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SETS OF INTEGERS CLOSED UNDER AFFINE
OPERATORS-THE FINITE BASIS THEOREMS

D. G. HorFrMAN AND D. A. KLARNER

This paper is a continuation of investigations of sets T of
integers closed under operations f of the form f(x,, ---,2,)=
mx; + «++ + m,x, +c¢, where r, m, -+, m, ¢ are integers
satisfying » = 2, 0¢ {m4, - - -, m,}, and ged(m,, ---, m,) =1. We
have two goals here:

(1) to prove that T=<f| A> for some finite set A, where
{f|A> denotes the “smallest” set containing A and closed
under f, and

(2) to show that unless |7|=1, T is a finite union of
infinite arithmetic progressions, either all bounded below,
or all bounded above, or all doubly infinite.

We shall lean heavily on the notation, definitions, and results of

[1].

DEFINITION 1. Let e P. An 7r-ary affine operator f on Z is an
operator of the form

f(xly ""xr):m1x1+ cer M, +c,

where m,, +++, m,c Z\{0}, and ceZ. Let o(f) =m, + --- + m,, let
o(f) =r.

We call f a positive operator if each m,e P, a prime operator
if » =2 and ged(m,, ---m,) = 1, and a linear operator if ¢ = 0. De-
note by & the set of all positive, prime, linear operators, and by
S# the set of all prime linear operators that are not positive. For
each fe & (f+1]|0) is a periodic set by Theorem 12 of [1]; let
o(f) be its smallest eventual period.

LEMMA 1. Let fe 7 let a,s, teZ, with (6(f)—1)a + s€ N, and
0(f)~1Da +teP. Then T =<f+ {s,t}|a) has an eventual period
o(Nged(t — s, (0(f)—Da + t) = d(f)ged((e(f) —Da + s, (¢(f)—Da + ©).

Proof. Define a sequence (T, |n € P) of subsets of Z as follows:
let T, = {f + tlay, and for ke P, let T,, = {f + s|Ty_,> and Ty, =
{(f+t|Tw). Then certainly each T, has an eventual period
o(fH((a(f)—Da + t), and further T = U,cp T,. Thus T has an eventual
period 6(f)((e(f)—1)a + t). If (¢(f)—1)a + s = 0, we are done. Other-
wise, we may interchange the roles of s and ¢ in the argument above
to conclude that T also has an eventual period of 6(f)((¢(f)—1)a + s).
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THEOREM 1. Let fe. &% Then there exists ve P such that for
all aeN, beP, T=<{f|a,b) has an eventual period v-ged(a, b).

Proof. We may assume ged(a, b)) =1. If flx, ----, 2,) = mx, +
-+« + m,x,, then T is closed under the two operators g + k{a, b},
where g, +--, x,) = mix, + myx, + -+ + m,x,, and k= m,(m, +
eee+m,). Let v =0(9k(c(9) —1+ k). By Lemma 1, the set T, =
{g + Kk{a, b}|a) has an eventual period do(g9)ged(k(db — a), (¢(g) — 1 + k)a),
which divides ». Similarly, T, = <{g + k{a, b} |b> has an eventual
period v, thus T = (f|T, U T,> does also.

DEFINITION 2. For each fe.&”, we denote by v(f) the smallest
positive integer such that for all a e N, be P, {f|a, b) has an eventual

period v(f)(o(f) — 1)ged(a, b).

Theorem 12 of [1] considered sets {f+c¢|A), where (¢(f)—1)A +
¢ £ P. We remark that Theorem 1 above can be used to extend
Theorem 12 of [1] to the case {0} == (¢(f)—1)A + ¢S N.

THEOREM 2. Let fe P let ceZ, let ASZ, with {0}=(o(f)—1)A+
¢S N. Then {f +c|A) is a periodic set with an eventual period
v(fged((e(f)—1A + o).

Proof. By Theorem 1 of [1], we may assume c¢ = 0. Let
acANP. For each beN, T, ={f|a,b) has an eventual period
v()(o(f)—1)ged(a, b), thus T = U,..T, has an eventual period
v(f)o(f)—1)a, and so does {f +¢c|A) ={f+e¢c|T).

LEMMA 2. Let f be a prime operator, let tc Z. Then there is
a positive, prime operator g such that for any TS Z with te T, if
T is closed under f, then T s closed under g.

Proof. 1If f is the operator m,x, + --- + m.x, + ¢, then let g =
mix, + -+« + mix, + 2t 3., mm; + (6(f)+1)e.

THEOREM 3. Let AZZ, let f be a prime operator. Then
{flAY = {fIB) for some finite subset B< A.

Proof. Lette A, produce g asin Lemma 2. Let a=g¢(0)/A—0o(g)),
let P={neZ|n = a}. By Theorem 12 of [1], and its extension noted
above, there are finite sets B, and B, such that (f|A> NP =<{g|B)
and (—(f|A)NP=<g|B). But then (f|A) =<g|B,U(—By)),
and clearly {f|B,U(—B,) U{t}) = (f|A). Finally, we need only
choose a finite BC A so that B, U (—B,) U {t} = {f| B).
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With Theorem 3, we have achieved goal (1).

We now turn our attention to sets of residue classes in the ring
Z,. We make the convention that any integer divides 0; hence a =
b (mod 0) if and only if a = b, and gedg = ged{0} = 0. Further, if
deN, and A, BC Z, define AZ B (modd) if for all a<c A, there is
some be Bwitha = b (modd), and A = B(modd) if A BZ A (mod d).
Finally, define 7(4) = ged(A — A); and if C is a set of residue classes,
define Y(C) = Y(U.icc 4)-

The following theorem is essentially Theorem 10 of [1].

THEOREM 4. Let de P, let f be a prime operator, let A<= Z with
f(A) S Amod d). Then f(A) = A (mod d).

DEFINITION 3. Let R be a family of finitary operators on a set
X, let AC X. We denote by [R, A] the following family of operators:
let fe R be an r-ary operator, let K, L be a partition of [1, »] with
K+ ¢, let 7: L » (R| A); define a | K|-ary operator g on X as follows:

g [1eK) = fYy, ++, ¥, ,
where
v, ificK
Y= lewy ifieL.

Let [R, A] be the set of all such operators g. Thus T = ([R, A]| B)
is the smallest set containing B, and with the property that if f is

an r-ary operator in R, and %, «,, ---, ¢, € {R|A) UT, and at least
one x; € T, then f(x, ---,%,) € T. In particular, (R|A) U{[R, A]|lB) =
(R| AU B).

THEOREM 5. Let fe FPU 57, let ceZ, let deP, let A, BC Z.
Then, +f B = ¢,

{qf+¢ Al|B) ={(f+¢|AUB)(modd) .

Proof. We need only show, for all a, be Z, that a = a, (mod d)
for some a,c{f+ ¢, a]|b). We may further assume fe. . and
(e(f) — Da + ¢, (6(f)—1)b + ce P. Let s = dy(f)ged((o(f) — 1)a + ¢,
(a(f) — Db + ¢), let t = (f)(a(f) — L)a + ¢), and suppose first s < t.
By Theorem 2, a + sNE {(f + ¢|a, b). (Recall that for sets X and
Y, XS Y means X\Y is finite, and X = Y means XS Y < X.) Thus
we need only show

a+sNNLLf+ecallb)+g.
But if the above intersection is empty, then a + sNE {(f +
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clay=T and so T has an eventual period s by Theorem 4 of [3]. But
T has smallest eventual period ¢, so ¢ divides s, contradicting s < ¢.

In the general case, let ¢’ = a + kd((¢(f)—1)b + ¢), where kc P
is chosen so large that o(f)((a(f)—1)a’ + ¢) > s. Since

s = dy(f)ged((a(f)—Da’ + ¢, (6(f)—1b + o),

the special case above shows a’ = a, (mod d) for some a, € {[f+ ¢, a']| b).
But o’ = a, (mod d).

The innocent Lemma 3 lead to the fundamental Theorem 3 on
closed subsets of Z. The following lemma, with analogous hypotheses,
will lead to the fundamental Theorem 6 below on closed subsets of
Z, deP.

LEMMA 8. Let de P, let a,be Z, let AZ z, let f be a prime
operator with

f(4) + {a, b} < A (mod d) .
Then A + (a — b) = A (mod d).

Proof. By Theorem 4, A —a = f(4) = A — b (mod d).

COROLLARY 1. Let de P, let f be a prime operator, let A, BC Z.
If f(A) + BZ A(mod d), then A + Y(B) = A (mod d).

DEFINITION 4. If f is the r-ary affine operator mx, + -+ +
m,x, + ¢, let
0.(f) = ged(m,, ---, m,) ,
and let
0,(f) = ged(mm; |1 =1 <j=7).

LEMMA 4. Let f be a linear operator, let ACZ. Then Y(f(4))=
0,(f)V(4).

Proof. Certainly 6,(f)v(A) divides each element of f(4) — f(A) =
f(A — A); thus 6,(f)v(A) divides Y(f(4)).

For the converse, let f be the operator m,x, + --- + m,x,; let a,
be A, as we may suppose A # §.

Then, for each 1 <7 £ 7,

ma — b) = (ma + +-- + m,a)
—(ma + «+- +m_a+mb+myua+ -0 +ma),

so m,(a — b) e f(A) — f(A). Thus v(f(A)) divides each m,(a — b), and
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hence divides 6,(f)(a — b). This holds for all a, be A, thus v(f(4))
divides 6,(f)v(4).

THEOREM 6. Let f be a prime operator, let A Z,letdec P. If
f(A) S A (mod d), then A + 6,(f)V(A) = A (mod d).

Proof. Let f be the r-ray operator mx, + --- + x,2, + ¢, let

R =1]1,r]. For each KSR, with K +# ¢, define an r-ary, linear
prime operator fi, a | K| (r — 1)-ary linear operator g,, and an integer
cx as follows:

Fe(@y -0y x) = 3, mix; + >, mx, ,

ieK ie R\K
9k, ;1€ K, JER, 1 # j) = 3, mm;x,; ,
ie K

jeR
i#]

cx =-c( +t_§,{mi) .

Thus any set closed under f is closed under the » + | K| (r — 1)-
ary operator fr + gx + ¢x, 80 AS(fx + 9x(4) + cx | ADS(f + c|A).
By Lemmas 8 and 4, and by Theorem 2 of [1], (we may assume the
hypotheses there apply), 4 + 6.(g9x)7(A) = A (mod d). As this holds for
all K #+ ¢, the theorem is proved, since ged(6,(gx) | 6 # KZS R) = 6,(f).

By virtue of the above theorem, and Theorem 1 of [1], the
calculation of (f|A) (mod d), where f is a prime operator, and d € P
can be reduced to the special case d = 6,(f). We are thus lead to
considering sets closed (mod 6,(f)); before we do so, we briefly in-
vestigate unary operators in the residue class rings.

Let m, Me Z, with ged(m, M) = 1.

DEFINITION 5. For each a € N let m!*! = Y22t m?. Thus m! = 0,
and m! = 1.

LEMMA 5. Let a,be N. Then
(i) m* = (m — L)m!*? + 1.
a ifm=1

ii ml*l = @ __
(1) m =1 emel.

m—1
(iii) ml** = mom® + mte.
(iv) mi* = (mb)*Im,

LEMMA 6. There is a unique t € N such that for all a, be N,
m = m (mod M) if and only if a = b(modt). In fact,
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0 if M=0, m =1
. 2 if M=0, m=—1
s| M| .
W 'lsz;éO!

where s is the order of m modulo M. Thus s divides t; and t =0
if and only if M =0, m = 1. Also, if t = 0, m"' = — m** (mod M).

Proof. We can assume M = 0. Let a, be N, with a < b; let
t=s|M|/ged(M, m')). Then m®—m Y = m*m™*, so m!*! = m? (mod M)
if and only if m!* % = 0 (mod M).

If mP* ' = 0 (mod M), then m*™* = (m — 1)m!*>*! + 1 = 1 (mod M),
80 b — a = ks for some ke N. Then

O = m[b“'l] = m[ks] = (ms)l.k]m[sl = km(s] (mod M) y

so k = 0 (mod M/ged(M, m'*))), so a = b (mod t).
Conversely, if b — a = kt for some k€ N, then

m[b—a] — m[kt] — m[sk[M}/gcd(M,m[s])_[ — (ms)[k;m/gcduu,mls})]m(s]
[s]
=M —" = 0(mod M).
} lgcd(M, ) ( )
Finally, m-m"** + 1 = 0 (mod M), thus ml*1 = — m** (mod M),

since the mapx — mx + 1 is a bijection on Z,.
Let T={m" 0= n <t}

LEMMA 7. T contains t elements, all distinct modulo M. For
each ac N, m*T = T — m!* (mod M).

Proof. The first statement is a direct consequence of Lemma 6.
Also, m*T = m*m™ [0 = n <t} = (w0 n <t} —m =T — m*
(modulo M) by Lemma 6.

THEOREM 7. T = (ma + 1|0) (mod M).

Proof. By Lemma 7, mT + 1 = T (mod M), so T is closed under
mx + 1, (mod M). A simple induction on n shows m!™ e (mzx + 1|0}
for each 0 < n < t.

COROLLARY 2. For each a, ce Z,

{(me +clay=(m —Da+¢)T + a (mod M) .

Proof. {mx +cla) =(m — La + ¢){mx + 1|0>+a.
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COROLLARY 3. For each c€ Z, and AZ Z,

{me + cl|A) = '2'!;[«7” —Da + )T + a](mod M) .

Proof. If f is any unary operator, {f|A) = U...{f|a)>.

We now turn our attention to »-ary operators on Z,.

Let reN+2, let R=[1,7]. Let m,---,m,cZ\{0}, with
ged(m,, ---, m,) = 1. Let f be the operator mux, + --- + m,x,, let
0 = 0,(f). For each 1e R, let

M, = ged{m;|jeR, j + i} .

The proof of the following lemma is straightforward.

LEMMA 8. For each 1€ R, ged(m,;, M,) = 1, and 6 = ged(d, m,)M,.
For each 1, je R, with © + j, M, divides m;, but ged(M;, M;) = 1.
Finally, 0 is the product of the M;s.

For each 1e R, let s; be the order of m, modulo M, let ¢, =
8. M;/gcd(M,, mi*").

LEMMA 9. Let 2, k, -+, k,€Z, leta,, -+, a,€ P. Then km{+ +
coo + kmir=2x (mod 8) iof and only if, for all i e R, k;, = xm®**~ (mod
M,).

Proof. This is a chain of equivalent statements:

kmi + «-+ + kmi = x (mod 6)
km + -« + Emi = x (mod M,) for all 1e R
kmi = x (mod M,) for all 1e R

k;, = am&: (mod M,) for all 1eR.

COROLLARY 4. Letk, -+, k.€Z,leta, +-+,a,€ P. Then km:+
« + kmir = 0 (mod 0) if and only if k, = 0 (mod M,) for all ic R.

COROLLARY 5. mit + --- + mir = 1 (mod 6).
COROLLARY 6. Leta, -+, a, b, +-+,b,e€ N. Then mml*¥d+...+

m,me = mmP + .- + mml? = (mod 0) if and only if a,=b,
(mod ¢;) for each 7€ R.

Proof. Note that mmi*! + .. + mml*?) = mmi + ... £ m ml
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(mod 60) if and only if m!'*~% = 0 (mod M;) for each 7e¢ R, and the
rest follows from Lemma 6.

For each 1eR, let T, = {m™|0<n<t}. Let T=mT,+- -+
m, T, +1. Note that T contains [l;.z%; elements, all distinct
modulo 4.

THEOREM 8. T = {(f + 1|0) (mod 6).

Proof. By Theorem 4,
+1100 =m(f+1]0) + oo +m(f+1]0) + 1 (mod?¥) .
But for each 1e R,
mlf+1[0) =m{(max + 10> =mT (mod 0) .

COROLLARY 7. Let a, ccZ. Then, modulo 0,

{(f+clay=({(o(f)—Da + )T + a
Ec+%[((mi_1)a+C)Ti+a].

THEOREM 9. Let cc Z, let A= Z. Then
{(f+eclA =c+ %ml UA[((mi —1Da + ¢)T; + a] (mod 6) .

Proof. This is a consequence of Corollary 3.

This concludes our investigation of sets of residue classes closed
under a prime operator. We now apply these results to closed sets
of integers.

DEFINITION 6. A set AC Z is doubly periodic, with a double
period d € P if A is a union of residue classes modulo d. The following
analogue of Theorem 2 of [1] is proved in an analogous fashion:

THEOREM 10. Let f be a prime operator, let A be a doubly
periodic set with double period d. Then {f|A) has double period d.

THEOREM 11. Let A and B nonempty periodic sets with eventual
period d, let f be a positive, prime operator. Then T={f|AU(—B))
18 a doubly periodic set with double period d.

Proof. We may assume fe P. Further we may assume A, BC
P; for if that special base be true, it can be applied, for general A4,
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B, to the set T'=<{f|ANP)U(—(BNP))), thus A, BC T, so
T=T.

Let D={teZ,|tN T = ¢},

let D* = {teZ,|tN P< T},

let D-={teZ,|tn(—P)= T},

let D'={tcZ,|t<T}.
Thus D°SCD*ND-,and D = D* U D-. Moreover, if T is closed under
any positive operator i, then D, D, D~ and D° are all closed under
h. In particular, (DTN D)S D’ thus DN D~ =f(D*ND)YCDC
D*N D, so D"=D*ND-. By hypothesis, D" # ¢ = D~; let se D+,
let ¢t € D~. Note that {[f, s]|t) € D~ (mod d). But {[f, s]|t) = (f]|s, t)
(mod d) by Theorem 5, thus se D~, and D*< D-. Similarly, D~ <
D*, thus D= D"= D* = D.

THEOREM 12. Let fe P, let cc Z, let A< Z, with (0(f)—1)A + ¢)
NP+¢+#= () —1DA+ce)N(—P). Then T = {f +c|A) is a doubly
periodic set.

Proof. We may assume ¢ = 0. Since both TN Pand (—T)N N
are nonempty periodic sets, T'= {f | (TN P) U (T N (—N))) is a doubly
periodic set by Theorem 11.

COROLLARY 8. Let fe.7 let ceZ, let ACZ, with (o(f)—1)A+
¢)E{0}. Then T=<{f+c|A is a doubly periodic set.

Proof. By Lemma 2, T is a closed under a positive, prime
operator g. Clearly, T is neither bounded below, nor bounded above;
thus T = {g|T) is doubly periodic by Theorem 12.

DEFINITION 7. Let AC Z, let de P. We say that A is a regular
set, with regular period d, if either

Type 1. A is a periodic set with eventual period d, or

Type 2. —A is a set of type 1, or ‘

Type 3. A is a doubly periodic set with double period d.

THEOREM 18. Let TCZ, let f be a prime operator, with f(T)=
T. Then either |T| <1, or T is a regular set with regular period

0,0 Y1(T).

Proof. If |T|>1, then T is a regular set by Theorem 2,
Theorem 12, or Corollary 8. By Theorem 6, T has a regular period

0o(f)7(T).

With Theorem 13, we have achieved goal (2).
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Now let f be the prime operator f(x,, ---, x,) = mx,+ -+ +mx,.+
¢, and let ACZ. How can we calculate (f| A) = T?

Fisrt, let the reader show that for any a € 4, Y(T') = ged(4 — f(a)).
Hence we may use Theorem 1 of [1] to reduce to the case ¥(T) = 1;
we simply replace T by 1/Y(T)T —a)S Z. (Note Y(T) =0 if and
only if ((o(f)—1)A + ¢)<= {0}, if and only if |T|<1; in this case
T=A. Thus we assume Y(G) #0.) By Theorem 13, T has a re-
gular period 6 = 6,(f). The next step is to calculate the set T, =
{teZ,|t NT + ¢}; this finite calculation can be readily carried out
with the aid of Theorem 9.

The type of T can be found as follows. If f is not positive, T
is of type 3. If f is positive, then, o(f) > 1; let @ = ¢/1 — o(f), let
J={ucdju<a}, let K={ucA|lu>a}. If J+ ¢+ K, then f is
again of type 3. If J =9, f is of type 1, and if K=¢, f is of
type 2.

If T is of type 3, our troubles are over, as T = U;er,t. If T
is not of type 38, we may assume, (by replacing T with —T if
necessary), that T is of type 1. In this case, let

{a} if acd

S={ueZ|u>a uect for some te T,} U . s
if agAd

then clearly S is a periodic set with AU f(s) =S, and TSScT.
Thus S is only a “little bit too big”; for many applications, this is
sufficient information.

We have a method for producing T from S, details will appear
elsewhere.
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