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INVARIANT SUBSPACE LATTICES
AND COMPACT OPERATORS

CECELIA LAURIE

A general question is what can the invariant subspaces
of a compact operator look like. To obtain information
about this, we examine certain lattices of subspaces of a
separable Hubert space with the intent of determinig
whether such a lattice could be left invariant by a compact
operator.

Identify a lattice of subspaces with the lattice of projections
onto those subspaces and consider only those lattices which are com-
mutative and closed in the strong operator topology. The subclass
of lattices examined are those which are multiplicity free (in the
sense that the algebra generated by the projections is a maximal
abelian self-adjoint algebra) and are generated as a lattice by a
finite number of (mutually commuting) totally ordered sublattices.
It is found that, although not all such lattices are left invariant
by a compact operator, if the generating sublattices satisfy a
natural independence condition, then there will be a compact, in
fact Hilbert-Schmidt, operator that will leave the lattice invariant.

l Introduction* Let Sίf be a separable Hubert space. If P
and Q are two projections on έ%f then their meet, P Λ Q, is the
projection onto the intersection of their ranges and their join, P V Q,
is the projection onto the subspace union of their ranges. These
operations along with the partial ordering of inclusion of ranges
enables us to talk of lattices of projections. The term subspace
lattice will refer to a lattice of projections on ^f which is closed
in the strong operator topology and contains 0, the zero projection, and
I, the identity projection. We restrict our attention to commutative
subspace, lattices. We will call a totally ordered subspace lattice
a chain,

Ringrose has shown that, given any chain on Jg^ there is a
compact (in fact rank 1) operator leaving the chain invariant ([5],
Lemma 3.3). The question arises of what other possible (commuta-
tive) subspace lattices are left invariant by some compact operator.
A natural class of subspace lattices to consider are those generated
by a finite number of mutually commuting chains.

We first note that not all such lattices can be left invariant by
a compact operator. Let ^ be a chain of projections on Sίf and
consider the subspace lattice & generated by the two chains ^
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and <Sf ̂  = {I - P: P e ^ } . (Any subspace lattice ^f which is closed
under taking orthogonal complements can be decomposed in this
manner. See [1], p. 484.) Suppose further that ^ " , the von
Neumann algebra generated by ^ , is nonatomic, i.e., that every
nonzero projection in ^" has a nontrivial subprojection in ^ " . Then
& cannot be left invariant by a compact operator.

(To see this, first note that if an operator K leaves & invariant,
then each projection in & corresponds to a reducing subspace for
K. Since <£"' is nonatomic, one can regard g 7 as a "continuous"
spread of projections from 0 to /; more specifically there is a one-one
(order preserving) correspondence between & and the unit interval
[0, 1]. (See Prop. 3.2.) It is also known that every compact operator
on Sίf has a nontrivial irreducible subspace. Now suppose that K
is compact and leaves & invariant. Letting Q be the projection
onto a nontrivial irreducible subspace for K, we have that P Λ Q
reduces K for every P e ^ 7 and hence that P Λ Q — 0 or Q. Since
O e ^ and I e ^ , this would imply that for some ί0 in [0,1] the
projection Po in ^ corresponding to t0 would satisfy Po Λ Q = 0 and
PQ Λ Q = Qf a contradiction.)

Hence we wish to examine further the structure of subspace
lattices generated by a finite number of mutually commuting chains.
This is facilitated by restricting our attention to multiplicity free
lattices. (A commutative subspace lattice £f is multiplicity free if
the von Neumann algebra generated by £f is a maximal abelian self
adjoint algebra.) In § 3, we show that a multiplicity free lattice £f
generated (as a subspace lattice) by n chains is unitarily equivalent
to a certain lattice of projections in the multiplication algebra of
L2([0, iy, m) for some finite Borel measure m. Call this lattice Sf.
In §4,we introduce the notion of independence of chains, i.e., we say
^ Ί , •••, ̂ n are independent if for every Eif i ^ e ^ , we have that
Ex A Λ En ^ F, V V Fn implies that Ej ^ Fό for some j . The
chains generating £f being independent induces a property of the
"representation" measure m from which we can deduce the existence
of a Hilbert-Schmidt operator on L2([0, l]w, m) which leaves <£ in-
variant. (See §5.) Because £f and <£ are unitarily equivalent, it
follows that there is a Hilbert-Schmidt operator on Sίf which leaves
£f invariant.

The results in this paper are part of the author's doctoral dis-
sertation at the University of California, Berkeley and she wishes
to express her appreciation to her adviser, William Arveson, for his
guidance, assistance, and encouragement.

2 Terminology and notation* Throughout this paper,
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will denote a separable Hubert space. We collect here some standard
notation and terms that will be used.

If ^Γ is a self-ad joint collection of bounded operators in . 2 % ^ ) ,
then %" is the double commutant which equals the weakly (strong-
ly) closed algebra generated by %.

A m.a.s.a. is a maximal abelian self-adjoint algebra of operators.
An algebra of bounded operators is called nonatomic if there

are no minimal projections for the algebra. A minimal projection
for an algebra is a projection P such that every subprojection of P
in the algebra is either 0 or P.

If X is a set with a specified cr-field (α-algebra) of subsets, a
spectral measure on X is a function P whose domain is the σ-field
of subsets and whose values are projections on ^f such that P(X) — I
and such that Pi\Jn Mn) = Σ -FWJ whenever {Mn} is a disjoint
sequence of subsets in the σ-field.

The compact spectral measure associated with a self-adjoint
operator A is the unique spectral measure P defined on Borel sets

of the real line having compact support such that A = I tdP(t) where

S J
tdμxy(t) for μxy(M) = (P(M)x, y).

(See [3], §43.)
A spectral projection of A is a projection of the form P(M) for

M a Borel set where P is the spectral measure associated with A.
Most of the following terminology, used throughout the paper,

is that introduced by Arveson [1].
A subspace lattice J*f is a lattice of projections on £%f which

contains 0 and I (the identity), and is closed in the strong operator
topology. Throughout the rest of the paper the term lattice (of
projections) will mean subspace lattice.

A chain is a totally ordered subspace lattice.
A subspace lattice £if is said to have finite width if there is a

finite set of chains ^ , ^ such that £? is the subspace lattice
generated by ^ , , <afΛ. We denote this by ^ f = ^ 1 V - V ^ We
will call a subspace lattice £f multiplicity free if Jz?" is a m.a.s.a.

A partial ordering ^ on a set X is an order relation that is
reflexive and transitive, i.e., x ^ x and if x ^ y and y ^ z, then
x ^ z.

The partially ordered topological space (X, .<£) is said to be
standard if

( i ) X is standard in the sense that it is Borel isomorphic to
a Borel subset of a separable complete metric space in the relative
Borel structure.

(ii) There exists a sequence flf f2, of real valued Borel
functions on X such that, for all x and y in X, x ^ y iff fn(x) <; fn(y)
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for n ^ 1. This is equivalent to the existence of a sequence of Borel
sets El9 , En, such that x ^ y iff X^a?) ^ XE%{v) f° r every w.

The graph G of (X, ^) is defined by G = {(a?, i / ) e l x l : | / ^ ) .
A standard partially ordered measure space (X, <;, m) is a

standard partially ordered topological space with a ^-finite regular
Borel measure m.

Let (X, ^ , m) be a standard partially ordered measure space.
A Borel set E is said to be increasing if for xeE, x ^ y implies
yeE. Define £f(X, 5*, m) as {PE: E increasing} where PE is the
projection on L2(X, m) formed by multiplication by XE. Stf{Xy ^ , m)
forms a subspace lattice.

3* A representation theorem for multiplicity free finite width
lattices* If Sf is a commutative lattice, then £f can be represented
as a lattice of projections in the multiplication algebra of some ZΛ
space, i.e., Arveson has shown that £f is unitarily equivalent to an
J*f(Xy ^ , m) where X is a compact separable metric space, ^ is a
standard partial ordering, and m is a finite Borel measure. ([1],
Theorem 1.3.1.) Hence, one approach to studying commutative
lattices is to examine the relationships between the properties of
the partially ordered measure space (X, ^ , m) and the properties of
£f(X, ^ , m).

For this approach to be fruitful given a specific lattice =Sf it
would be desirable to obtain a reasonably concrete representation of
£f. For example, Kadison and Singer have shown that if £f is a
multiplicity free chain, then £f is unitarily equivalent to £f([0, 1],
5̂ , m) where ^ is the reverse of the usual ordering on [0, 1] and m
is a finite Borel measure with certain properties. In particular, if
£f" is nonatomic, then m is Lebesgue measure. ([4], Chapter 3.)

In this section we generalize this result of Kadison-Singer to
obtain that a multiplicity free finite width lattice £& generated by
n chains is unitarily equivalent to *Sf([0, 1]% <;, m) where ^ is the
product partial ordering on [0, ί\n and m is a finite Borel measure.
(The product partial ordering on [0, l]n is such that x <; y iff xt <̂  yt

for i = 1, , n where x = (xlf , xn) and y = (yl9 , yn).) In the
next section we examine the properties of the measure m.

Let <yV" be a chain of projections on Sίf. Since Λ^" is commu-
tative we can imbed it in a m.a.s.a. Let v be a unit cyclic vector
for this m.a.s.a. Then v is also a separating vector for the m.a.s.a.
and hence for ^K"9 i.e., if Pv = 0 for P e ^ " , then P = 0. Label
P e ^ ^ by Pt if (Pv, v) = ί. Note that t e [0, 1] and that the labeling
is well defined since v is separating. Let S^ — {t e [0, 1]: there
exists a Pi 6 ̂ ^}. We will call S^ the index set of ^ ^ with respect
to v. S^r contains 0 and 1 since Λr contains 0 and 7. We also
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have that, for s and t in S^ , if s < t, then P8 < Pt. By considering
increasing and decreasing sequences in S^ and applying the chain
properties of ^Y\ we see that S^~ is closed.

We will need the following lemma.

LEMMA 3.1. Let ^ be a chain of projections on <§ϊf. Then there
exists a self-adjoint operator A whose spectrum is contained in
[0, 1] such that the projections in & are spectral projections of A
corresponding to the sets [t, 1], 0 ^ t ^ 1, and such that A e ^ " .

Proof The construction of A is a fairly standard process. We
include an outline here since we refer to various parts of the con-
struction throughout Theorem 3.3.

Define 3f as {I— E:Ee^} where / is the identity projection.
Choose a unit separating vector v for 3f" as above. Let S = Ss be
the index set of £& with respect to v. (We introduce 3ί so that
our construction applies directly to our needs in Theorem 3.3 for
projections corresponding to increasing Borel sets of [0, 1]. The
problem is that, relative to the normal ordering of [0, 1], the sets
[t, 1] (and not [0, t]) are increasing).

Let x e ^ . Define a function fxx on S by fxx(t) = (Dtx, x).

E x t e n d fxx to gxx on R defined by

gxx(p) = inf /„(«) and gxx(p) = / . . ( I ) if p ^ l .
tSteS

Note that gxx is bounded by ||x||2, is monotone increasing, and con-
tinuous on the left. By a standard measure theory result, there
exists a measure mxx on the Borel sets of R defined by mxz([tu ί2)) —
gXχ{Q — ffββ(ίi). By polarization we obtain a measure m^ for each
x and 2/ in < ^ such that \mxy\ ^ ||α;|| \\y\\, mxy — myxf and mβy is
linear in x and conjugate linear in y.

By the properties of mxy we can define a map P from the Borel
sets of R into self-adjoint operators on 3^ by (P(M)x, y) = mxy(M)
where M is a Borel subset of R. Letting ί' stand for inf {s 6 S: t ^ s},
we have that for t2 ^ tί9

(P&ti, U))x, x) = gβΛ(Q ~ ff..(ίi) - Λ.(*ί) - /..(*!) = (Aί», ») " (Dtίx, x) .

This implies that P([tlf t2)) = A; - A; and hence that P([tu ί2)) is a
projection (since ^ is a chain) and that P([tu t2))P([slf s2)) — P([tlf ί2) Π
IX, 82)). By a measure theoretical argument, we can conclude that
P(M) is a projection for every Borel subset M of JB. Since the index
set S of £& is closed, iί — S is a countable union of disjoint intervals
(hy Tk) where lh and rk are in S. Writing (lk, rk) as the union of
half closed intervals [lk + 1/n, rk), n = 1, 2, , we see from the
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definition of mzz, z e <%f, that mzz((lk, rk)) = 0 and hence that
mxy(R — S) = 0. Hence we have that P is a real spectral measure
with compact support.

Define A on Sίf to be the operator I tdP(t), i.e., (Ax, y) =\ tdmxy(t)

for x and y in < ^ From the facts that mxy = mxy, \mxy\ ^ H^HIMI,
and mxy(Sc) = 0 with Sc[0, 1], we get that A is self-ad joint
(Hermitian), positive, and of norm less than or equal to 1. Note
that this implies that the spectrum of A is contained in [0, 1].

Since P is a real compact spectral measure such that A is \ tdP(t),

it is the unique spectral measure associated with A. Hence the
spectral projection of A corresponding to the set [t, 1] is P([t, 1]).
We wish to show that {P([t, 1]): 0 ^ t ^ 1} = <if. Let S e ^ . Let
D = / - E and label Z> by Dto if (Dt;, v) = ί0. Note by definition,
that ί0 is in S. Then,

(P([t0, 1 + 6))s, a?) - m..([ί0, 1 + e)) = /..(I) - fxx(Q

for every ε > 0 and every x e £%f. Hence, we have a tQ in [0, 1] such
that P([tQf 1]) = E. Now let ί e [0, 1]. Let t' = inf {seS ί ^ s } . We
have that for all ε > 0,

(P([ί0, 1 + e))αj, x) - /..(I) - /..(«') = ((/ - A0», »)

Hence P([ί, 1]) = I — D t'
 a n element of ^ . If we also label the ele-

ments of ^ by E = Er if (Ev, v) = r, then we can express the
above as P([t, 1]) = E^t, where ί' = inf {s e S: t ^ s}.

We have left to show that A e 9f". Let ε > 0. Cover [0, 1] by
disjoint half open intervals of length less than or equal to ε, i.e.,

[0, 1] c [0, ε) U [ε, 2ε) U U [we, (n + l)ε) = Λf0 U U Λf»

where l/(n + 1) < ε. Choose U e M*. Let Tt = Σ?=i UP(M%). Then T
is a finite linear combination of elements in 3f and || A — Γβ|| < ε.
Hence -A is the norm limit of operators in &" and hence A e

We wish to observe the following before continuing.

PROPOSITION 3.2. Let Λ" be a chain of projections on §ίf such
that ^V" is nonatomic. Let v be a unit separating vector for
Then the index set of ^V with respect to v is [0, 1].

Proof. The proof of this is essentially contained in Kadison-
Singer's paper ([4], Thm. 3.3.1 and Lemma 2.3.4). Label Pe^ί^ by
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Pr if( Pv, v) = r. Now let t e [0, 1]. The crux of the proof is showing
that the difference between \fr<tEr and J\r>tEr is either zero, in
which case both expressions equal the desired Et, or it is a minimal
projection in ^sK", contradicting nonatomicity.

This implies for our construction in the lemma that P([t, 1]) =
E^t if &" is nonatomic. Our correspondence between spectral
projections and ^ is thus more direct. We will first prove our
representation theorem with the added hypothesis of nonatomicity
on each chain and then indicate the quality of the changes if we
drop this hypothesis.

THEOREM 3.3(1). Let Sf = ^ V V ^ be a finite width
multiplicity free lattice where rέ?" is nonatomic for each i. Then
there exists a finite Borel measure m on [0, l]n and a unitary
operator U: L2([0, 1]%, m) -> ̂ f such that U£f([0, l]n, <*, m)^1 = £f
where ^ is the product partial ordering on [0, 1]*.

Proof. Since Jίf" is a m.a.s.a, there exists a unit cyclic vector
for J^f" in ^f. Call this vector v. We have that v is also separating
for £f". Lavel Ee^ by E = El if (Ev, v) = t. For each ^ con-
struct Ai as in Lemma 3.1 using v in each construction. Let Pt

denote the unique spectral measure associated with At. We have
that At is a self-ad joint operator whose spectrum is in [0, 1], At e ^",
and PJ\t, 1)) - EU for 0 ^ t ^ 1.

Since £f" is commutative and ^ ί ' c . S f " for each i, the C*-
algebra generated by A19 •••, An, / is commutative. Denote the
algebra by 8ϊ. Let X' be the maximal ideal space of 81, i.e., the set
of nonzero multiplicative linear functionals on Sί. By the associa-
tion ψ—^iψiAj), ''',ψ(An)) where f e Γ , Xr becomes homeomorphic
to a closed subset of the Cartesian product of the spectrums of
Al9 - ,An ([2], Theorem 11, §IX. 2). Let X be this subset. We
have that I c [ 0 , l]w.

By the Gelfand theory, we obtain an isometric isomorphic *
representation R: r^(X) —> $ where R(p(tlf t2, , tn)) = p(Alf , AJ
for p a polynomial on X. For x and 7/ in ^g^ define a linear func-
tional rxy on ^(JSL) by rβ y(/) — (R(f)x, y). By the Riesz representa-
tion theorem, this corresponds to a unique finite Borel measure on

X, call it wxy, such that (R(f)x, y) = ί/dw^ for fe<tf(X). Extend
n;βy to a measure on the Borel sets of [0, l]n by wxy(V) = ^ ( 7 ί l X)
where V is a Borel subset of [0, l]n. We can extend i? to a *
homomorphism from bounded Borel functions on [0, ΐ\n into ^f{Sίf)

by (i2(/)x, y) = \ fdwxy. (See 2, Theorem 1. §X. 2.)
Jro,iiw

Let / = [0, 1]. (There should be no confusion with / referring
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to the identity projection.) We now claim that i2(Z7x...x[ί>1]x...x7) =
Et-t where [t, 1] is the ith position. This result is the basis of the
rest of the proof.

We first make the following observation: Let w be any Borel
measure on [0, l]n and let wi be a measure on the Borel sets of [0, 1]
such that w\M) — w(I x xikfx ••• x /) where M is in the ith
position. Let / be a positive, bounded measurable function on [0, l]n

such that f(t) = g(tt) where t — (tlf •••,*») and g is a bounded
measurable function on [0, 1]. We then have by the observation
above that

f(t)dw(t) = ( g(t)dw%t) .
i]» J[o,il

Let t = (tlf , tn) be in [0, If and qt(t) = ί,. Then

At = R(qt) and (Atx, y) = {R{q%)x, y) = \ Qi(t)dwxy(t)

Define a projection valued function on the Borel sets of R by
Qt(N) = i2(Z7x...xiVnix...XI) where Nf] I is in the ith position. Using
the properties of R, one can verify that Qt is a compact, real spectral
measure and that wly(M) — {Qi{M)xi y) for M a Borel subset of

[0, 1], Hence we have that At = \ tdQt(t). By the uniqueness of
spectral measures associated with a given self-adjoint operator we
must have that Qt = Pt. We thus get, for [t, 1] in the ith position,
that

Λ(ZJx...χ[ί,1]x...x/) = Qi([t, 1]) - P,([ί, 1]) = £?ί-,

We are now in a position to construct a measure m and a
unitary operator U and show that they are what is needed to get
the desired unitary equivalence. Let v be the unit cyclic vector
for £f" chosen earlier. Define m to be the Borel measure on [0, 1]

given by wυv. Note that m{V) = I Xvdwvv = (R(Xv)v, v). We have

the following equalities for / a bounded Borel function on [0, l]n:

\\R(f)v\\2 = (R(f)v, R(f)v) = (R(ff)v, v) = J \f\2dwυυ = j \f\2dm .

Let I/°°([0, l]n, m) be the m-equivalence classes of bounded Borel
functions on [0, 1]\ Define Uo: L~([0, 1] , m)-*£έf hy UJ = # ( / > .
The above equalities show that Uo is well defined and isometric in
the L2([0, 1]*, m) norm. Since L°° is dense in L\ we can extend UQ

to a map U from L2([0, l]w, m) into Jg^ We claim that C7is unitary.
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To show that U is unitary we need to show that the range of
Uo is dense in 3ίf. Let r(R) = {#(/): /eL°°([0, If, m)}. We first
claim that r(R) is strongly dense in £?"', i.e., that r{R)" = ^ " . By
the result that i?(Z/x...χ[t,1]χ...Xi) = i7ί_.t where [t, 1] is in the ΐth
position, we have that ^ar^R) for each ί. Now since P I\Q —
PQ and PVQ = P+Q-PQ for commutative projections, =Ŝ  =
^i V V ί^crCB)". Hence .Sf"cr(jβ)'\ To get the inclusion the
other way, let T be in r(iϋ)". Since ^ c r ( ] ? ) and r(ϋ?) is com-
mutative, T commutes with each ^ and hence with £f. Since T
commutes with ^ it commutes with £f". Since .Sf" is a m.a.s.a,
we have that T is in £f" which implies that r(R)"c:£f". Now, since
r(2?) is strongly dense in Jϊf", for T in »SP" there is a sequence SΛ

of operators in r(R) such that Sn—>T strongly. Hence we get that
{Tv: Tejϊf"} is contained in the norm closure of {Sv: Ser(R)}. Since
the norm closure of {Tv: Te£?"} is Sίf (because v is cyclic for Jΐf"),
we conclude that the norm closure of {Sv: S e r(R)} is ^f, i.e., the
norm closure of the range of Uo is <%f, our desired result.

We thus have a finite Borel measure m and a unitary operator
U: L2([0,l]M,m)-><sr. We wish to show that U£f([0,l]», ^ , m ) C / - 1 - . ^
where ^ is the product ordering on [0, l]n, i.e., t ^ s iff tt ^ s, for
£ = 1, , n. We will accomplish this by showing that U C/"1 maps
a generating set of J*f([0f l]

n, ^ , m) onto a generating set for ^f.
(By a generating set for a lattice ^ we mean a subset L of i? 7

such that L is the strong closure of finite joins and meets of ele-
ments of L.)

We first make the following observation. For / e L°°([0, ϊ\n, m),
let Lf denote the operator on L2([0, l]n, m) determined by multiplica-
tion by /. We claim that ULfZJ-1 = R{f). Let g be in L°°([0, 1] , m)
and let v be our cyclic vector. We have

ULfg = Ufg = R{fg)v - R{f)R{g)v = R(f)Ug .

The result follows for g e L2 since L°° is dense in IΛ
Let ί = (t19 , O and s = (sl9 , O be in [0, l ] w . Let Fitr be

be the Borel subset of [0, l]n given by / x x [r, 1] x x I
where [r, 1] is in the £th position. Note that tt ^ st iff %Fi>r(t) ^
XFi r(s) for r running over all rational numbers in [0, 1]. We thus
have for <;, the product ordering on [0, 1]Λ, that t ^ s iff XFttr(J) ^
%Fitr(β) for i = 1, , n and all rational r in [0, ϊ\n. Let P<ff. be the
projection on Z/2([0, 1] , m) determined by multiplication by XFiιr.
Since {Fί>r: ί = 1, , n, r rational} is a countable set of Borel sub-
sets of [0, l ] w , we have that {PUr: ί = 1, ••-,%, r rational} generates
JS^([O, 1] , ^ , m). ([1], Theorem 1.2.2.)

Let L — {UP^rU"1: i = 1, , ^, r rational}. We wish to show
that L generates £f. By the observation above,
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Since Ei-re^if we have that L is contained in £f. Let Vt =
{2S£_r e <8V. r is rational}. If we can show that F< is strongly dense
in ^ , then the strongly closed lattice generated by L will contain
each if, and hence jδf. Let β e ^ . Let ί e[0, 1] such that E = E},
i.e., (Ufa, v) — t where v is our unit cyclic vector. Let {ts} be a
sequence of rational numbers converging to t. Let E\. be the pro-
jection in <ĝ  such that (2#.i;, #) = ί, . Then

\\{El. - E})v\\* = {{Et. - Et)v, {Eΐ. - Ei)v)
= {{El - Eί.)v, {Eί - Ei£)v) = \t, - t\

since either E\ — E\. or E\. — ̂  is a projection. We thus get that
Ei/o converges to E*v as j goes to °o. Since ^ commutes with £?"
and t; is cyclic for &", we have that {JŜ .} converges strongly to E*.
Letting rά = 1 — <a , we have that J5* is the strong limit of the
sequence {23?-,.,.}, i.e., that any projection in < 4̂ is a strong limit of
projections in TΓ<β We thus have our desired result that L =
{UPi^U'1: i = 1, •••,?&, r rational} generates ^

Our proof is complete. Let <Ξ be the product ordering on [0, ϊ\n.
We have constructed a finite Borel measure m on [0, ί\n and a unitary
operator U: L2{[0, 1]%, m) -> έ%f such that ί7 U~γ maps a generating
set for J*f{[0, l]n

f ^ , m) onto a generating set for ^ i.e.,

THEOREM 3.3(2). Theorem 3.3(1) is valid without the hypothesis
that each <&" be nonatomic.

Proof. The changes in the proof are minimal. Let ϋ% =
{/ — E: Ee^i}. Let v be our unit separating cyclic vector for £f".
Let Si be the index set of 3f%, i.e., St — {t e [0, 1]: there exists D e ^
such that (2>y, v) — t). One basic change is that whenever we
referred to the fact that P4([ί, 1]) = EUt before we would now have
to say that Pt{[t, 1]) = EUVi where t' = inf {s e St: t ^ s}. The only
other major change is in the final argument that {EUr\ r rational}
is dense in ^ . We would now have to argue that

{EUrr. rf = inf {s eSt:r <^ s} where r is rational}

is dense in ^ . We omit the details.

4* Properties of the representation measure* In this section
we will discuss some of the properties of the representation measure
m obtained in the construction in Theorem 3.3. We define the ith
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marginal measure of m as the Borel measure m< on [0, 1] defined
by m^M) = m(I x x M x ••• x I) where M is a Borel subset of
[0, 1], / = [0, 1], and M is in the ith position of the cross product.

COROLLARY 4.1. Let £f = ̂  V V ^ be a multiplicity free
finite width lattice represented as J?f([0, l]n, ^ , m) as in Theorem
3.3. Let Si be the index set of ^ = {I - E: E e ί f j . Express
[0, 1] — Si as Ufc Ik where the Ik are disjoint intervals (lk, rk) with
lk and rk in St. Then, for M a Borel subset of [0, 1], we have

mi(M) = μ(MΓίSi) + Σ Kh) ,

where μ is Lebesgue measure on [0, 1]. In particular, if ^ Γ is
nonatomic, then m< is Lebesgue measure on [0, 1].

Proof. Denote the complement of St in [0, 1] by Si. Since S*
is closed and contains 0 and 1, it is possible to find the Ik. Let lk

denote the left hand endpoint and rk the right hand endopoint of
Ik. Note that lk and rk are in St.

We have that

= mil x ••• x i l ί x ••• x I)

Recall that the measure (P<( )^ ^) is the measure defined by a
bounded monotonic function ht on iί where ht(t) — t' — inf {s e S^.
t<^s}. (See Lemma 3.1.) Note that t'eS*.

It is sufficient to show the result for semi-closed intervals [t19 t2)
where tx and t2 are in [0, 1] since these generate the Borel subsets
of [0,1]. (Technically one should consider {[t, 1]: t e [0, 1]} as part
of the generating set but, since the arguments would be similar,
we omit this detail.) Consider [t1912). Let K = {k: lke[t19 ί2)}. We
wish to show that mt{[tu Q) = μ([tί9 t2) Π St) + Σ*ejτM-ίfc)

For any t19 t2 in [0,1], we have that (\JkeκIk) U &tu t2) Π S<) =
[ίί, ^) Since the union on the left is disjoint, we have

Q ΓΊ SO + Σ K ί ί ί
keK

In particular, if £^" is nonatomic, then St = [0, 1] (see Prop. 3.2)
and we have m^M) — μ(M) for M a Borel subset of [0, 1] (and where
μ is Lebesgue measure).

Even though the marginal measures of a measure on a product
space may be quite nice, the measure itself can vary in structure
considerably. (For example, consider [0, I]2 and the following
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measures: μ x μ, product Lebesgue measure, and d, the disgonal
measure where d(V) = μ{x e [0, 1]: (x, x)e V). Both measures have
marginal measures equal to Lebesgue measure.)

Hence we investigate the structure of m further. We introduce
now the notion of independence of the chains in a finite width
lattice. This will have useful consequences for the representation
measure.

Let Sf = ̂ i V * V &* where each ^ is a chain. We say
^Ί> , ̂ n are independent if given Eit 2 ^ 6 ^ we have that

E, A Λ En ^ F, V V ^ implies Eά <: Fά for some j .

We first wish to comment that a lattice of the form ^ V &?±

(where ^ L = {I - E: Ee ΐf} and 'if Φ {0, /}) does not satisfy this
condition. (Recall from the introduction that a multiplicity free
lattice ^ — ̂ ^j^1- where cέ?" is nonatomic cannot be left in-
variant by a compact operator.) Let ϋ ^ e ^ , Eλ Φ 0 or I and choose
F1 = 0. Choose E2 = I - E.e^1 and F2 = 0. Then E, A E2 = 0 =-
F, V î 2 but EΊ ̂  ί\ and E2 S F2.

In the corollary below we use the following equivalent characteri-
zation of independence since we are dealing with commutative lattices:
Choose Eif Ft e ̂  and let if, = E,Ft = #,( ! - JP7,). ^ , , <^n are
independent iff CλC2 CΛ = 0 implies that Cy = 0 for some j . (The
proof is straightforwad since, for commutative projections,
(F, V V FnY = ί7!1^1 Fί and Jί ̂  F iff Jξ F 1 = 0.)

COROLLARY 4.2. Let £? — ̂  V * * V ^» be a multiplicity free
finite width lattice represented as J*f([09 1]*, ^ , m) as m Theorem
3.3. Assume ^ , « , ^ are independent. Then, for rif ste[0,l],
^([^i> s^ X x [r%, sj) = 0 implies that mi(\τίf sd)) = 0 /or some j1

where mά is the jth marginal measure of m.

Proof. Recall that m(F) = (S(ZF)v, v) for F a Borel set [0, 1]%.
Assume m{[ru ^) x x [r%, sΛ)) = 0 for ri9 8t 6 [0, 1].

Let E, = i2(Zjχ...X[r<ll]χ...χi) and F t = i?(Z7x...x[s.,1]x...XJ) where [sif 1]
and [r^, 1] are in the ί th position of the cross products. We have
that Et and Ft are in <ĝ . Then Ĉ  = E*Ft = -B(ZJx...χ[ri,β<,x...χj) since
iϋ is a homomorphism and Ft = I — Fi = i2(X7x...x[0,s.)x...J). Let F^ =
J x x [rΐ? s j x x /. Now,

> 8 l ) x . . . X [ r n , 8 Λ ) ) = 0

since m([rx, s j x x [rΛ, sj) = 0. Since Cί9 , Cn are independent,
we have that C3- = 0 for some i, i.e., for some j , 0 = Cy =
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-β(Zjχ...χ[r i,,J.)χ/). T h i s in t u r n implies t h a t 0 = m(I x x [rjf 8,0 x

• x J) = mj([rj9 8,-)), our desired result. Note that if each C"
is nonatomic (which implies that each marginal measure of m
is Lebesgue measure), then m(W) > 0 for every open subset T7 of

5* The desired Hilbert-Schmidt operator • Let Jίf =
^ i V * V ^» be a multiplicity free finite width lattice where
^i» '"t^n a r e independent. In this section we show that there
exists a Hilbert-Schmidt operator on έ%f that will leave £f invariant.

We need the following lemma due to Arveson ([1], Prop. 1.6.0).
For completeness, we include that part of the proof needed for
Theorem 5.3.

Recall that a Hilbert-Schmidt operator K on L\X, m) can be
expressed as an integral operator with kernel k in L\X x X, m x m),
i.e., Kf(x) = ί k(x, t)f(t)dm(t). Recall also that the graph G of the
partial ordered set (X, <O is {(#, y) eX x X: y <̂  x}.

LEMMA 5.1. Let (X, :g, m) ί>e α standard partially ordered
"measure space where X is a separable metric space and m is a
o-finite Borel measure. Let Tk be a Hilbert-Schmidt operator on
L\X, m) with kernel k. Then Tk leaves Jzf{X, ^ , m) invariant iff
k lives a.e. (m x m) on G, the graph of (X, < )̂.

Proof. We prove only the if part since it is all we need for
our purposes. Let k live on G a.e. (m x m). Let PE be the projec-
tion in <£?{Xy ^ , m) given by multiplication by XEy where E is an
increasing set. We wish to show that Tk leaves PE invariant, i.e.,
that (Tkf, flf) = 0 for fe PsL\Xf m) and fir e (/ - PE)L\X, m). We
have that / lives on E a.e. (m) and # lives o n l - ί ? a.e. (m). Now

(Γfc/, flr) .= \ k(xf y)f{y)gϊx)dm{y)dm{x). The function f(y)g(x) lives a.e.
(m x m) on (X — E) x E and &(#, y) lives a.e. on G. Since £7 is
increasing, (X — E) x E is disjoint from G. Hence we have the
desired result that (Tkf, flf) = 0.

THEOREM 5.3. Let £f = ^ V V ^nbe a finite width multi-
plicity free lattice where r^ly , ^ w are independent. Then there
exists a Hilbert-Schmidt operator on £ίf leaving ^f invariant.

Proof. We can assume without loss of generality that none of
the ^ = {0, /}. Represent £f as ^ ( [ 0 , i]n, ^ , m) as in Theorem
3.3. Let [/ be the unitary operator from L2([0, l]w, m) onto ^ T that
implements the unitary equivalence of these lattices. Let mt be the
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ith marginal measure of m. Note that G = {(x, y) e [0, l]n x [0, l]n:
Vi S %i for i = 1, - , n where a? = (α?χ, , xn) and y = (yx, , yΛ)}.

We will be able to find intervals [t\, sj] and [t\y si] for i = 1, , n,
with βj <; ί{ such that neither m^ίί, si]) nor m,([ίf, sί\) are zero.
Given such intervals we have that

By the independence condition we have that m x m(V) > 0 (see
Corollary 4.2). Hence by letting k(x, y) = ZF(», 2/), we get a Hilbert-
Schmidt operator Tk with kernel & living on G and hence Tk leaves
-2*([0, 1]", ^ , m) invariant. Thus UTuU'1 is a Hilbert-Schmidt
operator on ^g^ which leaves Sf invariant.

We now show that such intervals [tl, s\] and [t% s%\ exist for each
i. Choose i = 1, , n. Recall that if S* is the index set of £gζ =
{I — E: Ee ^ J , then the ΐth marginal measure mi satisfies m{(Af) =
μiMnSi) + Σί^jfMΛ) where Λί is a Borel subset of [0,1], μ is
Lebesgue measure, and Ik = (lk, rk) where the Ik are disjoint intervals
contained in [0, 1] — Si and lk and rk are in S*. (Corollary 4.1.)
Suppose first that [0, 1] — Si contains at least two disjoint nonempty
intervals, say (li9 rx) and (i2, r2). Since they are disjoint with
endpoints in Si we can assume that r- < £x. We have that, for
ί = If 2,

^([ίy, ry]) - μ{[lh r,] Π S,) + Σ μih) ^ MPΛ *Vl) > °

Hence we can choose [t\, s\] = [ίx, r j and [t\, sί\ = [i2, r2].
Now suppose [0, 1] — St is the empty set or the interval (I, r)

for some I and r in St. Since ^ ^ {0,1} (and hence /Si is larger
than {0, 1}), this implies that St properly contains a closed interval
[a, b]. The marginal measure mt restricted to [a, b] is Lebesgue
measure restricted to [α, &]. Let a < c < b. Thus we can choose
[*}, βi] = [c, b] and [tl sί\ = [α, c].

The proof is complete.
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