Z(G) require separate discussions. Since G' Π Z(G) is a
subgroup of G', we must investigate the following combinations:

G'

G'

Γ)Z(G)

c
2

{1}

c
3

{1}

c
s

{1}

c
2

O
2
 X O

2

{1}

c
2

C
2
xC

2

{1} {1}

I

c
7

{1}

c
7
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Case 1. G' < Z(G). A method for computing the probabilities
for such groups was given in II.

For G' = Cp with p a prime, the only proper subgroup of G'
is {1}, which has index p, so that Pr((?) = l/p (l + (p — l)/p2Λ) for
some n, where G/Z(G) ~ Gf by Proposition 2. For p = 2, we have
the infinite family of values 1/2 -(1 + 1/22*). For p = 3, only w = 1
gives a value (= 11/27) greater than 11/32. For p = 5 and p = 7,
all the values of Pr (G) are too small.

For Gf — C6 ~ C2 x C8, we know that (? is nilpotent, say G —
iϊ2 x fl"8 where H'2 = C2 and iϊ 3 = C3. Taking the probabilities from
the last paragraph, we have

P r (Γ\ _ 1 A , M 1Λ , 1 \ < 5 l l ' 11Pr (G) - _ (1 + — ) γ(l + — j £ - . — < — .

For G' = C4, the only subgroups in the lattice are C4, C2, and {1};
Theorem 1 becomes

with 22* ^ [GΊ {I}]2 = 16, 22w ^ [<?': CJ2 = 4, so that Pr (G) rg 11/32.
For G' = C2 x C2, Theorem 1 becomes

_±_ . [ l + x _i_
4 V 22ni

Taking nx ^ n2 ^ w3 for definiteness, we must also have n2 + nz^nlf

so that Pr (G) = 7/16 (^ = n2 = w3 = 1) and 25/64 (^ = 2, w2 = w3 = 1)
are the only values greater than 11/32.

Case 2. G' Π Z(G) = {1}. We saw at the end of III that the
unique element of order 2 mast lie in the center of G if G' = C2, C4,
or C6, so that these cases lead to a contradiction. (This also rules
out the combination G' = Cβ, G' Π Z(G) ~ C8.) If G' = C2 x C2, then
as in III, we may find that G/Z(G) ^ A4, and Pr (G) = Pr (A4) = 1/3.

The remaining cases are of the form G' = Cp for p an odd prime;
as we remarked after Proposition 5, these have probabilities
(n2 + p — l)/w2p (where w|p — 1). The only values of Pr(G) above
11/32 for groups G in Case 2 are 1/2 (G' ̂  C3 and G/Z(G) ^ S8) and
2/5 (G' ~ Cδ and G/Z(G) ^ A).

Case 3. Remaining combinations. The calculations here are
rather involved, and not particularly interesting, so we just quote
the results. First, when |G'| = 4 and |GfΊ ^(G)| = 2, I have been
able to show that Pr (G) = 1/4. (1 + l/22ί + 1/2.1/228), with 22s =
[C(Gy. Z{C{Gf))} and 22ί = [H: Z(H)] where H = GI{Gf n Z(G)); s + 1 ^
ί ^ 1. The only value of this above 11/32 is 7/16.
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The last case is G' ^ C6 and G' Π Z{G) = C2. It is possible to
show that for such G, we must have Pr (G) = 1/4 + 1/2S, s ^ 3. The
only value above 11/32 is 3/8 (for 8 = 3).

Summary. We have the following possibilities for Pr (G) above
11/32:

P π

— (-
1/2 =

7/16 =

11/27

2/5 =

25/64

3/8 =

(G)

L + 2-2s)

.5000

= .4375

= .4074

.4000

= .3906

.3750

G'

c 2

C3

C4 or C2

C2 x

C3

c 5
C2x

c 6

. x G

c 2

c 2

G' Π Z(G)

c 2

{1}

c 2
C2 x C2

C3

{1}

C2 x C2

c2

G/Z

s,
A

Cl or C\

C 8 X C 8

A
Gl or Ct

C2 x S3 or Γ .

(We write Γ for the nonabelian group of order 12 besides A4 and
C2 x SΛ.)

We have not discussed the last column for all cases in the paper,
but have included it here for completeness. It bears out the intuitive
feeling that a group which has a relatively large center is nearly
abelian.

Note that this table allows us to characterize the groups with
Pr (G) = 5/8, say, or any of the numbers on the table. In the case
of 5/8, it is precisely the set of groups G with G' ~ C2 and G/Z ~
C2 x C2 that have this value Pr (G). (Actually, the first constraint
is superfluous: see [9].)

V* Concluding remarks* There are several open questions
relating to Pr ((?). For example, Joseph [7] has asked for a descrip-
tion of the set V = {xe [0,1]: x = Pr (G) for some finite group G}.
F is a submonoid of Q Π [0, 1], since Pr (G) Pr (JET) = Pr (G x H).
(The abelian groups supply the identity.) If we set Vk = {x: x — Pr (G)
for some finite G of nilpotence class fc}, then it may be deduced from
Theorem 1 that the closure V2 is well ordered by ^ above 1/4 and
has order type at most ωω there. It is easy to imagine that the
same is true for each Vk, but the methods of II do not extend to
this more general case. Using Equation 6 and §111, we also have
that Vo Π (1/4,1] has order type ω, where VQ is {Pr (G): G' Γ) Z = 1}.

One problem is that the method used here is inherently limited
to any interval [p0, 1] for p0 > 1/4. It would be interesting to discover
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some other method for finding the probabilities for Pr (G) in, say,
(1/5, 1/4). It is possible, of course, that the set of probabilities is
even dense there.

Another point to be looked at would be lower bounds for Pr (G);
Erdόs and Turan have shown [2] that Pr (G) ̂  log log | G |/| G |. Bertram
[1] has that Pr (G) > (log|G|)c/|G| for "most" groups G, where c is
any constant less than log 2. Sherman [15] notes that Pr (G) ;>
log2|G|/|G| for nilpotent groups G.
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