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COMPACT ENDOMORPHISMS OF BANACH ALGEBRAS

HERBERT KAMOWITZ

Let T be a compact endomorphism of a commutative semi-
simple Banach algebra B. This paper discusses the behavior
of the adjoint T* of T on the set X/ of multiplicative linear
functionals on B. In particular it is shown that Π T*n(X;) is
finite, thus generalizing the example of compact endomorph-
isms of the disc algebra.

0* Introduction and preliminaries. In this paper we discuss
maps which are simultaneously endomorphisms of Banach algebras
and compact operators. That is, these operators T are linear, satisfy
T(fg) = (Tf)(Tg) for all / and g in the algebra and map bounded
sets into sequentially compact sets.

As a motivating example, consider the disc algebra A, the sup-
norm algebra of functions analytic on the open unit disc D and
continuous on D. Every nonzero endomorphism T of A has the
form Tf — f°φ for f β A, where φeA and φ maps D into D. It
was shown in [3] that if φ is not a constant function, then T is
compact if, and only if, \φ(z)\<l for all zeD. Moreover, for
such φ, if φn denotes its nϊh iterate, then fϊ <P»Φ) — {̂ o} for some
zoeD, and further the spectrum σ{T) of T satisfies σ(T) = {(φ\zQ))n\n
is a positive integer} U {0, 1}. When φ is a constant function, the
range of T is one-dimensional and T is compact with σ(T) = {0, 1}.

We will now consider compact endomorphisms of other Banach
algebras and study to what extent the properties of compact
endomorphisms of the disc algebra can be generalized. Our princi-
pal results will describe the behavior of the adjoint T* of Γ on
the maximal ideal space of the algebra.

We first introduce some notation and terminology. Let B be a
commutative semi-simple Banach algebra with unit 1 and maximal
ideal space X and, in addition, let θ denote the zero functional on
B. If 0 Φ T is a (necessarily) bounded endomorphism of B, then
the adjoint T* induces a continuous function ψ from Xr = X U {θ}
into itself in the following way. For x e X, let exeB* satisfy
ex(f) = fix), where f—>f is the Gelfand transformation of B. It
is easy to verify that T*ex is multiplicative. There are two possi-
bilities. If T*exΦθ, then T*e9 = ey for some yeX and we let
φ(x) = y. For the second case, if T*ex = θ, we let φ(x) — θ. We
also define φ{θ) = θ. Since φ is essentially equal to T* restricted
to the set of multiplicative linear functionals on B, φ is a continu-
ous function from X' to Xr; φ will be called the map on X or Xf
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induced by T.
It is useful to note that if 2Ί = 1, then T*e9 Φ 0 for all xeX

since (Γ*eβ)(l) = ex(Tl) = eβ(l) = 1. Consequently, when Γl = 1, φ
maps X into X. On the other hand, if TlΦl, then £>(«) = θ for
some # e X .

If n is a positive integer, we let <pn denote the nth iterate of
φ, i.e., φo(x) — x and φn(x) = 9>(9>»-i(sc)) for xeX'. A routine topo-
logical argument shows that Π <Pn(X') is a nonempty compact subset
of Xf and Π <Pn(X') is mapped onto itself by φ. Further, when X
is connected and T Φ 0, then Γl = 1, whence φ maps X into X,
ίΊ ψn(X) is connected and 9> maps Π ψn{X) onto itself.

In the first section we will prove some structure theorems
leading to the following theorem.

THEOREM 1.7. Suppose B is a commutative semi-simple Banach
algebra with unit 1 and maximal ideal space X and T is a non-
zero compact endomorphism of B. If φ is the map on X' induced
by Γ, then Π 9\(X') is finite. If X is connected, then Π <Pn(X) is a
singleton.

We recall that we have already characterized the compact
endomorphisms of the disc algebra. Moreover, it is easy to verify
that for any commutative semi-simple Banach algebra with unit 1
and maximal ideal space X, and any a e X, the endomorphism T: f—>
f(a)l is compact. Using Theorem 1.7, we will prove that if X is a
compact connected Hausdorff space, then every nonzero compact
endomorphism T on C(X) has the form Tf = f(a)l for some a e X.
Finally we will discuss some relations between the range <p(X) of
the induced map ψ of a compact endomorphism and the strong and
Silov boundaries of other function algebras on X.

1* We begin with the following lemma dealing with the
spectral radius | |Γ | | β p of a compact endomorphism.

LEMMA 1.1. Suppose B is a commutative semi-simple Banach
algebra with unit 1. If T is a compact endomorphism of B and
T is not nilpotent, then \\T\\sp = 1.

Proof. If B is semi-simple and λ is an eigenvalue of any
endomorphism T of B, then for each positive integer n, Xn is also
an eigenvalue. For, if 0Φ feB and Γ/ = λ/, then T(fn) = (Tf)n =
χnfn φ o. On the other hand, when T is a compact operator, every
nonzero element in the spectrum σ{T) is an eigenvalue [4]. Since
σ(T) is a compact subset of the plane, it follows that if Γ is a
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compact endomorphism of B9 then σ(Γ)c{λ | |λ | ^ 1}.
It is easy to see that an endomorphism S of B is zero if, and

only if, SI — 0. Thus an endomorphism T is nilpotent if, and only
if, Tml = 0 for some positive integer m. Assume T is an endomor-
phism of B which is not nilpotent and set Fm — Tm l . Then for
each m, Fm is a nonzero idempotent in B and so

l = I IFJL = IKΓ-DΊL £ lir-iiu ^ I|Γ-|| lull.
Since this holds for all positive integers m, it follows that 1 ^
lim^o β | |27 m | |1 / m = | |Γ |U Combining this with the first paragraph
gives that if T is a compact endomorphism of a commutative semi-
simple Banach algebra with unit, then | |Γ | | β p = 1 if, and only if, T
is not nilpotent.

REMARKS. (1) Every quasinilpotent compact endomorphism of
a commutative semi-simple Banach algebra with unit is nilpotent.

(2) The hypothesis in Lemma 1.1 that B be semi-simple was
needed to indure that 0 Φ f e B implied 0 Φ fn eB for every positive
integer n.

(3) If B is not assumed to be semi-simple, then any denumer-
able plane set σ with zero as its only limit point can be the
spectrum of a compact endomorphism of B. For, it is well known
that for each such σ there exists a compact linear operator T on
Hubert space H with σ(T) = σ. If multiplication is defined on H
by fg = 0 for all f, g eH, then H is a commutative Banach algebra,
T is a compact endomorphism on H and σ(T) = σ.

The proof of the next lemma is straightforward.

LEMMA 1.2. Let B be a commutative semi-simple Banach algebra
with unit 1 and maximal ideal space X. If E is a nonzero idem-
potent in B, then BE and B(l — E) are closed subaίgebras of B
with units E and 1 — E, respectivelyy and B = BE 0 U(l — E).
If Z — {xeX\E(x) = 1}, then the maximal ideal spaces of BE and
B(l — E) are Z and X\Z, respectively. Further, if T is an endo-
morphism of B with TE — E, then BE and B(l — E) are invariant
under T in the sense that T: BE-+BE and T: B(l - E)~>B(1 - E).

LEMMA 1.3. Assume T is a nonzero compact endomorphism of
a commutative semi-simple Banach algebra B with unit 1. Then
there exists a smallest nonnegative integer M such that TM1 = TM+11.
If T is not nilpotent, then E — TM1 is a nonzero idempotent in B,
TE = E and B = BE® B(l - E) where BE and B(l - E) are
invariant under T and T is nilpotent on B(l — E).
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Proof. The lemma is trivial if Γl = 1. Also if T is nilpotent,
then TM1 — 0 for some positive integer M and there is nothing-
further to prove.

Assume T is not nilpotent and Γl Φ1. Let X denote the
maximal ideal space of B and φ the continuous function on X' =
X U {θ} induced by T. For each positive integer n, let Zn = {xe
X\φn(x) = #}. (Since Γl ^ 1, . ^ Φ φ.) For each w, Zn is both open
and closed in X, <p-\Z%) = Zn+1 and Zn c Z«+1. Also, φ~\Z2\Z^) =
φ-\Z2)\φ-\Z^Z\Z2 and, in general, φ^(Zt\Z^=Z%+t\Zn+1 for each n.

We assert that ^ = ZM+1 for some positive integer M. To
show this, assume Z1 Φ Z2 and let G be the element in B such that
G is the characteristic function of Z\Zλ. Such an element exists
by Silov's Idempotent Theorem [1, p. 88] since Z\ZX is a subset of
X which is both open and closed. By the definition of G, G(x) — 1
if x e Z2\Z, and 0(x) = 0 for all other xeX; therefore for each
positive integer k, TkG~(x) = G(φk(x)) = 1 if x e φ~\Z^Z^ = Zk+2\Zk+1

and TkG~(x) = 0 otherwise. We will now show that if Zk+2\Zk+1Φ φ
for all positive integers h, then σ(T)z>{X\ |λ | = 1} which will be a
contradiction since T is a compact operator. Thus assume Zk+2\Zk+1Φ
Φ for all positive integers k and choose λ with |λ| = 1. Let n
be a positive integer and consider |[(λ + TfnGT{x)\ for some
x e ^W+2\Z%+1 Φ φ. Then

|[(λ+Γ)-GΓ(aO| =
2n

Σ T"G

But if xeZn+2\Zn+1, then TkG~(x) = 0 unless fc =
(TnGT(x) = 1. Therefore

(x)

i, and G(φn(x)) =

'2n\
n j

and so

(*)

C)G(φn(x))

n

If ^w + 2 =̂ ̂ w + 1 for all n, we can find such an x for each positive

integer n and so (*) holds for all n. Also lim*.^ (^n)1/2n = 2. [2,

LEMMA 1.2]. Then letting n~>o° in (*) gives
\n)

2 = lim ^ lim

for all λ, |λ | = 1. However, from Lemma 1.1, | |T| |,P = 1. There-
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fore if |λ| = 1, then Xeσ(T) and, as a result, every point in
{λ| |λ | = 1} is in σ(T), a contradiction. Therefore the assumption
that Zk+2\Zk+1 Φ φ for all positive integers k is false and so there
is a least positive integer M for which ZM — ZM+ι.

Now let E — TM1. Since T is not nilpotent, E is a nonzero
idempotent in B. Also {x e X\ E(x) = 1} = {x e X\ (TMlT(x) = 1} =
{x 6 X\φM(x) Φ θ) = X\ZM = X \ ^ + 1 = {x e X\φM+1(x) Φθ} = {xe
χ\ (TM+1lΓ(x) = l} = {xeX\ (TEΓ(x) = 1}. Therefore TE = E.

From Lemma 1.2, we have that BE and J5(l — E) are commuta-
tive semi-simple Banach algebras which are invariant under T. The
final assertion in the lemma that T is nilpotent on JB(1 — E) follows
from the fact that (1 — 2?) is the multiplicative identity in B(l—E)
and T"Q - E) = TM1 - TME - E - E = 0.

REMARK. Lemma 1.3 shows that E = JΓ¥1 is an eigenvector of
T in B and so lGσ(Γ) unless T is nilpotent.

Next suppose S is a nonempty closed subset of the maximal
ideal space X of a commutative semi-simple Banach algebra B with
unit 1. Then the kernel of S, ker (S) = {/ eB\f(t) = 0 for all ί e S}
is a closed ideal in 5 and Bx — B/ker (S) is a commutative semi-
simple Banach algebra with unit. If Xx denotes the maximal ideal
space of Blf then Xλ is the hull of ker(S), i.e., X, = {xeX\f e
ker(S) implies f(x) = 0}. Xx is a closed subset of X and S c I ^ J .
Further, if xeX, and / = / + ker (S) e B/kev (S), then/Λ(α?) =/(a?)
[1, P. 12].

Now let T be an endomorphism of B with TΊ = 1 and ψ the
map of X->X induced by T. Clearly, if φ(S)aS, then ker (S) is
invariant under T. Also if φ(S)cS, then Λ j c l , For, if
Φ(S)aS, / e k e r ( S ) and a e l , then T/eker(S), which implies
(TfT(%) — 0 and this, in turn, implies f(φ(x)) = 0, i.e., if xeXlf

then (̂cc) e X1# Thus ^(Xt) c X : if φ(S) c S.
Furthermore, if ker (S) is invariant under Γ, then T induces

an endomorphism T of Bλ into 5L defined by Tf — Tf for feB^
Let <p be the map on Xx induced by f. Then by definition,
(TfT(x) = f~(φ{x)) for all x e l , We claim that φ = φ\Zi. To this
end, let x e Xx. Then ^(x) 6 Xlf and so 7"(φ(aj)) = (ϊ7Γ(α) = (2yΓ(ίβ) =
(TfΓ(x) = f(φ(x)) = f~(φ(x)). Since this holds for all / e S 1 ? it follows
that <̂ (#) = φ{x) for each a; 6 Xlf as claimed. We remark, too, that
if T is a compact endomorphism, so is T [4].

With these observations we now prove the following.

LEMMA 1.4. Assume B is a commutative semi-simple Banach
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algebra with unit 1 and maximal ideal space X and suppose T is
a compact endomorphism of B with Tl = 1. If φ is the map on
X induced by T and <9* — ΐ\φn{X), then S^ is a nonempty compact
subset of X and φ maps <9* onto itself. Let k e r ( ^ ) = {f\f(x) = 0
for all x e S^} and set Bx — B/ker (S^). Then Bx is a commutative
semi-simple Banach algebra with unit, and X,, the maximal ideal
space of Blf satisfies S? c Xλ c X. If T is defined on Bλ by Tf —
Tf for feB19 then f is a compact endomorphism of Bγ and σ(T)a
{λ| |λ | = 1} U {0}. Also, if ψ is the map on Xx induced by T, then

Proof. The properties of Bx were discussed before the state-
ment of the lemma. Also φ maps X into X since Tl = 1, and we
have already noted in the introduction that φ maps &" onto Sf.

To prove that σ(T) c {λ| |λ | = 1} U {0}, suppose the contrary that
there exists λ, 0 < |λ | < 1, Xeσ(T) and f / = λ/. For each xe<9*
there are two possibilities.

( i ) There exists a positive integer JV such that φN(x) — x. In
this case (ΓVΠa?) = / " ( ^ ( » ) ) = /"(*) and also {TNfT{x) = λ T W .
Therefore Γ(x) = XNp(x), and since |λ | < 1, /"(a?) = 0.

(ii) For all n, φn{x) Φ x. Since φ, and therefore φ, maps Sf
onto itself, we can choose distinct tn e S^ satisfying φn(tn) = x.
Thus if f / = λ/, then (Γ / Γ ( O = / ^ . ( O ) = / Λ ( « ) , while (f /Γ(ί,) =
Xnf_~(tn), also. Since | | / " | L <°° and Xn-*Q it follows that f~(x) =
Xnf~(tn) -* 0. Hence if φn(x) Φ x for all n, then /"(α?) = 0.

Thus we have just shown that if 0 < |λ | < 1 and 57= λ/, then
f~(x) = 0 for all xe£*. But this implies / = 0. Therefore all the
nonzero eigenvalues of T lie on the unit circle.

All that remains to be shown is that £f = Π »̂(-XΊ). Now,
Π φ.(Xd = n 95 (-Σi) since ^ = 9>|Xι. Therefore S? = Π ?>#(X) 3
Π 9>»(-XΊ) = n<p%(Xi)i3^ which proves that ^ =

LEMMA 1.5. Suppose B is a commutative semi-simple Banach
algebra with unit 1 and maximal ideal space X. Let T be a com-
pact "endomorphism of B with σ(T) — {0, 1}. Then there exists a
finite set of idempotents, {Elf , Em}, in B with the following pro-
perties.

( i ) {Eίf ,Em} forms a basis for ^Γ = {f\Tf = /} and

( i i ) I f E = Σΐ=iEk, t h e n B-= BE,® •••
(iii) For each k, k ~ 1, — -, m, BEk is a closed subalgebra of B

with multiplicative identity i^. Also BEh is invariant under T and
all the eigenvectors of T in 52£fc corresponding to 1 have the form
cEk, c complex.
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(iv) If E = ΣΓ=i Ek9 then B(l - E) is a closed subalgebra of
£ with multiplicative identity 1 — E. J5(l — E) is invariant under
T and T is nilpotent on B(l — E). Also TM1 = E for some positive
integer Λf.

(v) If TΊ = 1, then ΣϊU Ek = 1 and 5 =

Proo/. ( i ) Since σ(Γ) = {0, 1}, ^ T = { / | Γ / = / } ^ (0). Also
is closed under multiplication since T(fg) = (Tf)(Tg) — fg

whenever /, g e ^V. Further, since T is a compact operator, ^4^
is finite dimensional. Therefore ^V is a finite dimensional commu-
tative semi-simple Banach algebra and hence there exist idempotents
Eu , Em in <yK which form a basis for Λ" and which satisfy
EtE,- = δijEj. We note that since Et e ^Vf i = 1, , m, 2£, must be
an eigenvector of T with TEt = i?*.

(ii) Suppose # = Σ ί U # * τ h e n 1 = ΣϊU-#* + (1 - E) and so
for each / eB, / = Σ£=ifEk + /(I - ^ ) . Thus B = B ^ + +
BJE?W + B(l - JE). Further, since E,Eά = δ,^- and £7,(1 - j£) = 0
for all i, it is easy to verify that / can be uniquely represented in
this form. Therefore B = BE, 0 0 BEm 0 JB(1 - E).

(iii) In view of Lemma 1.2 all that remains to be demonstrated
here is that all the eigenvectors of T in BEά corresponding to 1
have the form cEif c complex. Now, if T(fEά) = fE3 e BE3, then
fEά e ^Γ so that fEj = ΣΓ=i α ^ Therefore / ^ = / S / = (ΣϊLi α ^ ) ^ =
α ^ as claimed.

(iv) B(l — E) is a closed subalgebra of B which is invariant
under T since TE = E. Also, since σ(T) = {0,1}, in order to prove
that T is nilpotent on B(l-E), it suffices to show that T(f(l-E)) =
/(I - E) implies /(I - £7) = 0. But, if Γ(/(l - ^)) = /(I - E),
then / ( l -£ ' )G t χrnB( l- jE r ) = (0). Hence Γ is nilpotent on B(l-E)

and so there exists a positive integer M such that Γ ^ l — E) = 0
or, equivalents, Γ^l = Γ ^ = E.

(v) If 21 = 1, then 1 = TM1=E from (iv). Therefore 1 - ^ = 0
and B = BE, 0 . . . 0 BEm.

REMARK. The decomposition B = BE, 0 0 BEm 0 B(l - J5)
leads to a splitting of the maximal ideal space X of B into disjoint
open and closed subsets Ylf -, Γw, Y, of X where Yk = {cc|^(x) =
1}, A? = 1, , m and F = X\UΓ=i Ffc. Further, Yfc is the maximal
ideal space of B^4 and Y is the maximal ideal space of B(l — E).
If φ is the map on I U {θ} induced by T, then <p(Yk) c Γfc, & =
1, ••-, m, and ^(Fj .) = Ffc. The last equality holds since TEk—Ek.

The next lemma describes the behavior of T* on each F*.
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LEMMA 1.6. Suppose B is a commutative semi-simple Banach
algebra with unit 1 and maximal ideal space X. Let T be a com-
pact endomorphism of B with the property that o(T) — {0, 1} and
the only eigenvectors corresponding to 1 are the constants. If φ is
the map on X induced by T, then φ maps X into itself and there
exists a unique element x e X such that φ(x) — x. Furthermore,
lim^f(φn(y)) = f(x) for all yeX and feB, and f]φn(X) = {x}.

Proof. The map φ takes X into itself since Tl — 1.
Since T is a compact operator and the space of eigenvectors

corresponding to 1 is one-dimensional by hypothesis, B can be
written B^R^N, where R1={(T-I)f\f sB) and N, = {f\ Tf = /}
= (c). The closed subspaces Rλ and N± are invariant under T [4].

Further, T is quasinilpotent on RlΛ For, if geRx and Tg = g,
then g eNx Π Rx = (0). Therefore 1 is not an eigenvalue of T on
Rλ. Also there are no other eigenvalues of T on Rλ since each
eigenvalue of T on Rλ is an eigenvalue of T on B and σ{T) = {0, 1}
by hypothesis. Thus T is quasinilpotent on Rx and so

lim ( s u p H y ^ l ' Γ = lim || Γ ||i£ - 0 .

Therefore for each ε>0 there exists P*>0 such that || T\T-I)f\\<
P*εn\\(T - I)f\\ for all positive integers n and all feB. Then
letting P=P*\\T-I\\ we have || T\T - I)f\\ < Pe%\\f\\ for all
positive integers n and all feB.

Now fix xeX. For each / e S , |/(9> +1(a?)) - f(<PM)\ = I [ ( Γ -
W ] ^ ^ ) ) ! = |[T^(T~ /)/Γ(^)| ^ | | T - ( T - / ) / | | < Pε-||/ii for all
positive integers n. Therefore {f(φn(x))} is a Cauchy sequence of
complex numbers and so lim^^f(φn(x)) exists for each feB. Let
l(f) = lim,^/(<£>„(#)). Then it is easy to verify that I is a linear
multiplicative functional on B. Also i Φ θ since Tl = 1 implies
1(1) = 1^0. Consequently there exists x e X defined by f(x) = l(f)
for all feB and thus l im,^ (TnfΓ(x) = lim.^/C^ίa?)) = /(») for
all / e δ . Also Γ / e B , and so \\m^J,TfT{φn{x)) = (Γ/Γ(«) for all
jfeJS; this implies \im*^f(φ(φJίx))=f(φ(x)). However,

for all / e 5 . Therefore f(φ(x))=f(x) for all /eJ5 which proves
that x is a fixed point of φ.

We next show that n φJiX) = {£}. To this end, let M-x =
{/l/(^) — 0}. Since <p(a?) = x, the closed maximal ideal Mς is invariant
under T. Also 1 is not an eigenvalue of T\M~. For, if there exists
feM* with Tf = /, then / is an eigenvector of T which must
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equal a constant c, say, by hypothesis. But c — 0 since the only
constant in M* is 0. Since σ{T) — {0, 1}, T is quasinilpotent on Λfj.

Now let y be an arbitrary element in X. Since / — f(x)l e Mx
and T is quasinilpotent on Mx we have that

lim\f(φn(y)) ~ f(x)\1/n = lim | Γ (/ - f{x)lT{y)\Un = 0 .

Using an argument similar to one used in the first part of this
proof, it can be shown that for each ε > 0 there exists P1 > 0 such
that \KΨM) -/(£)I < Pie | | / | | for all / e ΰ , n > 0 and yeX. This
implies that if ^ is an open subset of X with α; e ^/, then φJ^X)^^
for large n. Therefore f)φn(X) = {x}. It now follows easily that
x is the only fixed point of φ.

(The uniqueness of x also follows from the fact that the dimen-
sions of {/|T/ = /} and {I e F | T*l = l\ are equal. Since {/ |Γ/=/}
is one dimensional, once we have shown that x is a fixed point of
φ in X, then it must be unique.)

We now combine these lemmas to prove the following.

THEOREM 1.7. Suppose B is a commutative semi-simple Banach
algebra with unit 1 and maximal ideal space X and T is a non-
zero compact endomorphism of B. If φ is the map on X' = X{J{Θ}
induced by T, then Πφn(X') is finite. If X is connected, then
Πφn(X) is a singleton.

Proof. If T is nilpotent, then Π φn(X') = {0} and there is
nothing further to prove.

Assume T is not nilpotent. From Lemma 1.3 there exists a
smallest positive integer M and a nonzero idempotent E — TM1 with
the property that TE = E, T: BE-^ BE and B = BE®B(1-E).
Also Z= {x eX\E(x) = 1} is the maximal ideal space of BE, φ(Z)aZ
and φM:X\Z-+{θ}. Let S? = Πφn(Z). Since f]φn(Xr) = ^U{θ} it
suffices to prove that £f is finite.

Consider Γ on BE. Since £ is a unit in BE and TE = E,
Lemma 1.4 implies that T induces a compact endomorphism T on
Bλ = BE/ker {&) which satisfies TE = E and σ{T) c{λ| |λ| = 1}U
{0}. Letting Xt denote the maximal ideal space of Bι and φ the
map on Xx induced by T, Lemma 1.4 also implies S^ ~ {\φn(X^).

Since T is a compact endomorphism on Bx and σ(T)a{X\ |λ| = 1}
U {0}, each nonzero eigenvalue of f is a root of unity and so
there exists a positive integer N for which σ(TN) — {0, 1}. Also
TE = E implies TNE = JB. Therefore f̂  is a compact endomor-
phism of Bx with o (Γ^) = {0, 1} and by Lemma 1.5, Bx can be
written B1 = B ^ 0 © 5 ^ where E = ΣΓ-i -&*, ̂ ^ are idempo-
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tents in B19 TNEk = Ek and all the eigenvectors of TN on BxEk

corresponding to 1 have the form cEkf c complex. We also have
that Xι = Yλ U U Ym where Yk is the maximal ideal space of
BγEk. It is clear that φN is the map on X, induced by TN and
so we have that φN(Yk) czYkf k = 1, , ra. Thus

Now using the fact that all the eigenvectors of TN on BJEk

have the form cEk, c complex, it follows from Lemma 1.6 that
there exist xke Yk with Γ\φlYn(Yk) = {xk}, k = 1, , m. Therefore

•9* = Πφn(Z) = ΠφΛX.) = ΓiφNn(X1)

— \X1, ' ' ' f Xmj

Thus £/" is finite and hence Γ\φn(X') is finite, as needed.
Finally, if X is connected, then the only nonzero idempotent in

J5 is 1. In this case Tl = 1 and therefore φ maps X into itself.
Hence S — ΓΊ φ»(X) is connected and since S is finite, S must be a
singleton.

2. We conclude with several miscellaneous theorems and ex-
amples relating to compact endomorphisms.

It was noted in the introduction that if a is a specific point in
the maximal ideal space of a commutative semi-simple Banach
algebra with unit 1, then the map T: f—> f(a)l is a compact endo-
morphism of B. We will show that if X is a compact connected
Hausdorff space, then every nonzero compact endomorphism of C(X)
has this form. We also show that the same is true for C1, the
algebra of functions on [0, 1] with continuous first derivatives. We
will begin this section with a theorem about compact endomor-
phisms of function algebras.

Recall that a function algebra is a sup-norm closed subalgebra
of continuous functions on a compact set X which separates points
of X and contains the constants. A peak set of a function algebra
is a closed subset E of X for which there exists a function / in
the algebra with | | / | | = f(x) = 1 for xeE and |/(cc)| < 1 for xe
X\E. A generalized peak point is a point xQ in X such that {#0} is
an intersection of peak sets, and the strong boundary of a function
algebra is the collection of generalized peak points. Further, if W
is a Gδ subset of X containing a generalized peak point x0, then
there exists a peak set E with xQeE(z W [1].

THEOREM 2.1. Let X be a compact connected Hausdorff space
and suppose B is a function algebra on X whose maximal ideal
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space is X. Further, assume 0 Φ T is a compact endomorphism
of B with ψ the continuous function on X induced by T. If φ(x0)
is a generalized peak point of B for some xoeX, then Tf = f(φ(xo))l
for all feB.

Proof Assume φ(xQ) is a generalized peak point of B. The
claim is that <p(x) — φ(x0) for all x e X. Suppose the contrary that
there exists y e X with φ{y) Φ <p(x0). Since <p(x0) is a generalized
peak point, there exists a peak set E such that <p(x0) e E and φ(y) £
E. For this set E, let feB satisfy | | / | | = f(x) = 1 for all xeE
and I f(x) | < 1 f or x e X\E. Further, let / . - (J(l + /))\ Then 11 /, 11 =
1 and since T is a compact operator, there exist a subsequence {fnk}
and a function g eB with Tfnje—>g uniformly. Clearly lim*..^ (J(l +
/(&)))• = 1 if /(a?) = l and l i m ^ ( i ( l + /(«)))* = 0 if f(x)Φl.
Since g(x) — lim^^ (J(l + fip{x)))Tk for xeX, the continuous func-
tion g can assume at most two values, 0 and 1. However, the
domain of g is connected. Hence g must be constant. This leads to a
contradiction since if <p(y) & E, then g(y) = l i m ^ (J(l + f(φ(y)))Yk = 0
while g(x0) = l i π w (J(l + f(φ(xo)Wk = 1. Therefore φ(a?) = 9>(α?0) for
all x e l as claimed.

If X is a compact Hausdorff space, then every x e X is a
generalized peak point of C(X). Consequently, we have the follow-
ing immediate corollary of Theorem 2.1.

COROLLARY 2.2. If X is a compact connected Hausdorff space,
then every nonzero compact endomorphism T of C{X) has the form
Tf = /(α?o)l for some x0 e X.

THEOREM 2.3. Let C1 be the algebra of functions on [0, 1] with
continuous first derivatives, pointwise arithmetic operations and
11/11 —II/IU +II/Ίloo. Then every nonzero compact endomorphism
T on C1 has the form Tf = /(c)l for some c e [0, 1].

Proof. Let T be a compact endomorphism of C1 and φ the map
on [0, 1] induced by T. Then φ 6 C1. We claim that φ is a constant
function. Suppose ψ is not constant. Then there exists a e (0,1)
with φ\a) Φ 0. Let b = 9>(α). Then δ e (0, 1). For each positive

integer n, let /,(&)= j V ί6-')2dt. Then ΛeC 1 , sup o ^ 1 1 fn(x) \ =

Γe-Λ(δ~<)2cZί < 1 and supo^i |/or(^)| = supo^βίile—ίδ-β>2 = 1. Therefore
Jo

II/JI < 2 for all n. Since {/J is a bounded set in C1 and T is a
compact endomorphism, there exist g e C1 and {fnjc} with T/WA; —> g.
In particular ^' is continuous and (Tfnk)' —> #' uniformly. Now
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(Tf,k)\x) = f«k'(φ(x))φ'(x) = e-*(i-«"x)V(a0, and hence

sr'(o) = lime-'t*(δ-*'(<ιl)V(α) = φ'(a) .
k->oo

Since φ(ά) — b, g\a) Φ 0. However, since φ\a) Φ 0, φ(x) Φ b in some
deleted interval about a, and so it follows that

g'(x) = lϊme-^-v^φ'ix) = 0
fc->oo

in that deleted interval. This is a contradiction to the continuity
of g'. Hence φf — 0 and ^ is a constant function. Therefore
(Tf)(x) = f(φ(x)) = f(c) for some c e [0, 1] and so Tf - /(c)l.

Modifications of the statements and proofs of Theorem 2.1 and
Corollary 2.2 for disconnected X are straightforward. For example,
if X is an arbitrary compact Hausdorff space and T is a compact
endomorphism of C(X), then there exist a finite number of idempo-
tents EJ9- ,Em in C(X) and points ίι, , ί m e l with Tf =
Σ?=i f(tk)E-(k) where TΓ is a permutation of the set of integers
{1, .-.,m}.

There is a similarity between Theorem 2.1 and the example of
the disc algebra, namely, that in both cases the range of a non-
constant φ does not intersect the strong boundary. However, it is
not possible to extend this by replacing strong boundary with
Silov boundary as the following example shows. (C and R denote
the complex and real numbers, respectively.)

EXAMPLE. Let X be the subset of C x R defined by 1 =
{(s, 0) | | s | ^l}U{(0, t)\O^t ^1} and let B = {f eC(X)\z-+f(z, Q) is
analytic}. Then B is a function algebra whose Silov boundary is
{(s, 0)| 131 = 1} U {(0, ΐ)|0 ̂  t ^ 1}. The point (0,0) is in the Silov
boundary, but is not a generalized peak point. Define φ on X by
φ(z, 0) == (s/2, 0) and cp(O, t) = (0, 0). Then it is easy to verify that
T: Tf = /09? is a compact endomorphism of B and <ρ(0, 0) = (0, 0) is
in the Silov boundary. However T does not have the form Tf =
/(0, 0)1. Note, though, that Πφn(X) = {(0, 0)}.

Another reasonable conjecture from the example of the disc
algebra might be that if T is an endomorphism of a function
algebra B on X for which φ{X) does not intersect the Silov
boundary, then T is compact. This, too, is not true.

EXAMPLE. Let X = {(z, t)\\z\^l and 0 ̂  t ^ 1} and let B =
{/ G C(X) I s -> f(z, t) is analytic for each t}. The Silov boundary of
B is {(s, ί)| \z\ •= 1, 0 ̂  ί ^ 1}. Define 9? by <p(z, t) = (z/2, t). Then
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φ(X) = {{z, t)\ \z\ ^ 1/2, 0 ^ t ^ 1} does not intersect the Silov
boundary, yet Tf — foφ is not compact since, for instance, n?>»(-X") =
{(0, t) 10 ^ ί ^ 1} is not a singleton.

As a final example along these lines, we note that even if
Πφn(X) is a singleton, the endomorphism Tf = f°φ need not be
compact. For, let B = C(D), the algebra of continuous functions
on the closed unit disc D and let <p(z) = J?/2. Then Π 9>»(S) = {0},
while Tf = /09? is not compact because, as we have seen, each
compact endomorphism on C(D) has the form Tf = /(α)l for some
aeD.
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