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MAPS PRESERVING TRANSLATES OF A FUNCTION

I. GLICKSBERG

Let f be a bounded continuous function on a topological
group G and Z(f) the set of all (left) translates f, of f.
One might ask what self maps ¢ of G have &(f)¢CZ(f)
(so f,o¢ is always another translate f, of f). Since this
says ¢ maps each translate of a set of constancy f(c) into
another translate of the set, and indeed a translate inde-
pendent of ¢, unless f is very special one would expect ¢

" to be quite rigid, and in fact almost a translation, perhaps
on a quotient of G.

When G is a compact connected abelian group this is,
in essence, the situation if ¢ maps G onto itself; alterna-
tively one can take feL?G), 1=p<co, and assume ¢ is
measure preserving and arrive at the same conclusions. In
§1 we determine when Z(f).¢CZ(f) and in §3 when the
distorted orbit &7(f)c¢ coincides with another, <(g), along
with some related results. Section 2 is devoted to analo-
gous results on (weakly) almost periodic functions.

Evidently one may as well consider f on the quotient group
G/H, where H = {x € G: f, = f}, in considering <7(f); since f,o¢ = f,
will hold with z (resp. ¥) replaced by any element of the coset z-+
H (resp. y + H), one can reduce to the case in which z —f, is
1 — 1, although producing the corresponding map ¢ on G/H is not
quite trivial. Consequently we shall begin with the case in which
H is trivial and 2 — f, is 1 — 1.

THEOREM 1. Suppose G is a compact connected abelian group,
6 a map of G onto itself, and & (f)o¢g 7 (f) for some fe C(@) for
which x — f, is 1 — 1 (or alternatively, for some fe L*(G) while ¢
18 also measure preserving). Then there is an automorphism « of
G and 2z, z,€ G for which

(1) o) =alx) +2,, 2€G,

while the Fourier series of f is a sum, over the finite orbits of the
dual of a, of blocks of the form

(2) e 3( My

where Vo = V4, § < Ny, Vot =7, and [[Fvi(z) =1. (Conversely
for any such a, z, z, and f, 7 (f)ep C 7(f).)
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324 I. GLICKSBERG

In particular when |f| has no repeated values, so all the cor-
responding orbits are singletons, we can conclude « is the identity,
so ¢ is a translation: for the 1 — 1 ness of x — f, guarantees {vye "
F(v) # 0} separates G, and thus generates the dual group /°; con-
sequently voa = v for all vyer.

The result is a simple consequence of the identification [3] of the
isometries of compact connected abelian groups, viz.: an isometry ¢
of a compact conmected metric abelian group, under a translation
invariant metric, 1s mecessarily of the form (1) for some automor-
phism «a. (The hypotheses in [3] include the assumption that ¢ is
onto, but it is well known and easy to prove that an isometry of a
compact metric space is automatically onto.)

In order to prove our result we note that the 1 — 1 ness of
x — f, (along with continuity of translation in C(G@) or L*(G)) shows
¢’(f) is a homeomorph of G, and thus that (z, y) —||f, — f,|| is a
translation invariant metric defining the topology of G. Since
(f)ep < 7(f), for each x€G we have an element p(x)e G with
f200 = fow, and since ¢ is onto (resp. measure preserving), p is an
isometry of the compact metric space G under our translation
invariant metrie: for

pr(xz —fp(ZHH = ||fa00 “fy°¢” = ||fa “‘fy“ .

Thus we have an automorphism « and ze G for which p(a)=a'(x) +

z, and now f,o¢(y) = f,(¥), or f(s(y) — x) = fly — p(x)), can be
written as

fo(y) — ) = fly —a™'(®) — 2),

for all x and y (resp. a.a. y for each z). An integration (justified
by Fubini in our alternate case) yields, on the one hand

[, 076@) — mde = <, @) [, 5@ = 2£(6w) — x)da
= (1, sF )

and on the other

[, 005w — a7@) = 9o = [, a@) s — o = 2)da

= (rea, y — @ Y =7 = B fy — 7 — Do
= (voa, y — 2)f(voa) .
Consequently

(3) FO<r, o)) = flyoa)(voa, y — z)
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which shows I'\f~(0) is a union of orbits (under v — voa) each of
which is necessarily finite by (3) and Riemann-Lebesgue. Moreover
since I'\F'(0) generates I" as we have noted, (3) also implies ¢ can
be taken continuous in our alternate case. Setting ¥y = 0 in (3)

T, (0)) = F(rea)(y, —2)
and so for any v¢f(0) we have
<7, 8(¥) — 8(0)) = {vea, ¥}

so {7, ¢(¥)) = <7, a(y) + ¢(0)> for a generating set of v, and thus
for all v in I'. Hence ¢(y) = 4(0) + a(y) = a(y) + 2, as asserted.

Now writing our typical finite orbit as v, = v,ca, v, = 7002, - - -,
¥, = Y._soat and noting that (3) now asserts that f(v){v, a(y) + 2> =
Froa){v, a(y) — a(z)), we see that

Ffroa) = f()<r, a(z) + 2

which yields the asserted form for the Fourier series for f when
we set z, = a(z) + z,.

COROLLARY 1. If H={xeG:f, = f} is montrivial while the
remaining hypotheses of Theorem 1 hold, there is self-map ¢ of
G/H (satisfying ¢(y) + H = $(y + H)) which, for the corresponding
function f on G/H, yields & (f)od = (f), so there is an automor-
phism & of G/H for which

o)+ H=¢(y + H)=aly+ H) + 2,

while the Fourier series of f (which can be identified with that of
f) has the described form.

In fact this is a corollary of the proof. Our original map ¢
suffices to produce our isometry p: as we observed earlier f,o¢ = f,
implies f,41°6 = fy+u, h, B’ € H, so we immediately obtain a self-map
» of G/H which satisfies

pr(zﬂn - —p(y+H)H = || feo0 _fy°¢H = ||/, "fy” = ”f_'z+H - _‘y+11|| .

Thus we obtain an automorphism a of G/H, arld a translation,
producing p as before; but now from f,o¢(¥) = fre+m(¥ + H), we
obtain f(¢(y) — (x + H)) = f(ly — a™(x + H)—=z) so that multiplication

by {(v,x + H) for vye H* and integration over G/H now yields
1, 6(y) + H)y = (1, a(y + H) + ¢(0))

for a generating set of v in the dual H' of G/H. This shows
$:y+ H—¢(y) + H is a well defined map on G/H, and of course
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the remainder of our argument now applies.

The hypothesis that ¢ is onto (for fe¢ C(G)) was used to insure
that p was an isometry, and not just distance reducing. On the
other hand if &(f)o¢ = <(f) then p is distance reducing and onto,
and thus necessarily an isometry, by the following®” (no doubt
known)

LeMMA. Suppose p is a distance reducing map of a compact
metric space which is surjective. Then D is an isometry.

We shall use the fact that the iterates of p form an equi-
continuous semigroup whose closure S in the topology of uniform
convergence is a compact abelian semigroup of distance reducing
maps. Trivially every element of S is surjective, while the kernel
(least ideal) K of S is a (compact) group [6, 4]. Since the identity
e = ¢* of K is surjective it must be the identity map; because ¢S
K each element of S, in particular p, has a distance reducing
inverse, which of course implies p is an isometry.

From the lemma then we have

COROLLARY 2. For feC(G) and ¢ a map of G into itself,
(f)ed = (f) tmplies the conclusions of Corollary 1.

2. Our results apply to almost periodic and weakly almost
periodic functions via a reduction to the above setting, using the
almost periodic (Bohr) compactification G* of G. For fe AP(G), the
space of almost periodic functions on G, let f* denote the extension
of f to G~

THEOREM 2. Let G be an abelian group whose Bohr compacti-
fication G* is conmected, and suppose ¢ maps G densely into itself.
If fe AP(G) has O(f)od C(f) (or even in (f)", the uniform
closure), then there is an automorphism « of G°/H, where H={x¢
G*: f¥ = f*}, and 2, 2, € G* for which

(4) ¢(¥) + H=a(y + H) + z

while the Fourier series for f is a sum over the finite orbits of the

1) I am indebted to R. Burckel for pointing out that a slightly weaker assertion
is made by Exercise 13, p. 104, of Kaplansky’s Set Theory and Metric Spaces, Allyn
and Bacon, 1972, and also for the following proof of the lemma which avoids semi-
groups: choose ;' so that the iterates p*;>—g uniformly; g is of course surjective.
For m;=n;:;1—n;21 we have a subsequence mj, for which p™jr’—h uniformly, and
from p™idop"ip) =p(*ik+1D we conclude hog=g which implies » is the identity map.
But trivially d(z,y)=d(h(z), h(¥)=d(p(x), p(y)) since p is distance reducing, and we
are done. (See the remark added in proof.)
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dual of a, of blocks of the form (2).

Our hypothesis implies Z7(f) o¢ C(f)", and we can identify
2(f)” with {f¥|G: x € G*} (viewing G as a subset of G° of course).
Thus there is a self-map p of G*/H with

(fn | G)°¢ = fp*(z+11) | G.

Now the fact that ¢ has dense range implies p is an isometry of
G*/H under its translation invariant metric

(x + Hr Y + H)—‘—)” x*+H _fy*+H”

so again we obtain our automorphism determining p» and the fact
that

fH o) — (@ + H) = f*(y —a™ (@ + H) — 2)

for ye G, x€G*. So invariant integration over G*/H leads again to
the fact that

¢(y) + H=ay + H) + ¢0),

as in the proof of Corollary 1; the asserted form of the Fourier
series for f follows as before.

Evidently if a, H, f and ¢ satisfy the indicated relation then
(fleg < (f)".

Note that when G is a noncompact abelian group I” is always
uncountable while I"\f*~(0) is countable, so H, the subgroup of G*
orthogonal to I'\f*(0), is nontrivial. (H N G can easily be trivial,
as for G = R, f(x) = ' + ¢“*7.)

For f weakly almost periodic <7(f)e¢ C &°(f) implies (f) “opC
Z(f)™, where ~* denotes the weak closure; indeed for ge «”(f)™™
we have a net f, — g weakly, hence pointwise, so f,o¢ — gog point-
wise, hence weakly since go¢ is the only possible weak cluster point
of that net, yielding our assertion. We want to note that this fact
has the consequence that

(fop < Z(f*)” (uniform closure)

where f° is the almost periodic component of f, so that Theorem
3 will apply to relate f¢, ¢ and an automorphism of a quotient of
G* (when G* is connected).

With W(G) the space of weakly almost periodic functions on G
we have the decomposition [1, 2]

(5) W(G) = AP(G) @ Wy(&)

where W,(G) is the translation invariant space consisting of those
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elements of W(G) having zero in the weak closure of their orbits,
while the projections corresponding to (5) are bounded, and thus
weakly continuous. Now if f= f* + f°, where f°¢ W,(G), then we
have x, in G for which f;, — 0 weakly, hence pointwise; moreover
we can assume {f;} converges uniformly to some element g of

Oo(f*)~, so
fxa——)g + 0

pointwise and thus f,,o¢ = f,, — go¢ pointwise, so weakly. But
since our projection onto Wy (G) is weakly continuous and commutes
with translation we obtain f;, — 0 weakly, whence f;, — go¢ weakly.
As the only possible uniform cluster point of the net {f;,}, go¢ is the
uniform limit of the net, and we conclude go¢ e ().

But f2 — 0 weakly implies f7,,, — 0 weakly for any z, whence
by the above argument f;.., — g, and so g,°¢ € Z7(f*)”; now the fact
that @(g)” = &(f*)~ for any ge (f*)~ (which follows, say, from
the fact that g = " |G for some zeG*) shows Z2(f*) o9 C Z(f%,

as desired.

COROLLARY 3. Suppose G is an abelian group with connected
Bohr compactification, and f is a weakly almost periodic function
with almost periodic component f°. If ¢ maps G densely into itself
while®? 7 (f)eg C 7 (f)™ then 7 (f*)ed C 2(f*)~, and the conclusions
of Theorem 2 relating f* and ¢ apply.

3. We conclude with some variants and remarks. One variant
yielding the same conclusion is provided by the hypothesis that
(f)es D Z(f), by an almost identical argument. (Without ¢ 1—1.)
Others are &7(f)e¢ C g + < (f) and the reverse, where g finally turns
out to be a constant of mean 0, so 0. Moreover Theorem 1 and
Corollary 1 hold if only O(f)o¢ C €(f), the closed convex hull
of the orbit of f. Indded this implies &7(f)o¢ C Z€7(f), so that
composition with ¢ provides an isometry of this compact metric
space, which is thus necessarily onto; being linear it takes extreme
points to extreme points. But each extreme point lies in <(f), and
once one translate is extreme all are by translation, so #&7(f) is the

2) In fact, for F the generator of an invariant filter [5], {fxo¢: x€ F}c(f)™
is an adequate hypothesis. This can be seen most easily from the alternate proof
there [5, pp. 420-1], which shows the filter of closed sets on G¥, the weakly almost
periodic compactification of G, generated by the sets (x+F)~ (with z in a dense sub-
group Gy of G) contains the least ideal K=G° of G*. Since the elements of Wy(G)
appear on G* as the functions vanishing on G% an argument paralleling the preceding
(but using the filter with base G% shows we have a g with g.€2(f%~ for all z€G,,
hence all z in G, so our conclusion follows as before.
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set of extreme points, whence Z°(f)o¢ C°(f) again. The same
observation applies to Theorem 2 and Corollary 3, and the argument
shows any affine isometry T of &7(f) is of the form Tf, = fewr+.
where a is an automorphism of G/{z:f, = f} for which ||f, — f]| =
| fatm = £l 0 [If = Il = |(foa), — foarll.

As our next variant we note that we can handle one special
case of the more general question of when Z°(f)e¢ C £°(g) can occur.
Let H; be the subgroup {x€G: f, = f} of G.

THEOREM 3. Suppose G is a compact connected abelian group,
¢ a map of G onto itself, and (f)ep = £7(g9) for some f, ge C(G)
(or alternatively, for some f, ge L*(G) while ¢ is also measure
preserving). Then there is an isomorphism & of the subgroup H}
of I orthogonal to H, into I' for which H;} = aH}, so that the dual
map a: G/H, — G/H; is an onto isomorphism, while for ©: G—G/H,
the natural map,

(1) g = f,oan
and
(8) #x)eg0) + an(x), x2zeG.

Conversely for any such injection & of H} into I' for which there
18 a self-map ¢ of G satisfying (8), g defined by (1) has (g) =
7 (f)ep.

As will be noted the equality of orbits is essential to the proof.*
Indeed we only have to note that it provides two inverse maps p:
G/H; — G/H, and o: G/H, — G/H, satisfying, with an obvious abuse
of language,

(9) fx°¢ = g.v(a:) , gu = fa(v)°¢ .

Now we define our translation invariant metric d on the compact

8) For L? this last condition amounts to I|F (1)} K&, ">—112=3|F(Tea)1|? |<z,7>—
112, or Z(f (2= 1f(Toat)2) Re <x,7>=0, so that again |f|-%C) is a finite orbit of the
dual of a for C=¢0.

4) In fact it is essential to the result. For example with G=T7% s(,8,61,,€T
and 0<6<1, set ¢(t1,e2“'9)=(t1-e2’”92, h(e**)) where (say) h is any self-homeomorphism
of T (so ¢ is onto, and also a homeomorphism), and take f(f;,ts)=%;. Then fisy,5=
§1f=f(81,1) and for g(tl, ez’”"):fogzi(tl, 82”0)=t162n92 we have f(sl,32)°¢(t1, 82“02)=§1t182moz=
gesy 1ty €5°9), s0 Z(f)p(g). On the other hand it is a simple matter to see H,
is trivial, so the containment must be proper and no map « as in (8) can exist. (H,
is nontrivial of course; more generally if H, is trivial and G is a finite dimensional
torus just the containment suffices since it cannot be proper; for p is then a homeo-
morphism of our torus into another, G/H,, of no greater dimension, so invariance of
domain for R™ guarantees p is open, hence onto.)
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connected abelian group G/H; X G/H, via

(10) d((x, v), (@, ¥)) = [|fe — foll + 119, — 9,1
and the self-map 7 of this group by
(11) 7(z, ¥) = (o(y), p(x)) ,

and observe 7 is an isometry:

(@, v), 7', ¥)) = d((a(y), o)), (6(¥"), o(a")))
= ”.fa‘fy) - fa(y’)” =+ ng(z) — gp(x’)”
= Hfo(y)0¢ - fa<y'>°¢|] + ||f:a°‘j - fx"‘f’H
=lg, — gl + IIfe = for]] = d(x, v), &', ¥")) .

Thus we have an automorphism B3 of G/H; X G/H, and an element
(x,, ¥,) of that group for which

(a(y), p(x)) = B, ¥) + (@, Yo)
= (B, ¥) + @, B2, y) + Y)
= (Bux, ) + a(0), Bz, y) + p0)) .

Clearly then pB,(x, y) = a(y) depends on y alone, a: G/H, — G/H; is
an isomorphism, and since p and ¢ are inverse mappings we obtain
o(y) = ay) + 0(0), p(@) = a(x) + p(0), and a~'6(0) = p(0). Now (9)
says precisely

flet) — @) = g(t — a™(x) — p(0))

(the second equality follows by replacing = by alxz + p(0)]), and
repeating our computation of Fourier coefficients we obtain, for

eH} = (G/H))",
O, g F (1) = (roa, t — p(0))d(voc) .

Consequently for v in a generating subset of Hf, hence for all v
in H#, we obtain

v, 9(8) — 6(0)) = (ream, t)

as before, so ¢(t) € 4(0) + an(t) for all te G follows. The assertions
of Theorem 4 are now easily verified.”

The first part of our proof also shows how an isometry @ of
one orbit <7(f) onto another ~°(g) can arise. Indeed, using @ in
place of f, — f,o¢ we obtain an isomorphism « as above with @f, =
Ja—tim+o SO that

5) We could equally well consider ¢:G.—G; and & (f)¢p=c"(g); the same conclu-
sions follow simply by replacing G/H, and G/H, by Gi/H,; and G:/H, respectively.
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[fe = Fll = |91 — 9ll = | Gam1me@™ — goa™|
= ||[(gea™), — goa™'|] .

Thus h = goa™ has the same displacement function
x— ||h, — I

as f. Evidently any h with ||f, — f|| = ||h, — k|| (so H, = H;) and
any isomorphism a™ of G/H; onto a quotient of G give rise to g =
hoaw for which @f, = g,-1, provides an isometry of orbits, by a
permutation of the above norm equality. Consequently we have

COROLLARY 4. For G compact connected abelian and f, g in
C(@) or L G), if @ is an isometry of (f) onto £7(g) them there
18 an isomorphism a = G/H, — G/H; for which Of,=g.-1u+y, while
h = goa™ has

12) lhe = Rl = Ifs = fll, weG.

Conwversely for such an h and a™*, and g = hoarn, Of, = Gu-1, D70~
vides such an isometry.

(It should be noted that functions f and h with the same
displacement function can have radically unrelated Fourier trans-
forms. For example in L'0,2z) if f(x) =sinz and & is any
continuous function with say % = f on [x, 27) but whose graph over
(0, 7) is obtained from that of f by horizontal translations varying
with height (so {x €[0, 7): h(x) = y} is an interval of the same length
as {x €0, 7): f(z) = y}) then (12) holds.”)

A further analogue of our initial result follows when we assume
that & (f)e¢ C g (f), where g is a continuous function of unit
modulus (which insures p is again an isometry). Arguing as in
Theorem 1 (or Corollary 1) one merely obtains an additional factor
9(y) on the right side of (2), viz.,

(3 FO), @)y = Flream)(yoarm, y — z)g(y)

6) It might be worth noting that here the isometry f,—h, has no continuous
affine extension to the balanced convex set @ (f)=—<F(f) since f,=-—f): other-
wise since h and f are real

iL(T)'%L= Sh:c Re <7, adde = S@fr Re <7, xddx

=4>sz Re <7, a>dz=0 ( £ i—'ztf->

so that % would be supported by the two characters supporting f.



332 I. GLICKSBERG
which leads to the fact that

(3" &, 6) — 8(0) — am(y)y = %) if f(v) = 0.

(Here again « is an automorphism of G/H;, n: G — G/H; the natural
map.) Now

BY) = ¢(y) — ¢(0) — ax(y)

defines a self-map of G whose values on the support I'\f*(0) of 7
are identically g(y)/g(0) for each y € G by (8”), and so from (8"

FO, 6(0) + By) + an(y)y = f(vean)y, an(y) — an(2))g(y)
or, since (v, B¥)) = g(¥)g(0) if F(v) =0,
Flrear) = F)<r, (0) + an(z))g(0) .
COROLLARY 5. If (f)ep Cg(f), where g is a continuous

unimodular function, then there is an automorphism « of G/H;
and a self-map B of G for which

&1, BW)Y = g()g(0)
for all v im I'\F7(0) and
o(y) = ¢(0) + a(y) + B(Y)

while the Fourier series of f is a sum, over the finite orbits of the
dual of «, of blocks, as in (2), now of the form

@) ¢ 300 [L7(e Yo -

Conversely for any such z, and o, and B with values constant on
the support of f, defining ¢ from a, 8, and g by g(y) = g(0){v, BY))
for v in the support of f, we obtain” (f)e¢ = g7(f).

We can also characterize the elements of I.

THEOREM 4. For a compact connected abelian group G and a
unimodular function f, e’fel” for some € R iff

(13) o))
7) g will in fact be constant unless the relations among the elements of I"\/~%(0)
are special: for 7i,+-+,7; therein if II7;*=1 then Sn;=0 since the relation implies

(g(y)/g(0))Z™: (II77%, By)>=1, and G is connected. For a simple example where g is non-
constant, on T'% (written multiplicatively) take f(s,f)=s+%,a the identity say, and
for g any unimodular function, A(s, t)=(g(s,t), g(s,t)); then fs,tr08(s, t)=F(sg(s, t)5’,
tg(s, )T =g(s, t)(s8’' +tt")=g(s, t)fs’,t'(s, t).
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or iff
(14) ()7 feo(f) =& (F ).

The orbits can be taken in C(G) or L*(G). Trivially a character
f satisfies (18) since f, = f(x)f. On the other hand (13) implies that
for z, yeG/H; we have a unique p,(x)€G/H; for which f,-f, =
S fpy@ and clearly p,(y) = p,(x). But since |f| =1,

pry(w) - fpy(m’)[l = ”f(fp,,(w) - fpy(z’))H = ”fxfw - fx’fy”
= Hfm - fx' H

so p, is an isometry of G/H,, and again p,(x) = a,(x) + p,0) for
some automorphism «, of G/H,. Trivially f,f, = f-f, implies p,(0)=
Y, so

a,@) +y = p,&) = p,(¥) = a,(y) +x

and setting « = 0 yields ¥ = a,(y). Now continuity of translation
guarantees y — p, is continuous into the topology of uniform con-
vergence, so ¥ — «a, is also; thus for vye Hf = (G/Hf)", y — 7eoa, is
a continuous map of our connected group G/H, into the discrete
group H/ and so has the constant value voa, = v. Consequently «,
is always the identity and p,(x) = « + y, whence f,-f,=f"fosr,. Now

f(—2) f(—y) _ f(—2—y)
SO £ f()

so e’f = f(0)fel.

Our proof is completed by the fact that (14) implies (13), by
exactly the sort of argument given before Theorem 3. (f,-& (< (f))C
fZ(2(f)) implies we have an affine isometry of & (<°(f)) into
itself, and again it is necessary onto, taking extreme points into
extreme points, yielding (13).)

Finally we should note that no result quite as simple as Theorem
1 can hold if G is not connected; for example on T*' X Z, we can
take any function f supported by 7'* x {0} with no vanishing Fourier
coefficients, and ¢ the map induced by the interchange of the other
two cosets. On the other hand in the original setting we can allow
our distortion to take place (on Fourier transforms) on I', and then
the vital continuity of our invariant metric occurs in a broader
context: if ¢ is a measure on G with feCyI") then any map + of
I onto itself for which & (p) op ()" coimcides off f(0) with an
automorphism a of HiCI', and |ft] 18 supported by the finite orbits
of a (exactly as in Corollary 1). Indeed we 'have z — I, = zfi a
continuous map into C,(I") so that d(x, ¥) = ||f, — #,|l. i a continu-
ous invariant metric on G/H, defining its topology. So for the map
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p defined thereon by [0 = f,,, We have z€ G/H, and an automor-
phism B of that group for which p(x) = B(x) + #, and thus

(7)) = <&, p(OD P () = {B®) + 2, VDA(Y) .

(Note that f(v) # 0 implies v L H,.) For the dual a: H* — H!op
we therefore have

@, (V) — (L) = (2, VA(Y)
for all x, and so v = a on I'\z7(0) C H,” while

(7)) = @) = {2y V() ;

consequently £ is supported by the finite orbits of « as earlier while
foat = f1,. (As an example where z = 0, take p(dx) = sin zdx, a(n)=
—mn, and z = x.) Evidently an analogue of Theorem 8 in particular
can be obtained in the same context.

REMARK (added in proof). I am further indebted to R. Burckel
for locating the Lemma of §1 in the paper of H. Freudenthal and
W. Hurewicz “Dehnungen, verkiirzungen, isometrien,” Fund. Math.,
26 (1936), 120-122.
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