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FIBER HOMOLOGY AND ORIENTABILITY OF MAPS

J. WOLFGANG SMITH

In this paper we introduce a concept of fiber homology
for an arbitrary map f\X-»Y and coefficient module G.
This is a graded module denoted by H*(f*; (?) which reduces
to H*(F; G) when / represents an orientable fiber bundel
with standard fiber F. The concept of fiber homology per-
mits us also to define a generalized notion of orientability,
and these ideas turn out to be useful in the study of sub-
mersions. Our main theorem (obtained by means of a
spectral sequence) asserts that if the fibers of a submersion
f:X—*Y are acyclic in dimensions smaller than q, then the
rank rq of the fiber homology Hq(f%; G) is bounded above by
the sum of the q and (g+l)-dimensional Betti numbers of
X and Y, respectively. In the orientable case, the g-dimen-
sional Betti number of an arbitrary fiber f"Ήy) is bounded
above by rq9 and therefore also by the aforementioned sum.
This leads to a number of more specialized results. For
example, it is shown that the fibers of an orientable sub-
mersion /: R2m~1—>Sm must be either acyclic or homology
spheres, and moreover, the subspace of points in Sm corres-
ponding to the spherical fibers must have the homology of
a point.

1* Basic concepts. Let f:X—>Y denote a continuous map
between topological spaces. By a tubular neighborhood belonging
to / we will understand a homeomorphism

Φ: B x F & V

where B is an open connected subspace of Y, F a compact space
and V a subset of X, such that foφ is the projection B x F-* B.
Given a point y e B, we will write

*;= vnfy

where fy denotes the preimage of y under /, and given two points
y, y' e B, we let

Φfl Fy P* Fy,

denote the homeomorphism induced by Φ. The diagram

HJίfa G) H*(fy,; G)

4 • Ί
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(where i, if are inclusion induced, G is a coefficient module and if*
designates singular homology) gives rise to a linear relation

iΌΦ oi-1: H*(f,; G) > H*(f,.; G)

henceforth referred to as a horizontal relation induced by Φ. We
will employ the notation

(1.1) wΨw'modΦ

to indicate that the homology classes w, w' are horizontally related
via Φ. Now ljet W denote the linear subspace of the direct sum

(1.2) Σ #*(/*; G)
teY

generated by elements of the form [w — w'] as (w, wr) ranges over
all pairs satisfying a relation (1.1). This makes sense, inasmuch as
every element w eH*(fy;G) can be identified with a corresponding
element in (1.2), an identification which we shall always assume.
The fiber homology of / (with coefficients in G) is defined to be the
quotient module

It is to be noted that iϊ*(/*; G) reduces to H*(F; G) when / repre-
sents an orientable fiber bundle (see [4]) with standard fiber F. The
following simple and illustrative examples will exhibit the fiber
homology in a more general case.

EXAMPLE 1. Let XaRs denote the open subspace consisting of
points (x19 x2, x3) with \x3\ < 1, excluding the origin, and let /: X-+R
be given by

/ \JU) — l u g 11 JU 11 .

This defines a differentiate submersion from a punctured 3-space
to the real line whose fibers /„ are cylinders for y ^ 0 and spheres
for y < 0. It is easy enough to verify that the fiber homology is
given by

G p = 0, 2

0 otherwise .

In particular, to see that the fiber homology vanishes in dimension
1, consider two points y, y' eR with yf < 0 < y. The cylindrical
fiber fy intersects the plane x3 — 0 in a circle Cy, which (when
oriented) represents a generator weH^fy G). If we now subject
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Cy to a contraction (via concentric circles) in the given plane, we
obtain a corresponding family of homology classes WtβH^ft G) as
t varies from y to yf. At least for values t, t' which are not too
far apart, the corresponding homology classes will clearly satisfy a
horizontal relation (1.1). But by virtue of the fact that fy> is
simply connected, this implies that w is annihilated by projection
into Hx(f*\G).

EXAMPLE 2. Modifying the preceding example by deleting the
positive cc3-axis, one obtains a new submersion /: R3 —> R (after a
suitable change of coordinates) whose fibers are cylinders for y ^ 0
and planes for y < 0. This map is "fiber acyclic".

Returning to the case of an arbitrary map /: X —> Y, it is to be
noted that for every point y e Y one has a natural homomorphism

(1.3) H*(fy;G)—^H*(f,;G)

{canonical injection into (1.2), followed by natural projection), and
we will say that / is orientable at y (over G) if this homomorphism
is injective. A map is said to be orientable if it is orientable at
all points y e Y, and it will also make sense to say that / is orienta-
ble in a particular dimension. Moreover, one observes that these
definitions reduce to the classical conception of orientablity in the
case of fiber bundles.

A novel feature of this generalized notion of orientability lies
in the fact that a map f:X—> Y may fail to be orientable over
arbitrarily small neighborhoods of a given point y e Y, a circum-
stance which is exemplified by both of the preceding examples. Not
only do these submersions fail to be orientable, but this failure is
concentrated (so to speak) in the immediate vicinity of a particular
fiber (the fiber f0, which constitutes the smallest or innermost cylinder
in the given foliation of X). Fibers of this kind will be referred
to as "separ a trices", and one may define this concept as follows.
Let us say that a homology class w e H*(fy; G) is horizontally anni-
hilated over some neighborhood U of y, provided there exists a
tubular neighborhood Φ with BaU such that w4Ό' mod Φ, where
0' denotes the zero element in H*(fyr, G) for some yf e B. A fiber f
will be called a separatrix (over G) if it admits a nonzero homology
class weH*(fy;G) which is horizontally annihilated over every
neighborhood U of y.

In the present paper we shall restrict our attention to the class
of submersions. Little will be lost if we presuppose a C°° setting
and take "submersion" to mean a differentiable surjection /: X —•> Y
between paracompact differentiate manifolds with dim X >̂ dim Y,

y
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such that the differential df has everywhere maximal rank. On the
other hand, it should be pointed out that the proof of our Main
Theorem does not require as much. The crucial property which is
required for many steps can be formulated directly in terms of
tubular neighborhoods. Given a map f:X—>Y9 a subspace C c l
and a tubular neighborhood Φ: B x F —> V belonging to /, we will
say that Φ cuts C provided that

C n fy c Fy

for all yeB. The property in question is this:

Given y e Y and a compact subset CaX, there shall exist
^ ' a tubular neighborhood Φ such that y e B and Φ cuts C.

The proof of our Main Theorem also utilizes a spectral sequence
theorem obtained in [1], the proof of which actually requires, in
addition to (1.4), that X is second countable and locally compact,
and that Y is triangulable. Although these conditions on the map
f: X~> Y suffice for the Main Theorem, some of the more specialized
results which we shall present as corollaries presuppose also that
the fibers fy shall be manifolds. All these conditions are satisfied in
the case of a differentiable submersion.

2* Main theorem and corollaries* We will now state our
main result and develop a few of its implications. The notation Rp

shall indicate Betti numbers, and in particular, Rp(f*; G) shall denote
the rank of the p-dimensional fiber homology.

MAIN THEOREM. If f: X-+Y is a submersion and G a coeffici-
ent module, then

Moreover, if every fiber fy is connected and t-acyclic over G for
q — m <t <q, where m = dim Y, then

Λ,(Λ; G) ^ Rq(X; G) + Rq+1(Y; (?).

//, in addition, Hq(X\G) and Hq+1(Y;G) vanish, then Hq{f*\G)
vanishes.

In the orientable case one can say a good deal more since one
has also an inequality

Λ«(/,; G) <k #*(/*; G)

which holds for every point yeY. By a successive application of
our theorem one can therefore obtain
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COROLLARY 1. Let f: X-^ Y be a submersion which is orientable
over G in dimensions t <* p. Let X and Y be t-acyclic over G for
t f^ p and t :g p + 1, respectively. Then fy is t-acyclic over G for
all t <J p and every point y G Γ .

It will be shown in § 6 that a real-valued submersion /: X~> R
without separatrices is orientable. This fact, together with Corollary
1, implies

COROLLARY 2. Let f.X—^R be a submersion, and let X be t-
acyclic over G for t <; p. If for some t <; p and some point y e Y
the fiber fy is not t-acyclic over G, then f admits a separatrix over
G in some dimension s <^ t.

This result shows, in particular, that the separatrices which
have been exhibited in our Examples 1 and 2 were necessitated by
the existence of cylindrical fibers and the topology of X.

It is easy to see that a compact fiber cannot be a separatrix,
since such a fiber can be imbedded in a tubular neighborhood (in
consequence of (1.4)). This observation leads immediately to

COROLLARY 3. Let f.X—^R be a submersion, and let X be t-
acyclic over G for t < p. If every noncompact fiber is t-acyclic
over G for t <. p, then

Rp(fy; G) £ RP(X; G)

for all y e Y.

Our assumptions imply that there are no separatrices in dimen-
sions t <^ p, and this implies orientability in the same range. One
may therefore conclude by Corollary 1 that the fibers are acyclic in
dimensions t < p. The Main Theorem now gives Rp(f*\ G) ̂  RP(X;
G), and since / is also orientable in dimension p, one obtains the
inequality in question.

Apart from real-valued submersions, another particularly simple
class is given by submersions of codimension 1, which is to say,
submersions having 1-dimensional fibers. Here we can mention the
following result:

COROLLARY 4. Let f: X—> Y be a submersion of codimension 1
having connected fibers. If X and Y are acyclic over Z2 in dimen-
sions 1 and 2, respectively, then f admits no compact fiber.

It should be noted that if the fibers of a submersion of codi-
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mension 1 are assumed to be connected, then these fibers can only
be circles or lines. Under the given acyclicity conditions on X and
Y, our corollary concludes that there can be no circular fibers, and
this actually implies that / is equivalent to the natural projection
Y x R -» Y. For a detailed study of the codimension 1 case, we
may refer to [2].

To establish Corollary 4, we first apply our Main Theorem with
q — 1 to conclude that Rx(f*\ Z2) = 0. It therefore suffices to show
that / is orientable in dimension 1. The easiest way to see this,
perhaps, is to consider the subset Ua Y corresponding to circular
fibers and observe that the restriction g of / to the preimage of U
represents a circle bundle, and this is certainly orientable over Z2.
Now / will be orientable if for any yeU> the homomorphism (1.3)
turns out to be injective. But this homomorphism clearly factors
as follows:

H*(Λ; Z2) -±+ #*(</*; Z2) -±~* Hm{f*\ Z2)

where φ and ψ are the obvious homomorphisms. Since g is orient-
able over Z2, φ will be injective, and it is also evident that ψ will
be an isomorphism. The composition is therefore injective.

It may be of interest to point out in connection with Corollary
4 that a submersion /: R3 —> S2 with connected fibers can be obtained
from the Hopf flbration Sδ —> S2 by deleting a point in S3. More-
over, we have shown in [2] that every submersion / : X - > S 2 of
codimension 1 with connected fibers arises from this Hopf fibration
by deleting a subspace WczS3.

In the remaining corollaries we will be concerned with submer-
sions /: Rn —> Sm which are orientable over some coefficient module
G. It should also be noted that these results depend on the fact
that the fibers are manifolds.

COROLLARY 5. There does not exist an orientable submersion
f: Rn -> Sm for n < 2m - 1.

For such a submersion one could conclude by Corollary 1 that
all fibers are ί-acyclic over G for t < m — 1. But since the fibers
are (n — m)-manifolds and n — m < m — 1, it follows that the fibers
are ^-acyclic over G for all t. By the Vietoris-Begle theorem for
submersions [3], this would imply that Sm is acyclic.

COROLLARY 6. For an orientable submersion f: JR
2m~1-^Sm every

compact fiber must be a homology sphere and every noncompact
fiber must be acyclic. Moreover, the subspace U a Sm corresponding
to compact fibers must have the homology of a point.
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One sees as before that every fiber is ί-acyclic for t < m — 1.
For the noncompact fibers this implies total acyclicity. The compact
fibers will be homology (m — l)-spheres, provided they are orientable
(in the sense of manifolds). This is easily established in the differ-
entiable case if we consider the tangent bundle τ and normal bundle
v to fy. Clearly v is a trivial bundle (since it maps to the tangent
vector space S™ under df) and is therefore orientable. On the
other hand,

where τ denotes the tangent bundle to R2m~\ Since v and τ are
both orientable, τ must be orientable, and this implies that fy is
also orientable. The conclusion about U follows now from a gener-
alized Thom-Gysin sequence (Theorem 4.9 of [1]).

We have previously observed that submersions satisfying the
hypothesis of Corollary 6 can be obtained in the case m = 2 from
the Hopf fibration S3 -> S2, and it is clear that one can do likewise
for m = 4 and 8. It is an open question whether orientable sub-
mersions /: Λ2*"1 -> Sm exist for mφ 1,2, 4, and 8.

COROLLARY 7. Let f: Rn —> Sm be an orientable submersion
with 2m — 1 <̂  n ^ 3(m — 1). Then every compact fiber must be a
homology sphere.

As before, every fiber must be ^-acyclic for t < m — 1, and
every compact fiber fy must be orientable. By Poincare duality
applied to fy, ί-acyclicity for 0 < t < m — 1 implies ί-acyclicity for
n — 2m + 1 <t < n — m. But the stipulated relation between n
and m implies that the union of the two intervals is precisely the
interval 0 < t < n — m. Using once more the fact that fy is orient-
able (together with O-acyclicity), one also has Hn_m(fy; G) ̂  G, as
was to be shown.

3* Homology of submersions. With every submersion /: X—>
Y and coefficient module G one can associate certain homology groups
Hs>t(f; G) which arise quite naturally and can be studied on an
axiomatic basis. The importance of these groups in the context of
the present paper stems from the following theorem, which is the
main result established in [1],

THEOREM. Let f:X—>Y be a submersion and G a coefficient
module. There exists a convergent E2 spectral sequence with
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and E°° isomorpkic to the bigraded group associated with a filtra-
tion of H*(X, G).

It is to be noted that the given spectral sequence reduces to
the Serre sequence in the case of a fibration.

All that we shall need to know about the homology groups
HStt(f; G) is that they can be computed by means of a certain
algorithm, which is fully described in [1]. For the convenience of
the reader we will now give a brief summary of this algorithm.

Firstly, one requires the notion of a simplicial bundle over a
simplicial complex K, which may be defined as a map p: E—> \K\,
together with a function which to every simplex σeK assigns a
homeomorphism σΦ:\σ\ x Fσ** Eσ, where Fσ is compact and σΦ is
the restriction of a tubular neighborhood belonging to p, such that

(Bl) E - U Eo
σeK

(B2) ,Φ cuts Eσ for every face τ < σ .

With every simplicial bundle p: E —>\K\ and coefficient module G we
will associate a chain complex C*(K Ht(F; G)) in which the homo-
logy groups {Ht(Fσ; G): σeK} function as a local coefficient system.
The s-dimensional chain group (s Ξ> 0) is given by

(3.1) CS(K; Ht(F; G)) = Σ H.(\σ\, \σ\) <g) Ht(F0; G)

where the right side represents a direct sum, Ki8) denotes the set
of s-simplexes in K and |σ | c \σ\ the boundary. The chain boundary
3 is defined on generators a (x) c through a formula

(3.2) 3(α (g) c) = Σ eτ

σ(a) <g> %{c)
re #(*-!)

where

ε;:Hs(\σ\,\σ\) > HU\τ|, | τ|)

are incidence homomorphisms and

(3.3) ϊσ: Ht(Fo; G) > Ht(FT; G)

are so-called fiber projections, obtained as follows. For each σeK
we choose a point σe\σ\ and identify Fσ with F$ via aΦ. For τ <
σ, one has τe |<7|, and by [virtue of (B2) the homeomorphism 0Φl
defines an injection" Fσ -> Fτ (whose homotopy class does not depend
upon r and σ) which induces the fiber projection (3.3). This com-
pletes our definition of the chain complex associated with a simpli-
cial bundle.
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Now let /: X —• Y be a map. A simplicial bundle p: E —> \K\ is
said to approximate / i f EaX and p is the restriction of / to E.
A sequence {ap: aE-+ \aK\} of simplicial bundles is called an approxi-
mating sequence for / if

(AX) e a c k "^ a P P r o χ i m a t e s / and every compact subset of X is
contained in some aE;

/\o) ^ o r a < β> ocE c βE and some subdivision of aK is a subcom-
plex of βK.

It has been shown in [1] that every submersion admits an approxi-
mating sequence.

Given an approximating sequence, one obtains chain projections

(3.4) φί: Cs(aK; Ht(aF; G)) > Cs(βK; Ht(βF; G))

for a < β. These are defined on generators a (x) c by a formula of
the form

(3.5) φl(a (x) c) = Σ , BoJa) (g) fc(c) ,
ewe βKl*)

where

Bσ,ω:H.(\σ\,\σ\) > H.(\ω\, \ώ\)

represents a subdivision operator for | ω \ c | σ \ and is zero other-
wise, and jai aFσ —> βFω denotes the composition

which makes sense for \ω\c:\σ\ by virtue of (A2).
The chain projections give us a direct system of chain com-

plexes, and therefore also a direct system of homology groups. We
obtain the desired homology of / as a direct limit by setting

H.tt(f; G) ~ lim H.(aK; Ht(aF; G)) .

4* Identification of the fiber homology. In this section we
shall prove the following

THEOREM. For every submersion f:X—> Y and coefficient
module G there is a canonical isomorphism

The proof of our Main Theorem, which will be given in the
following section, depends upon this result, or more precisely, upon



462 J. WOLFGANG SMITH

the surjectivity of φ*.
To prove the theorem at hand, we require the algorithm of

§ 3 for the computation of the homology groups H9tt(f; G). We
will take an approximating sequence {ap: aE —> \aK\} for /, and for
each a we let aCS}t denote the corresponding chain group (3.1). One
now observes that when σ is a vertex of aK, H0(\σ\, \σ\) can be
identified with the additive group of integers, and this permits us
to identify α C M with the direct sum

(4.D , E ( 0 ) W ; ; G ) .

Considering formula (3.2) for the chain boundary d: aCut -> αC0>t, and
bearing in mind the definition of the fiber projections ir

09 one sees
that d(aCltt) is precisely the submodule Wa,t of the direct sum (4.1)
generated by the subset

{[w — w']: w &w' mod σΦ for σ e ttK
{1)} .

Moreover, the inclusion induced homomorphism

Ht(aFσ;G) >Ht(f:;G),

defined for every vertex σ in aK, induces a canonical homomorphism

*«: Σ Ht(βF,;G) >Σ.Ht(f,',G)

which obviously maps Wa>t into the submodule W (defined in § 1).
Consequently one obtains a canonical homomorphism

(4.2) fα*:«#0, t

where aHOtt denotes the O-dimensional homology of the chain complex

We recall that the homology module HOtt(f; G) is given as the
direct limit of a direct system

(4.3) {JKQ,t, φl.}

the projections φβ

a* being induced by the chain projections (3.4). It
is easy to verify that the homomorphisms (4.2) commute with the
projections φβ

a*. For under the representation (4.1) of the O-dimen-
sional chain groups, formula (3.5) assumes the form

(4.4) φl{c) - £κJUfi) f

where jo*:aFσ->βFσ is induced by the inclusion aF$(ZβF$9 so that
the desired commutativity holds already on the chain level (i.e.,
ψβθφδ

az=z ψa for a < β). The homomorphisms (4.2) constitute there-
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fore a homomorphism of the direct system (4.3), and this induces
a homomorphism

f*:H0>t(f;G) >Ht(f*;G)

in the direct limit.
To establish the surjectivity of ψ*, it will suffice to show that

for any point y e Y and homology class w e Ht(fy; G), there exists
an index a and an element ceaC^t such that

(4.5) [ψa(c) - w] e W .

But this is very easy to prove. Let w be represented by a singular
cycle Z having its support in some compact subset Cafy. Property
(Al) of the approximating sequence permits us to choose an index
a such that C(ZaE, and we let σ denote the carrier simplex of y.
This means that y is an interior point of \σ\, and for an arbitrary
vertex τ of σ we can define a singular cycle Zf in aFτ, through the
formula

This determines an element w' e Ht(aFτ; G), and recalling the repre-
sentation (4.1), we obtain thus a chain ceaC0,ty which obviously
satisfies (4.5).

A considerably more complicated argument will be required to
establish the injectivity of ψ*. To simplify the proof, it will be
convenient to assume that our approximating sequence satisfies the
additional condition

(A3) lim mesh aK = 0 ,

which implies that if U is any open set in Y, there exists an index
a such that U contains a vertex of aK. It is quite easy to see
that if one has an approximating sequence satisfying (Al) and (A2),
the additional condition (A3) can be achieved by taking appropriate
subdivisions. It will also be convenient to precede the proof of
injectivity by three lemmas.

To begin with, it will be recalled that an element u e W admits
a representation of the form

(4.6) u = Σ [w< - w<]
ΐ = l

where w, e H*{fy:, G), w\ e H*(fy£ G) and

wt & w'i mod iΦ

for some tubular neighborhoods β\ Bt x tF-* Vt belonging to /. If
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K is a complex with \K\aY, we will say that the representation
(4.6) belongs to K provided the points yi and y[ are vertices of K
for all i.

LEMMA 1. Given c e aC0$t such that ψa(c) e W, there exists an
index β > a such that ψa(c) admits a representation (4.6) belonging
to βK.

To prove this, let us consider an arbitrary representation (4.6)
for the element ψa(c). By virtue of (A3) we can choose β > a so
that each subset Bt contains a vertex of βK. For each index i we
may now choose points yt, f/ί el?, Π βK{0), with the proviso that yt =
yt when yte βK

{0), and y\ — y\ when τ/t e βK
{0). Moreover, (4.6) implies

that we can represent wt and wί by singular cycles Z* and Z{, in

iFyi and J?%>v respectively such that

Setting

we obtain corresponding homology classes wi e H^if^; G) and w\ e
H*(fv'.\G), and we can now rewrite the representation (4.6) for

ψa(c) in the form

It will be shown that

(4.7)

To establish this, one observes that ψa(c) must be a linear combina-
tion of elements corresponding to vertices of aK. Our construction
insures that [10* — w^\ vanishes when yiQ.βK

m

f and similarly [wί — w'i\
vanishes when yίeβK

{0\ This means that the summation in (4.7)
represents a linear combination of elements corresponding to vertices
which do not belong to βK. On the other hand, since the terms
[ϊdi — w'i\ involve only vertices belonging to βK, one may now con-
clude (4.7). Consequently one has

r
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which is a representation belonging to βK.

LEMMA 2. Given c e aC0>t such that ψa(c) = 0, there exists an
index β > a such that φβ

a(c) = 0.

Since αC0)ί is generated by elements w eHt(aFτ;G), where τ is a
vertex of aK, it will suffice to establish the lemma in the case c =
w. Let w be represented by a singular cycle Z in JFl. Since ψa

annihilates w, there exists a compact subspace C c / : such that Z
bounds in C. If we now choose β > a such that C c ^ (we are
using properties (Al) and (A2)), then the inclusion induced homo-
morphism

JW.Ht(aFτ;G) >Ht(βFτ;G)

annihilates w, which implies by (4.4) that φ£(w) — 0.

LEMMA 3. Let Φ: B x F —> V and Φ: B x F •-+ V be tubular
neighborhoods belonging to f, such that Φ cuts V and B p\ B is
connected. Let y, y' e B f) B, and let Z denote a singular cycle in
Fy. Then

Φlf,Z ~ Φ^Z in Fy. .
y.

We may assume without loss of generality that B = B and Fez
F, which implies, moreover, that VaV and FxczFx for every x e
B. Considering Φy

y' and Φy

y' as maps from Fy into Fy>, it will suffice
to construct a homotopy H: I x Fy > Fy> such that

(4.8) H: Φΐ ~ Φy

y

f .

Let φ: I--> B denote a path from y to yf. The requisite homotopy
H may now be given by the formula

H(t, x) - ΦlfoΦy

φ{t)oφ^\χ)

which obviously gives (4.8).
At last we are ready to establish the injectivity of ψv It will

suffice to prove that if ψa{c) e W for some c6αC0 ) ί, then there exists
an index 7 > a such that ψr

a(c) e W7. We first apply Lemma 1 to
conclude that there exists a β > a such that ψa(c) admits a repre-
sentation (4.6) belonging to βK. By virtue of condition (Al) one
may further assume that Vt c βE for each index i, which means
that each homology class wύ and w[ in the representation (4.6) can
be represented by a singular cycle Zi and Z[ in βFy. and βFy'ίy res-
pectively, such that
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The cycles Zt and Z- induce corresponding homology classes βWi e
Ht(βFy.; G) and βw[ e Ht(βFy\) G), and this gives an element

r

c' = Σ [*w< - /*<]

in Ĉo.ί such that ^(c') = ^α(c). Since ψa = ψβ°Φa, it follows that
α̂ j annihilates [̂ «(c) — c']. By Lemma 2, this element is also anni-
hilated by φr

β for some 7 > β, and this leads to a formula

&(<?) = Σ ίrWi ~ rWί] ,

in which the homology classes rwt and Γwί can once again be repre-
sented by the singular cycles Zt and Z , respectively. It remains
to be shown that

for all i. Since each subset Bt is open and connected, we may
assume without loss of generality that the vertices yt and y[ can
be joined by an edge path in 7K (condition (A3) guarantees that
this will hold for sufficiently large values of 7). Let τ0, •••, τ%

denote successive vertices of this edge path, and let

(4.9) Z^^Z; i = 0, " . , * .

The cycles Zd determine homology classes w5 e Ήt{rFτ.\ G)9 and one
sees that w0 = rwt and wn = rwϊ. It suffices therefore to show that

(4.10) [w, - w^] e drCut; j = 1, , n .

We note that

by virtue of (4.9). Moreover, if σό denotes the 1-simplex in rK
with vertices τά and τS-u then σ.Φ cuts Vt. One may conclude by
Lemma 3 that

wό & w,'-! mod σjΦ ,

which implies (4.10).

5* Proof of the main theorem* Let /: X—> Y be a submer-
sion and G a coefficient module. According to the main result in
[1], there exists a convergent E2 spectral sequence with
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(5.1) Eϊ,t ~ HUA G)

and E°° isomorphic to the bigraded module associated with a filtra-
tion of H*(X; G). By the result of § 4, (5.1) implies

(5.2) Elt~Ht{f*\G).

Since evidently 2?0% ̂  23Ό?o ^ JH"0(-XΓ; G), one obtains immediately the
desired equality # 0(/*; G) = R0(X; G).

Under the assumption that the fibers fy are connected, the
homology groups H8tO(f;G) evidently reduce to H8(Y;G), so that

(5.3) E!,0~H.(Y;G).

If one assumes further that the fibers fy are ί-acyclic over G for
q — m <t <q, one may conclude (by Theorem 4.1 of [1] and (5.1))
that

(5.4) Elt = 0 for all s and q — m <t < q .

Moreover, since the chain groups entering into the definition of
HS}t(f; G) are trivial for s > m — dim Γ, one also obtains

(5.5) Elt = 0 for s > m and all t .

The desired inequality

(5.6) Rq(U, G) £ Rg(X; G) + Rq+1( Y; G)

follows from conditions (5.2) through (5.5) by a simple spectral
sequence argument, which runs as follows.

We may assume q ̂  1. The exact sequence

(5.7) E;ϊί,o -^—> EQ\γ > coker d^1 > 0

gives the rank inequality

(5.8) rank Etq

ι £ rank coker dg+1 + rank Etfϊ,0 .

Since all differentials into the (q + 1, 0)-position are trivial, one has
Eq

qtl,oC:E2

q+ltOf and this implies by (5.3) that

(5.9) rank ##£„ rg Λί+1( Γ; G) .

Moreover, one observes by (5.4) and (5.5) that dq+1 is the only non-
trivial differential touching the (0, g)-position. This gives Ef,q **
ESX1, which together with (5.2) implies

(5.10)

The preceding observation also gives
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coker dq+1 ™ Eg+2 ** E~q .

But since E°° is isomorphic to the bigraded module associated to a
filtration of H*(X; G)9 this implies

(5.11) rank coker dq+1 S Rq(X; G) .

Finally, (5.8) through (5.11) yields (5.6).
If, in addition, Hq(X\G) and Hq+1(Y;G) vanish, then one sees

by the same considerations that the exact sequence (5.7) reduces to

0 >Hq(f*;G) >0 >0,

and this completes our proof.

6* Orientability of real-valued submersions*

THEOREM. A submersion f: X-> R is orientable if and only if
it does not admit separatrices.

In this section we shall prove the nontrivial half of this theorem
(the "if" part). This will involve looking carefully at representa-
tions (4.6) for elements u e W in the special case Y = R. Such a
representation will be called simple if

Vl < Vί ^ 2/2 < V% ^ Vz < '" <V'r

LEMMA 1. Every element of W admits a simple representation.

To begin with, one may assume without loss of generality that
one has a representation with yt < y\ for i <̂  r and yι ^ yi+1 for
i < r (this can be achieved by proper "labeling"). We also note
that if y e (yif yί), one may evidently "subdivide" the given repre-
sentation by setting

[Wi — w't\ — [Wi — w] + [w — wΊ] ,

where w denotes the (uniquely determined) element in H*(fy;G)
such that

Wi iiv w mod iΦ and w & wf mod ZΦ .

By the use of such subdivisions one can eliminate "partial intersec-
tions" between open intervals (yi9 y\), which is to say that one can
achieve the following condition: two intervals (yi9 yί) and (yh y'$) are
either disjoint or identical. The resulting representation need not
yet be simple, precisely on account of the second alternative. Let
us therefore suppose that for all values of i in some subset J one
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has Vi — y and y'ά = y'. It remains to be shown that one can con-
struct a simple representation for the element

(6.1) Σ [w, - wί] .
iej

To this end let CaX denote a compact subset containing all images
Vt corresponding to tubular neighborhoods *Φ with ieJ. By virtue
of (1.4) there exists a partition

y = y° <yι< <ys = y'

and tubular neighborhoods Φ3': B3 x F3 -> V3' such that [y'~\ yj] c 2?y

and Φ3 cuts C for j — 1, •••, s. For each i e J the homology class
Wi can be represented by a singular cycle Z t in tFy9 and this gives
rise to cycles

We let wieH*(fyj;G) denote the corresponding homology classes.
It follows now by Lemma 3 of § 4 that

wi"1 jh wi mod Φ5 for j = 1, , s .

Setting

w* = Σ wί

one obtains a simple representation

Σ [w3"1 - wj]
3=1

for the element (6.1).

LEMMA 2. Let w e Ht(fy; G) be nonzero, and let

w yfi (V mod Φ

where Oy> denotes the zero in Ht(fyr9G). Then f admits a separatrix
fy+ for some point y* between y and yf.

The proof of this lemma is very simple. We may assume y<y\
and we let S denote the set of all points y e [y, y'] such that

w &Oy mod Φ .

It is an easy consequence of (1.4) that S is open. Since y' e S and
y ί S, there must be a point 2/* e [y, yr) belonging to the boundary
of S, and this means that /„• will be a separatrix.

The proof of our theorem can now proceed as follows. Let
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/: X ^ R be a submersion without separatrices. To show that / is
orientable, one must prove that a nonzero element w e Ht(fy; G)
cannot belong to W. But if w e W, one concludes by Lemma 1 that
it admits a simple representation

Σ [w* - wi]

and it may be supposed on the strength of Lemma 2 that the
elements wt and w\ are all nonzero (for if one element is zero, the
other member of the pair must be zero as well). Since w'r is the
only element in the given representation which corresponds to the
point y'r9 w'r can be nonzero only if y — y'r and w = w'r. But this
would imply by the same token that w1 — 0, and this furnishes the
desired contradiction.

REFERENCES

1. P. C. Endicott and J. W. Smith, A homology spectral sequence for submersions,
Pacific J. Math., to appear.
2. J. W. Smith, Submersions of codimension 1, J. Math. Mech., 18 (1968), 437-444.
3. J. W. Smith, On the homology structure of submersions, Math. Ann., 193 (1971),
217-224.
4. E. H. Spanier, Algebraic Topology, McGraw-Hill, 1966.

Received December 11, 1978 and in revised form May 31, 1979.

ROUTE 2, Box 16

PHILOMATH, OR 97370




