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MOIRE PHENOMENA IN ALGEBRAIC GEOMETRY:
POLYNOMIAL ALTERNATIONS IN Rn

KEITH M. KENDIG

This paper introduces an object in algebraic geometry
akin to but different from an algebraic variety. The main
idea is this: The concept of "inverse image under a poly-
nomial map of a point" (—algebraic variety) is replaced
by "inverse image under a polynomial map of a periodic
subset." In this paper R is the groundfield, and the peri-
odic subset is taken to be [0,l)+2Z^R. These inverse
images, which we call polynomial alternations, are, in R2,
like diffraction gratings encountered in optics. They are
closed under complementation as well as "mod two sum."
This sum is like intersection for ordinary varieties in at
least one important way — an analogue of the usual dimen-
sion theorem holds under mod two sum. Union and inter-
section are dual, and each gives rise to a phenomenon not
encountered with ordinary varieties — namely striations, or
"moir§ fringes" are formed. These fringes run along
algebraic varieties, and these varieties correspond to linear
combinations of the polynomials defining the alternations.
A density is induced in each algebraic variety, and this
natural density is itself periodic. It depends on the coeffi-
cients of the linear combination; the author determines
this function.

l Introduction* Suppose that on a transparent sheet one
inks in a parallel family of straight bands, to create a "diffraction
ruling." Assume that all bands (the inked-in ones as well as the
clear ones) have the same width. If another such sheet is placed
on the first one, and if the two families are almost (but not exactly)
parallel, then there is created a third family of "bands" or "fringes."
These fringes will be wider, and more widely-spaced, than the
original bands, and almost perpendicular to them. (See Figure 1.)
More generally, if the second family of bands differs from the first
by a linear transformation T which is close to but not equal to the
identity map, then in their union we will see a new set of wider
and more widely-spaced fringes, whose orientation depends on T.
This phenomenon is not restricted to families of straight bands:
Figure 2 shows the moire phenomenon arising from the union of
two slightly-displaced Fresnel zone plates, and Figure 3, from the
union of a straight-line plate with a Fresnel plate.

Moire phenomena have been noticed in the physical sciences,
and have found a number of important applications, particularly in
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FIGURE 1

stress-strain analysis and crystallography. As far as the author
can tell, such phenomena have not been given a general, purely
mathematical treatment. We make a beginning in this paper.

2* A linear case in R\ In this section we look more carefully
at the parallel-band example of § 1. We do three things: first, we
determine the direction and spacing of the "primary" or "first-order"
fringes; second, we determine the direction and spacing of the so-
called "higher-order" fringes; third, we obtain a basic "density
function" for fringes of any order. We briefly explain.

The "primary" fringes are the large, obvious ones in Figures 1
and 2. But for example in Figure 3 (the union of a straight-line
diffraction ruling and a Fresnel zone plate), we see not only a
prominent family of fringes, but also "higher-order" families of
circles, centered further and further away from the center of the
picture. This phenomenon, which we explain more fully later on,
is actually typical in moires. Although these higher-order families
are not so evident to the eye in Figures 1 and 2, in Figure 1, for
example, the intersection of any line in R2 with the pattern in
Figure 1, defines on that line a density, which in every case is at
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FIGURE 2

FIGURE 3
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least 1/2. It turns out that a "random" line intersects the pattern
in density 3/4. However [for many lines, the density is different
from 3/4, and as one parallel-translates such a line, the density
oscillates between a minimum and a maximum, similar to the way
the densities on lines parallel to the primary fringes in Figure 1
oscillate, in an obvious way, between 1/2 and 1. Later in this paper,
we generalize this density function from one-dimensional linear, to
an algebraic, arbitrary-dimensional setting (§ 6).

We insert here the following definition of density, which will
suffice for our immediate purposes. (We generalize Definition 2.1
slightly in Definition 4.2.)

DEFINITION 2.1. Let S be a countable union of intervals in R.
Then S has density b in R if for any ε > 0, there is a decomposi-
tion of R into a disjoint union of intervals T% £ R, which are
uniformly bounded in length, so that

length QS Π T<)
length Γ,

for all but possibly finitely many Tt.

< e

Now, to begin, denote (Xlf X2) by X, let a — (αx, α2) be a non-
zero element of the real 2-plane RXιχ2 = Rx, and define A1 to be the
subset [0, 1) + 2Z of R. (A1 is a special case of A" Q Rn in Defini-
tion 4.1.) Then f(X) = a X maps from Rx to JB, and f~\Aι) is a
parallel family of bands in Rx. The bands run in a direction
orthogonal to a, each band has width l/|α|( = l/τ/αf + al), and each
is separated from the next band by a distance of l/|α|. We denote
r\A) by V*(f).

Let af — (α{, a[) be another nonzero element of Rx; if g(X) =
a'-X, then V*(g) — Q~\Aλ) is also a set of bands on Rx. Let us
assume that a and α/ are linearly independent, and consider the
union V*(f) U V*(g). Then

(2.2). The lines (a + a')-X = n and (α — α') -3Γ = n(neZ) are
contained in F*(/) U F*(^) exactly when w is odd.

It is easily checked that a + α' and α — α' are the only vectors for
which (2.2) holds.

EXAMPLE 2.3. Let α = (l, 0), α' = (0, 1). Then /(X), =Xlf g(X) =
X2, and F*(/) consists of parallel vertical bands. Throughout this
paper, it will be convenient to regard, e.g., f"\[0f 1)) as a "black
band," and /^([l, 2)) as a "white band." Thus V*(f) consists of
alternating black and white bands, each band having width 1; V*(g)
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x2

(0,1)

FIGURE 4

is the same, only horizontal. The lines X2 — ±X1 + n (n, an odd
integer) are contained in F*(-XΊ) U F*(X2). (See Figure 4.) Note
that as we parallel-translate, e.g., the line X2 = Xλ (or X2 = — X^)y

the intersection with V*(Xί) U F*(X2) varies in density. For in-
stance, the line X2 = Xx intersects V*(X±) U F*(X2) in density 1/2,
while the line X2 = Xx + 1 intersects it in density 1. For any
6(0 ^ b ^ 1), the line Lδ: X2 = Xx + b intersects V*{Xύ U F*(X2) in
density (1 + δ)/2. The density then decreases linearly from 1 back
to 1/2 as 6 increases from 1 to 2; thus the density oscillates in a
piece wise linear way between 1 and 1/2. Similarly for lines of
slope — 1.

We can express the oscillatory behavior in the above example
in a more compact way. First, let us introduce this notation:

NOTATION 2.4. Let Δ{x)\ R-+R denote the periodic "triangle
function" defined in the interval of periodicity [ — 1, 1) by

A(x) = 1 - 2 | α | .

The density b(L6) in which any line Lb: X2 — ±X 1 + b intersects
V*(XJ U F*(X2) is then

(2.4.1)
4 4

In the general case considered before Example 2.3, the distance
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between two maximum-density (or t w o minimum-density) lines

(α — a')-X = n and (α — a')-X = n + 2, is 2/|α — α' | ; in this case of

(α + α') -X" = n and (α + a')-X = n + 2, it is 2/|α + α/|. Of course

if a is close to α', t h e n 2/|α — α' | is large. Finally, the density of

intersection of V*(a-X) U V*(a'-X) w i th L 5 : (a±a')-X =b is easily

seen to be

(2.5) A
4

3. Density of intersection of any line with F*(XJ U F*(X>)£
β Z l l 2 . So far, we have looked at densities of intersection along
only two different directions in RXlχ2 = Λx (corresponding to slopes
± 1 in Example 2.3). What is the density behavior along other
directions? We consider this question in this section. As in Ex-
ample 2.3, we take a = (1, 0), a! = (0, 1). This will simplify con-
siderations; results in the general case of any two linearly inde-
pendent α, α' can easily be derived from this simple case.

Convention 3.1. In this section, M will always mean the
"moire" V*(Xd U F*(X2) £ Rv^

We will first consider lines of rational slope. Then we consider
lines of irrational slope.

To begin, let LQRX be a line of slope m — n2/n1(nι e Z). We can
at once write down the density in the degenerate case when nλn2 = 0.

(3.2) If either (but not both) n2 or nx is zero (corresponding to
m = 0 or oz), then the density b(Lb) in which ntX2 — n2Xt + b
intersects M is

b(Lΰ) = 1 if b e A1

b(Lb) = - i if b g A1 .

In view of (3.2), we now assume that in m = n2/nu n1 and n2

are nonzero and relatively prime. We shall further assume that n1

is odd, for if nι were even, then n2 would be odd, and arguments
similar to those given below would work throughout.

We want to get an analogue of (2.4.1) and (2.5). We start by
finding the maximum and minimum densities; this amounts to find-
ing the amplitude of the oscillation term. It will then be easy to
obtain an appropriate generalization.

We first find the density for a particular L — the one through
(0)eRz; we denote this 1-subspace by LQ. The density of M Π Lύ

in Lo will turn out to be a minimum. Note that M Π Lo is periodic
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and that, in obvious notation, the half-open line segment S=[(0, 0),
(2nl9 2n2)) is a period. It therefore suffices to find the density in
S — i.e., to find length(ΛfΠ S)/leτιgihS. Also, note that Rx is the
disjoint union of unit squares, Λr = Ui,iez((i, i) + ([0, l)x[0, 1))). To
find the density, we shall slightly rearrange the intersections of
these squares with M.

To do this, we note that the segment Sx = [(0, 0), (nl9 n2)) lies
in the rectangular region [0, nj x [0, n2); this region is in turn the
union of n1 smaller rectangular regions

Rt = [i- 1, i) x [0, n2) (i = 1, 2, , nλ) .

Similarly, the segment S2 = [(nl9 n2), (2nlf 2n2)) lies in [n19 2τi1)x[w2, 2n2)
and this last is the union of

R'i = (nltn2) + R% (ϊ = l,2, •• ,n1) .

(Note that all the Rt and R[ are mutually congruent.) Now inter-
change M Π Rt with M Π R'i for i = 1, 3, 5, , nx. Within the new
region [0, nj x [0, n2), we have an ordinary checkerboard pattern
consisting of black and white squares. All four corner squares of
the checkerboard are white if n2 is odd; if n2 is even, two of the
corner squares are white and two are black. The new region [n19

2n^) x [n2, 2n2) is completely black. It is clear that these inter-
changes do not affect the density of M Π S in S. After this rear-
rangement, the density in S2 is of course 1. It remains to determine
the density in Sx; we then simply average the two densities.

To find the density in S19 let us replace each of the ntn2 unit
squares in the nλ x n2 checkboard, by a finer n2 x nx checkerboard
(again white in all four corners if n2 is odd, and white in only two
corners if n2 is even), obtained by dividing the horizontal sides of
each unit square into n2 equal parts, and the vertical sides into nx

equal parts. (The "squares" in this finer checkerboard are actually
little l/n2 x l/wx rectangles.) It is easy to see that the intersection
of St with this new "refined" njι2 x nλn2 checkerboard is the same
as the intersection of Sx with the nx x n2 before refinement. Now
consider the set D of all points in [0, 1) x [0, 1) which are congruent
m o d Z x Z t o some point in Slβ D consists of various line segments,
all parallel to each other. In fact, D is the union of diagonals — one
diagonal from each of the little l/n2 x 1/% rectangles in [0, 1) x [0,
1). This last follows from the relative primality of % and n2. (One
can also regard Sx as winding around the checkerboard torus obtained
by reducing the refined checkerboard modulo Z x Z. Sλ winds
around nx times one way, and n2 times the other way.) Since the
intersection of Sx with any such \\nx x l/n29 rectangle is always a
diagonal of that rectangle, and since the ratio of diagonal to area
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of any of these l/n2 x lMi rectangles is constant, the density of
S/s intersection with the refined checkerboard can be found by
counting the black l/n2 x 1/% rectangles in [0, 1) x [0, 1). If n2 is
odd, then there are (n^ — l)/2 of them, since the four corner
rectangles are white. If n2 is even, there are %^2/2 of them. In
the first case, the density in S± is (n^ — l)/2%^?, and in the second
case it is n^fen^ = 1/2.

We now average the densities in Sλ and in S2 to conclude that
when n2 is odd, Lo intersects M in density

(3.3) b(L0) = \
2
\(l + ) I ;
2 V 2nxn2 / 4 Anxn2

when n2 is even, LQ intersects M in density

(3.4) b(L0) = A .

Now that we have determined the density when L is a subspace
Lo of rational slope, we next find the density for any line Lb: n^ —
n2Xλ + 6, (beR). We begin with the case when b = ίeZ.

For this, consider the parallelogram-shaped region AeRx

which is the image of P = [0, 1) x [0, 1) under the linear transfor-
mation sending (1, 0) to (nl9 n2) and (0, 1) to (0, n2). There are exactly
nλn2 (integral) lattice points in A. Now each of the nxn2 equations

(3.5) nxX2 = n2Xi + i (i = 0, 1, , nxn2 — 1)

has an integer solution. (Since nγ and n2 are relatively prime, it is
clear that for i = 1, (3.5) has an integer solution (Xlf X2) — (xlf x2).
For arbitrary ΐ, (ixίf ix2) is a solution.) Also, for any such solution
(ixl9 ix2), (iXί + nl9 ix2 + n2) is also a solution; it is easy to check
that one gets all solutions this way. This implies that for each
i = 0, 1, , n{n2 — 1, there is exactly one lattice point in A n L2.
Since there are %w2 lines Lt defined by the equations in (3.5), we
have accounted for all nxn% lattice points in A.

We can now determine the density in Lιf as follows. If ί is
even, then Mr\Lt is the same as M Π Lo (up to a parallel-transla-
tion), and if i is odd, MΓ\Lt and MΠ Lo are (set-theoretic) comple-
ments (up to a parallel-translation). In the first case, b(Li) = 3/4 —
I ^ Λ ; in the second case, the term (n{Yi2 — 1)/2^1^2 in (3.3) is of
course replaced by 1 — {nxn2 — 1)/2WJW2; averaging with 1 gives b{L>) —
3/4 + lJAπjUi.

Now for any integer i, the density of MΓ\Lb in Lb varies
linearly for i <; b ^ i + 1, since there are no lattice points on
Lb(i < b < i + 1). We thus obtain the general
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THEOREM 3.6. In the equation nxX2 = n2Xγ + b of the line Lb £
Rx, let nx and n2 be nonzero relatively prime integers, and let Δ{x)
be as in Notation 2.4. Then the density b(L6) of M (Ί Lb in Lb is
given by

Q

b(Lb) — — if nxn2 is even
4

h(Lb) — — — — ^ — if nλn2 is odd .
4 knn

So far in this section, we have considered only the case when
L has rational slope in RXlXz. We next consider the case when L
has irrational slope. The main result is

THEOREM 3.7. Let L be any line in RXlX2 — Rx of irrational
slope. Then the density of M Π L in L is 3/4.

Proof We use the following convenient notation in this proof:
For any line segment σ £ RXί let b(σ) denote the density of ilίΠo1

in σ.
Let the slope of L be a. We begin by showing this:

(3.8) For any ε > 0, there is a nonzero integer n such that for
any veRxt

(3.8.1) (V + [(0, 0), (n, an))) - A
4

< ε .

(3.8.1) follows from the next two inequalities, using the triangle
inequality.

(3.9) There are nonzero integers n, m such that for any veBZ9

(3.9.1) + [(0, 0), (n, m))) - A

(3.9.2) Ib(v + [(0, 0), (n, m))) - b(v + [(0, 0), (n, an)))\<±
Δ

Proof of (3.9.1). For all sufficiently large n, m, we have \lfnm\<
e/2. From Theorem 3.6 we see that | b([(0, 0), (n, m))) - 3/41 < 1/
\nm\ (<ε/2). Also, the segment [(0, 0), {n, m)) is an "intersection
period" for Mf){X2 = n/mX1}. This, together with Theorem 3.6
shows that as we translate [(0, 0), (n, m)) by any v e RX9 the oscilla-
tion in density never exceeds l/\n, m\; this last is just what (3.9.1)
says.
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Proof of (3.9.2). By an easy uniform continuity argument, we
see that the left-hand side of (3.9.2) is arbitrarily small for all
m — an\ sufficiently small. That \m — an\ can in fact be made

arbitrarily small is guaranteed by [Niven, Theorem 4.3].
Theorem 3.7 now follows at once from (3.8) — just cover L with

disjoint copies of the interval [(0, 0), (n, an)), and let these intervals
be the "2\" in Definition 2.1.

In the foregoing, we have assumed that a-X and a'-X were of
the simple form X1 and X2, respectively. We can combine our results
and state them in a more general setting this way:

THEOREM 3.10. Let a — (au α2) and af = (α[, α') be linearly inde-
pendent in RXlχ2 — Rx. Then any line in Rx can be written as

Lb:a''X = m(a X) + b

for some meRU {oo} and beR. {If m = oo, write a X=b.) Let
b(Lb) denote the density of (V*(a X) U V*(a'-X)) Π Lb in Lo. Then:

(3.10.1)

b(Lb) =
ifm = O or

b(Lb) = — - A{jllh) if m = ^-e Q\{0} (nlf n2 relatively
(3.10.2) 4 4 W Λ nx

prime) and nλn2 is odd

(3.10.3) b(Lb) = — for all other m .
4

4* A density theorem in higher dimensions: Linear case*
The density theorems of the last section can be generalized to higher
dimensions. In this section we prove one such generalization (The-
orem 4.3); this result will be used in §6, where we consider the
general algebraic case. We begin with two definitions.

DEFINITION 4.1. Let Cn denote the unit w-cube [0, 1) x x
[0, 1)CΛ*. The subset An = {Cn + (ku , ftj |Σ?=i K iseven {kt e Z)}
of Rn is called the standard n-dimensional checkerboard in Rn

(or, in view of Definition 5.1, the standard linear alternation on
Rn). For any (klf , fcJ(fc,eZ), Cn + (K --,hn) is called a black
cube of An if Σ?=i&t ί s even, and a white cube of An if ΣΓ=i&ί is
odd.

The following is a direct generalization of Definition 2.1.
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DEFINITION 4.2. Let V £ R% be a real algebraic variety of
dimension r, and let V be the set of points of V having dimension
r. For S £ F, suppose S Π V is a countable union of r-dimensional
regions in V. Then S has density b in V if for any ε > 0, there
is a decomposition of V into the disjoint union of countably many
uniformly bounded regions Tt £ V £ Rn so that

b - r-vol (S Π Γ,)
r-vol Γ, < ε

for all but possibly finitely many Tt.
The next theorem generalizes Theorems 3.6-7.

THEOREM 4.3. Assume the following notation.
Let:

X denote (Xlf •••, Xn);

T ^ — (r, a positive integer);
Δ

V* = inverse image of Ar under the natural projection map

y* = inverse image of Ar under the natural projection map
π2: Rx > Rχr+1,...,χ2r;

M=V1*U F2*;

m — (ml9 , mr) {mt e R U {°°}) .

Let Vb denote the linear (n — r)-variety in Rx defined by

(Xi+r = mtXt + b< (m,eR)

(Xt = bt (m, - oo)

If m<6Qr, write m̂  = njnn (nilf ni2 relatively prime). If meQ r,
let 77 denote ΠΓ=î iΓ^2> and let Δ(nJ>) = (̂ (̂ 1161), , Δ(nrlbr)).
Finally, let b(Vb) denote the density of MΠ Vb in Vb. Then:

1 if for each i, m̂  is either 0 or
b(Vb) =±$ZAr)

Δ

(4.3.2) b(Ffe) = — - SML if m e Qr and 77 is odd
4 4/7

(4.3.3) b(F6) = — for all other m .
4
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Proof. In this first paragraph we give an overall outline of
the proof. First, since M = (M Γ\ RXv...,χ2r) x Rχ2r+V...,χn and Vb =
(VbΠRXv...,Σir) x Rχ2r+V...,χn, we may compute b(Vb) in (4.3.1-3) by
working in RZv...,Z2r. Therefore, without loss of generality, we
assume that n = 2r. Next, note that (4.3.1) is immediate from the
definitions of b, Vh, and Ar. We therefore begin with the case
when each m* e Q\{0}. After that, we consider the case when each
rrii e R\{0} and at least one m̂  is irrational. Finally, we complete
all possibilities by extending the above to include the case when for
at least one but not all i, mt has the value 0 or oo.

We now consider the case when each mt e Q\{0}. By renumber-
ing coordinates if necessary, we may assume that nn, ' *,nrl are
all odd.

We begin by defining two rectangular parallelotopes, P and P'.
P is the image of the unit cube Cn under the diagonal map

Mil

nrί

nr2j

and P' is the image of Cn under

nv

nr2/

Also, let v0 denote (nn, , n2r).
Now in the proof of Theorem 3.6, make these changes:
First, replace the "period" line segment S = [(0, 0), (2nlf 2n2)),

which equals S, U S2 = [(0, 0), (nlf n2)) U [(^, n2), (2nlf 2n2)), by the
"period" rectangular parallelotope ( 7 0 ί l P ) U (v0 + Vo Π P).

Second, replace the old i?* by:

, ir, 0, , 0)

and replace R[ by

Now interchange M Π Riv...,ir with Λf Π for ix + +
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odd. Then in place of M Π P and JlίflP' we now have a black
parallelotope and an ^-dimensional checkerboard parallelotope. To
prove our theorem (when each mέ e Q\{0}), we want to show that
the density of Vb in the checkerboard parallelotope is 1/2 — J(b)/2Π
if 77 is odd, and 1/2 if 77 is even.

We do this as follows. First, consider the case 6 = 0. An easy
induction on r shows that finding the density of M Π (Vo Π P) in
V0Γ\ P reduces to counting the black versus the white w-cubes in
the checkerboard pattern in P. If all nh are odd, there is one more
white than black cube, and the density is 1/2 — 1/2/7. If any of
the nh are even, the number of white cubes is the same as the
number of black cubes, so the density is 1/2. If b e Zr, then the
intersection pattern of M in Vb is the same (up to a translation) as
above if Σ*=i bt is even; black and white is everywhere reversed if
Σί-i bi is odd, and one gets 1/2 + 1/277 in place of 1/2 - 1/277.

Now, in analogy to the case of n — 2, r — 1 (Theorem 3.6),
consider the parallelotope A which is the image of Cn under the
linear map Γ, where T transforms the canonical basis vectors e,
this way:

ε, • nifr + ni2εi+r (ί = 1, , r)

e, > ni2et (i = r + 1, , 2r) .

There are exactly 77 (integral) lattice points in A, and, for each of
the 77 r-dimensional linear varieties Vk. defined by

ntlXi+r = nt2Xt + h {k, = 0, 1, , nnni2 - 1; i = 1, , r) ,

there is just one of these lattice points in i n Lki. (The argument
is an easy extension of the one used in Theorem 3.6.) We know
the value of the density on each such Vki, and the density clearly
varies multilinearly off these lattice points. This then proves Theorm
4.3 when each miβQ^O}.

As for the case when each mi e R\{0} and at least one mt is
irrational, the proof is like that of Theorem 3.7, except for routine
modifications. Note that in (3.8.1), veR2 becomes veR2r, and "(n,
an)'9 becomes "(nlf , nrf m ^ , , mrnr)."

Lastly, we consider the case when for at least one but not all i,
πii has the value 0 or oo, Suppose without loss of generality that
the first s (1 ^ s ^ r — 1) entries of (mu , mr) are in R\{0), and
that each of ms+1, , mr is either 0 or oo. We begin with the case
s — r — 1 and mr = 0.

Let H denote the hyperplane of RXv...)X2r defined by X2r = 6r.
Let π be the natural projection of H onto RXr+1,...,Xr+s, and π\ the
natural projection of H onto RXr. Then note:
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(a) The density of the part of Vb Π M ττ-lying above anyblack
s-cube of As ^ Rx ,,... x , , is 1.

(b) The intersection pattern of the part of Vb Π M π-lying above
any white s-cube of A* £ RXr+v...,Xr+s is periodic in the Xr-direction.
In fact, for any a e R, the part π'-lying above [α, a + 1) is, up to
a translation, the set-theoretic complement of that ττ'-lying above
[α + 1, a + 2). Therefore the density of the part of VbΠM τ-lying
above any white s-cube A8 is 1/2.

Now averaging the above two densities yields 3/4. One can use
an analogous argument for mr — °°, replacing π and π' by projec-
tions of H: Xr — br onto RXί,...,Xs and R2r, respectively. Finally, for
any fixed s, it is clear that by repeated applications of the above
argument, one can increase r from s + 1 to s + 2, then to s + 3, ,
thus proving Theorem 4.3 when for at least one but not all ϊ, m,
has the value 0 or °o.

This completes the proof of Theorem 4.3.

5* Polynomial alternations; Generalities* Essentially every-
thing we have done so far can be generalized to the polynomial
level. In this section we define the notion of "polynomial alterna-
tion" and make some first observations about them.

DEFINITION 5.1. Let X = (Xu , XJ; let pteR[X], and let
V = (Pi, ' , Pr)> (Then p maps from Rx to R\) The inverse image
p~\Ar) £ Rx is called a polynomial alternation on Rx (or, often,
simply an alternation), and is denoted by V*(p) £ Rx (or sometimes
by simply F* if p is clear from context).

EXAMPLE 5.2.

(5.2.1). F*(X,) (i = 1, 2) describes a set of bands in RXlX2

running parallel to Rx..
(5.2.2). V*(Xlf •••, XJ is the standard ^-dimensional checker-

board AnQRx. V*(kXu , JcXn) (Jc>0) is a "finer" checkerboard, in
which the edge of each cube is 1/feth as long as in the first case.

(5.2.3). F*(X!2 + X!) Q RXlX2 describes a "Fresnel zone plate"
(cf. Figures 2 and 3). (It turns out that the areas of all white and
black regions are the same.) F*(Xi2 + Xξ) £ RXlXzx3 could be called
"Fresnel cylinders"; F*(XL

2 + + Xξ) S Rn is a set of w-dimen-
sional regions bounded by concentric (n — l)-spheres; one might
describe this alternation as an "^-dimensional spherical Fresnel
alternation."

Operations on Polynomial Alternations. Polynomial alternations
are closed under certain basic operations:
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(5.3.1). Complement of an alternation. With notation as in
Definition 5.1 we see that the (set-theoretic) complement V*(p) of
V*(p) S Rx is an alternation since the complement equals, for
instance, V(pι + 1, p2, , pr) Q Rx.

(5.3.2). Addition mod 2. Let V* and V* be two alternations
on Rx. Define V? + Vz* to be (Vf Π V2*)U (Vf Π Vf). (If one
assigns the value 0 to points in V*9 1 to points outside V*, and
adds mod 2, then V* + V* is the zero set.)

LEMMA 5.4. Let V* and F2* be alternations on Rx. Then
V* + V* is also an alternation on Rx.

Proof. Let V? = V*(pu , pr) and F* = V*(qu , qs), where
pt, qs e R[X]. We show that Vi* + F* = V*(p» , p r, ?* , g.).
First, for any (a?) e Rx, (x) e V*(pu , ffr) iff {px{x), , ?.(«)) 6 Cr+S+
(kί9 , fcr, fc{, , k'8)QRr+s, where Σi.i (^ + *5) is even. (Cf. Defini-
tion 4.1.) This can happen iff Σi&* a n d Σ i ^ ί are both even or both
odd. In either case, (x) e V* + V*. Similarly, if just one of Σ ^
and Σ/*5 is odd, then (x) ί T̂ * + F2*.

REMARK 5.5. Algebraic alternations are in general not preserved
under either union or intersection. (For instance, neither V*(Xί)\J
F*(X2) nor V*(Xy) Π V*(X2) is an algebraic alternation — the density
of the first set is 3/4, and that of the second set is 1/4, both of
which contradict Theorem 5.13.

However, the existence of fringes in the union (and, as it turns
out, dually in the intersection) suggests that the union and intersec-
tion are trying to act like algebraic alternations. We look at this
in the next section.

One can ask for a notion of dimension of polynomial alterna-
tions. First, in the complex setting, we know that a variety 7 £
Cχlt—,xn defined by polynomials plf •••, preC[Xu •••, Xn] has dimen-
sion n — r provided the r x n Jacobian matrix (dpJdXi) has rank
r at almost every point of V. Of course for real varieties, this is
far from true. But in the case of polynomial alternations, we are
using families of real algebraic varieties, and the nice behavior of
the complex case is in large part recaptured. Lemma 5.6 and
Theorem 5.7 given next, are basic in this regard.

LEMMA 5.6. Let peR[Xlf •••, Xn]\Λ. Then p{R) is either R
or a half-infinite interval', and for all but finitely many bep(R),
p~\b) is a smooth real algebraic variety of pure (real) dimension
n-1.
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Proof. The first part of theorem is obvious, since a polynomial
function on R is either constant or unbounded, and p(R) is connected.
For the second part, let b be any element of C. Then the zero set
in Cn of p — b is a variety Vb. By Bertini's theorem, for all but
finitely many b e C, Vb is a nonsingular variety of complex dimension
n — 1. Thus for all but finitely many b e C, the Jacobian matrix of
p — 6 at any point Pe Vb has rank w — 1. But p has reαi coeffici-
ents, so for all but finitely many beR, at any PeVbΠRn, the
Jacobian matrix of p — b is real and has real rank n — 1. By the
real differentiable implicit mapping theorem, the part of Vb Π Rn

near P is the graph of a C°°-mapping — that is, Vb is smooth at P.

THEOREM 5.7. Lei plf , p r e iJ[Xx, , XJ\iί. // ίΛe r x w
Jacobian matrix J(p) = (dpJdXj) has rank r, then at almost all
points peRn, the level variety of (pl9 •••, pr) in Rn which contains
P, is smooth and has pure real dimension n — r.

Proof. The proof is similar to that of Lemma 5.6. (Cf. [Kendig,
Chapter II, §3 and IV, §2].

Theorem 5.7 suggests the following definition.

DEFINITION 5.8. A polynomial alternation F* is called regular
if F* - V*(Pl, , pr) £ lί* for some p* , p r e Λ ^ , JΓJ\Λ,
where the r x n Jacobian matrix J(p) = (dpJdXj) has rank r. In
this case, F* feαs dimension n — r, and we write dim F* = % — r.

It is easy to check that the above definition of dimension is
well-defined —that is, two regular algebraic alternations V* and F2*
in Rn having different dimensions, cannot be identical subsets of Rn.

For any regular alternation F* £ Rn, if one defines cod F* to
be n — dim V*f then one can prove the following analogue for inter-
secting algebraic varieties in Pn{C):

THEOREM 5.9. Let F*, F*, and V* + V? be regular alterna-
tions on Rn. Then

cod (Fi* + F2*) ^ cod VΊ* + cod F2* .

DEFINITION 5.10. If cod (Fx* + F*) - cod V? + cod F2*, then we
say that V* and V? add properly.

EXAMPLE 5.11. If V? - F2* Q Rn (n^ 1), then eoά(V1*+ V*)S
cod V? + cod F2*.
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REMARK 5.12. In this paper, "alternation" will henceforth mean
"regular algebraic alternation" unless stated otherwise.

We next observe that densities of alternations are exactly 1/2,
both "globally" and "locally." Since we do not use these facts
(except in Remark 5.5), we only sketch the proofs here. First, at
the global level we have:

THEOREM 5.13. Let V* = V*(pl9 , pr) £ Rn be a regular
alternation on Rn

9 where each pt e B[Xlf , Xn]\R. Then the density
of F* in Rn is 1/2. (Cf. Definition 4.2.)

Proof. We begin with the case r = 1 - i.e., F* = V*(p1)QRn.
If there is an Xt appearing in px only as aX^a e R\{0}) and not in
any other term, then the level varieties p~\n) (n eZ) are translates
of p~\0) by integral scalar multiples of some fixed vector, and
V*(pχ) obviously has density 1/2.

Therefore (still assuming r = 1), suppose that no Xt appears
only as aX^ae R\{0}). Consider the graph of the function Z —
p1(Xlf , XH). At any point (xu --,xn, p(xl9 , xn)) of t h e g raph

such that the absolute value \p(xl9

 mmm,x»)\ is sufficiently large, the
tangent space to the graph is very close to the graph, and the
angle between the tangent space and Rz is small. Therefore around
(xl9 - , xn), the part of the level sets p~\ri) (neZ) are nearly linear,
closely spaced, and nearly equally spaced. From Definition 4.2, it
is easy to check that the density of V*(px) is 1/2.

Now let r be arbitrary. Then the boundaries of F*(j>i), •••,
V*(pr) intersect transversally almost everywhere, so that outside
some sufficiently large w-ball in Rn

9 the level sets are almost every-
where locally like cylindrizations of nonsingular linear transforma-
tions of r-dimensional checkerboards, and again one can check that
the density of V*(pu , pr) in Rn is 1/2.

Next, at the local level, we can define the following notion of
"local density":

DEFINITION 5.14. Let F* = V*(plf , pr) £ i2% be a (regular)
polynomial alternation, where pt e R[Xl9 •• , Xn]\R. Let P be a
point of Rn = Rzv—,χn*

 a n ( ^ *e* ^^ P^ ̂ e a n ^"^all in Rn centered
at P and having radius p. Then the limit density of F* at P is b
provided the following holds; Given any ε > 0 there exists a δ > 0
such that for any p(δ ^ p > 0), there is a positive integer kp such
that for any integer k ^ krf

b ^-volume [V*(kpίf - - -, kpr) n B(P; p)]
-^-volume (J5(P; p))

<ε
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One may check that b in the above definition is actually well-
defined. Using this definition, one can then prove that the limit
density of any alternation on Rn, is 1/2 at each point of Rn. Since
we do not use this result, we leave the proof to the reader.

6* Density theorem for polynomial alternations* In this
section we extend the main density result proved in the linear case
(Theorem 4.3) to the union of two arbitrary polynomial alternations
(Theorem 6.2).

We begin with the following definition.

DEFINITION 6.1. Let

(6.1.1) p = (Pl, , pr) and q = ( ? l f - - , qr) (pi9 qd e R[XU , Xn]\R) ,

let m, 6, A(nxb) and Π be as in Theorem 4.3, and let Vb denote the
variety in Rn defined by the equations

= ™>iPi + bt) (m, e R)

pι = bt ) (m, = oo)

Then {Vb \ beRr} is called the mth order fringe family of V*(p) U
V*(q). For convenience, V*(p) U V*(q) is sometimes- denoted by
M(p, q), or simply by M (M for αmoire").

In analogy to Theorem 4.3, we would like to prove the follow-
ing result:

THEOREM 6.2. Let p, q be as in (6.1.1), and suppose that F*(p)£
Rn and V*(q) £ Rn add properly (cf. Definition 5.10). Then with
notation as immediately above, we have

(6.2.1)
1 "' ~~2

(6.2.2) b(Vb) = — - 4&£L if meQr and Π is odd;
4 477

(6.2.3) b(Vb) = — for all other m .
4

The problem is to define "b" in (6.2.1-3) to make Theorem 6.2
true. For bounded varieties Vb £ Rn (or more generally for varieties
Vb of finite {n — r)-dimensional volume), the ordinary "ratio" defini-
tion of density, namely vol (MΠ vh)/vo\ (Vb), does not in general
work here. As an example, consider in RXlχ2 V*(Xl + Xξ) and
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V*(εX1)9 where ε > 0 is very small. Then for small &, the above
ratio definition of density yields results which are quite different
from (6.2.1-3), as a rough sketch will show.

One can take the point of view that the finite "width" of the
alternations' bands acts as a kind of "graininess" which introduces
error when using the ratio definition. However, as we shall see in
a moment, one can "refine" the moire so that as we make higher
and higher refinements, the ordinary ratio definition approaches at
each point of Vb9 a nice limit density which makes Theorem 6.2
valid. It is interesting to notice that for larger and larger \b\ —
Vb\ + + b\ j(which means that the distance from Vb to (0) gets
larger and larger), the Vh'a become locally more linear, the bands
become finer and more closely spaced, and the ordinary ratio density
yields results which, for sufficiently large |δ | , become arbitrarily
close to the density making Theorem 6.2 true.

DEFINITION 6.3. Let V*(p) £*JR* land V*(q) £ Rn be two pro-
perly-adding polynomial alternations of codimension r (p, q are as in
(6.1.1)). Let I = identity r x r matrix, let k be a positive integer,
and let A% be the image of Ar under the linear contraction (l/fc)J.
For any such k, and for m = (mlf , mr) eRr let the ordered pair
of functions (s<, <<) be defined by

[Pi, mtPi + -j-iΆi - WiPi)} if m, G JB ,

(6.3.1) (8i9tt) =

(2±, qλ if m, = oo
\ k I

Denote (sl9 ••-,«,.) by s, and (tl9 , tr) by t. Then s~\Ar

k) U t~\M)
is called the k-refinement of the moire M(p, q) along the mth order
fringe family, and is denoted by Mk(p9 q; m).

EXAMPLE 6.4. Figure 5 represents an unrefined moire, M(X19

X2) Q RχlX2\ fringe directions for m — 1 and m — 1/3 are indicated.
In Figure 6, the moire has been refined along the lst-order fringe
family, with k = 3. In Figure 7, M(Xlf X2) has been refined along
the 1/3 order fringe family, again with k = 3. Note that for fixed
m, the "refining" or "compressing" is done in the direction of the
fringes of the mth order fringe family. The larger k is, the greater
the compressing; the spacing between the fringes themselves remains
unchanged.

REMARK 6.5. The form of (6.3.1) in Definition 6.3 was actually
chosen for a practical application — proving Theorem 6.2, next.
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FIGURE 5

FIGURE 6

However, one can express the essential idea in Definition 6.3 more
symmetrically as follows. Let JB* = R\{0}. Then define

(*<, *<) =

—{qt- mtpS) if m, e R* U {0} ,

_2L + λίPi - JbΛf q\ if ?* U

This agrees with (6.3.1) when m, = 0 or oo, namely, (pif qjk) if
m^ — 0 and (p</fc, g<) if m f = co. For m^eR*, (si9 tt) is not well-
defined, but the two densities induced on "V6" in Theorem 6.2 can
easily be checked to be the same. For convenience, in (6.3.1) we
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FIGURE 7

have simply chosen the first one for mteB*.
We next define a local density bP leading to a density on the

Vb of Theorem 6.2 which will make that theorem true.

DEFINITION 6.6. Let V*(p) and V*(q) be properly-adding alter-
nations of codimension r in Rn (p9 q as in (6.1.1)), and let PeRn.
Then M(p9 q) has limit density bP at P, with respect to the mth
fringe family, if the following holds: For every ε > 0, there is a
δ > 0 such that for any p (δ > p > 0), there is a positive integer kp

such that for any integer k > kp,

_ w-volume (Mk(p, q m) Π B{P, p))
^-volume (B(P, p))

< e

Proof of Theorem 6.2. Let UP be an jβ%-open neighborhood
about P. We want to estimate, for small UP and sufficiently
large fe, the density in Vb Π UP of

(6.7)

For a fixed 6, define

vb n [8-\ΛD u

(6.8) vt) = -

if = 0

(-J-, qή if W, =
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and define u = (uu , ur) and v = (vl9 , vr). Then for any fixed
6, (6.7) is easily seen to be the same as

(6.9) Vb Π [u-\Aΐ) U v-\Λΐ)] .

Thus we want to estimate the density in Vb Π UP of (6.9).
To do this, first let b e Rr be such that the (r x w)-Jacobian

matrices J(p) = (dpt/dXt) and J(g) = (dqJdXj) each have rank r. at
almost every point Pe Vb. (This happens for almost every beRr.)
At any such P where J(p) and J(q) have rank r, let p* (resp. gf)
denote the initial parts of the expansion of pf (resp. g,) about P;
let (u*, vf) be (6.8) with p? (resp. gf) in place of pt (resp. g,); and
let ^* = (w*, , u*), v* = « , v*). Then in Fδ n UP, Vb Π M(p,
q m) is well-approximated by Vb ΓΊ [u*'\Λΐ) U v*""1^*)]. Since J(p)
and J(q) have maximal rank at P, the initial parts are of degree 1;
thus for Up sufficiently small and k sufficiently large, the density
can be made arbitrarily close to that in the linear case, given in
Theorem 4.3. This means that bP has a common value on all such
points P of Vb; therefore assigning Vb density b = bP then makes
Theorem 6.2 valid in this case.

The density function is now defined at almost all points of Rn.
From the simple form of the density function at these points, we
see that it can be extended to a continuous function on Rn, and
that the density thus defined agrees at each point with the density
in Definition 6.6. Thus (6.2.1-3) all hold in this case too, and Theorem
6.2 is proved.

REMARK 6.10. Throughout this paper we have always taken
the moire to be the union of alternations, which corresponds to the
usual physical setup. However, there is a "dual" theory, in which
one uses the intersection of alternations. Everything we have done
for moires can be recast in this new setting; essentially, this follows
from the duality V? U V2* -> V? U V? = V? n V?. In Theorem 6.2,
for instance, 3/4 is everywhere replaced by 1 — 3/4 = 1/4, and 3/4—
J(nJ>)/4JI becomes 1/4 +

7* Further questions* We have hardly scratched the surface
in a study of moires. There are several directions in which the
theory can naturally be continued. For example, one can try to
extend everything to the complex setting; in this case, an algebraic
alternation is the inverse image of A2n £ Cn under a polynomial
mapping. Since every irreducible algebraic variety in Cn of dimen-
sion V > 0 has infinite (real) 2r-volume, it appears that one can
obtain a density formula corresponding to Theorem 6.2 without using
refinements, but instead, using an ordinary density like that in
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Definition 4.2. One does not, however, get a good local density
this way.

In another direction, one can ask for extensions to the projec-
tive setting Pn{R) or Pn{C). Here we are essentially generalizing
polynomials to rational functions. This leads in a natural way to
points (or varieties) of indeterminate density, something like inde-
terminacy points of elements in a variety's function field.

Also, just as one can extend much of algebraic geometry to its
"twin brother" analytic geometry, one can likewise try to extend
a study of moires to the analytic level.
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