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ON THE LATTICE OF VARIETIES OF BANDS
OF GROUPS

T. E. HALL AND P. R. JONES

In this paper we prove that the lattice of varieties of
bands of groups is modular and apply this to direct decom-
positions of various sublattices. The join of the varieties
of bands and of completely simple semigroup is shown to
be the variety of ‘‘pseudo-orthodox’’ bands of groups.

1. Introduction. When considered as semigroups with an addi-
tional unary operation x — 7', where x~* denotes the (unique) inverse
of x in the subgroup to which it belongs, the class CR of completely
regular semigroups (often called unions of groups) forms a variety of
universal algebras, containing as a subvariety thevariety BG of bands
of groups (those completely regular semigroups on which 57 is a con-
gruence) ([12]). In this paper results of Spitznagel [14] on the lattice
of congruences on a band of groups are applied to show that 7 (BG),
the lattice of subvarieties of BG, is modular (Theorem 3.1). Petrich
[12, 13] considered various subvarieties of BG but left open the
problem [13, p.1196] of finding the join of the subvarieties B and
CS (of bands and of completely simple semigroups respectively). We
show that B v CS = POBG, the variety of pseudo-orthodox bands of
groups, and is thus strictly contained in BG. (If V is a variety of
completely regular semigroups and S€ CR we shall call S pseudo-V
if eSec V for every idempotent ¢ of S.) This result is actually an
immediate corollary to our characterization of the join O Vv NBG of
the varieties of orthodox completely regular semigroups and of
normal bands of groups. Theorem 3.1 is also applied to directly
decompose various sublattices of 7 (BG).

2. Preliminaries. For background to this paper the reader is
referred to [13] where defining identities are presented for most of
the varieties encountered here. Various subvarieties of CR are
shown on the diagram on p. 1172 of [13]. For easy reference we
will give a list of our abbreviations for these:

CR: completely regular semigroups
BG: Dbands of groups
NBG: normal bands of groups
OBG: orthodox bands of groups
B: Dbands
CS: completely simple semigroups
NB: normal bands
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SLG: semilattices of groups
RG: rectangular groups
SL: semilattices
RB: rectangular bands

G: groups
T: the trivial variety

Further O will denote the variety of orthodox completely regular
semigroups (those whose set of idempotents forms a subsemigroup).

We will otherwise use the terminology and notation of [7] (for
semigroup theory) and [6] (for lattice theory). Throughout Ej
denotes the set of idempotents of the semigroup S and (E;) the
subsemigroup of S generated by FE; (completely regular, by [3],
when S € CR).

If p is a relation on S then p* will denote the congruence on S
generated by p and if ACS S, p|A4 will denote the restriction p N
(A x A)of o to A. The symbol A(S) represents the lattice of con-
gruences on S, with ¢ and ®w the smallest and largest elements
respectively. A point which will be of importance in §3, in particular,
is that 4(S) is a sublattice of the lattice XY(S) of all equivalences on
S ([7], §I1. 5).

3. Bands of groups. We will prove the following theorem.

THEOREM 3.1. The lattice 7" (BG) is modular.

Before beginning the proof we need some lattice-theoretic con-
cepts from [6], §III. 2. If L is a lattice and a € L then a is said to
be neutral if

(i) a “separates” L:
if x,yeL then a Ax=a Ay and aVVa=aVy together imply
=1,

(ii) the map x —a V 2 is a morphism
and

(iii) the map z —a A x is a morphism.

Elements satisfying (i) and (ii) are called standard. It is almost
immediate that e is neutral if and only if the mapz —(a A 2, a \V %)
is an isomorphism of L upon a subdirect product of the sublattices
{freL:x =< a} and {xreL:x = a}. Clearly neutrality is a self-dual
notion. (For equivalent formulations of neutrality see [6], Theorem
III. 2.4.)

We now quote some results of Spitznagel, rephrased in the above
terminology.

RESULT 3.2 [14, Theorem 3.9]. On any band of groups S, the
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congruence 5% is a standard element of A(S). Further it is a
neutral element of the sublattice [¢, 2] of A(S).

REmMARK 38.3. Using similar methods to those of Spitznagel it
may be verified that an analogous result is true in any completely
regular semigroup S. For example 57 separates A(S) (in the above
sense), the map o — p V 5% is a complete morphism of the sublattice
A(S) of 3(S) (see §2) into 3(S) and the map p—p NS is a com-
plete morphism of the sublattice [¢, 2] of A(S) into X(S) (the join
being interpreted as join of equivalences where necessary). A con-
sequence of the last statement will be used in the proof of Theorem
5.3: for any collection {z,},.x of congruences on S, each contained in
D, Vit ke KNS = Vit, N &~ ke K}, so that in particular, if
7, N & =¢ for each ke K then V{r,: ke K}Ns#F =¢.

Now in any variety of algebras the lattice of subvarieties is
dually isomorphic with the lattice of fully invariant congruences
on the free algebra F on a countable set of generators in that
variety, and moreover the lattice of fully invariant congruences on
any algebra A forms a sublattice of the lattice of all congruences
on A. (See, for example [10]. A congruence p on an algebra A is
Sully invariant if apb implies af p b0 for every endomorphism ¢
of A.)

Noticing that both & and & are fully invariant congruences
on any band of groups, we see from Result 3.2 that in this case 57
is a neutral element in the lattice of fully invariant congruences
contained in <. Since &% defines the variety B (within BG) and
<7 defines SL, we see that B is a neutral element in the sublattice
[SL, BG] of 7°(BG). We then have

PrROPOSITION 3.4. The sublattice [SL, BG] is a subdirect product
of the sublattices [SL, B] and [B, BG] and is therefore modular.

Proof. The first statement follows from the remarks on the
definition of neutrality. For the second, we quote the result of
[1, 2, 4] that 7°(B) is distributive (whence modular) and then note
again that since B corresponds to the fully invariant congruence 57
on F (the free band of groups on a countable set of generators),
the sublattice [B, BG] is dually isomorphic with the lattice of all
fully invariant congruences on F' contained in 5%, which in turn is
a sublattice of the lattice of all congruences on F' contained in 5%
Since this last lattice is modular [9], so is [B, BG] and therefore
[SL, BG] also.

The proof of Theorem 3.1 will be completed by the following
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proposition, since 7°(SL) consists of just T and SL and is therefore
distributive. Note that this result is true for arbitrary varieties
containing SL (and contained in CR).

ProposiITION 3.5. The variety SL is a neutral element in 7" (CR)
and therefore in any sublattice containing SL. In particular,
therefore, 7°(BG) is a subdirect product of 7°(SL) and [SL, BG].

Proof. It will prove convenient here to show directly that the
map X: K—(KNSL, K\ SL) is an isomorphism of 7°(CR) into
7°(SL) X [SL, CR]. Clearly X is order-preserving.

Suppose, on the other hand, that K, LS CR and KNSL < LN
SL, KVSLC LV SL. Now since 7°(SL) = {T, SL}, either SLCL or
LNSL=T. Inthe formercase K< K\ SL< LV SL = L. Other-
wise LNSL =T, whence KN SL = T also. But on any completely
regular semigroup S, & is an SL-congruence and if S/ eT then
SeCS. Hence K, L<CS, and so KV SL, L\ SL<SCSV SL =
NBG.

From [13, Theorem 4.7], the map V— VNCS is a lattice
morphism of 7°(NBG) upon 7°(CS). Thus K = (KN CS)V (SLNCS) =
(KV SL)N CS and similarly L = (L \ SL)N CS, whence K\ SL <
L\ SL implies K < L.

Hence X is an order isomorphism and SL is neutral.

COROLLARY 3.6. The lattice 7°(CS) is modular.

From Theorem 3.1, direct decompositions of various sublattices
of 7°(BG) may be obtained by applying the following resulit.

RESULT 3.7 ([6], Theorem IV. 1.14). If a, b are elements of a
modular lattice L then the sublattice of L generated by [a A b, a]
and [a A b, b] is isomorphic to [a A b, a] X [a A b, b].

For modular lattices in general, the sublattice generated by
[a A b, a] and [a A b, b] need not be [@ A b, @ V b]. However in our
situation this does occur.

COROLLARY 3.8 ([12], Theorem 3.3). 7°(0OBG) = 7°(B) X 7°(G).

Proof. Using, for example, the results of [7, Chapter VI], we
have that any orthodox band of groups is a subdirect product of its
maximum B-image and its maximum SLG-image (since the inverse
completely regular semigroups are just the semilattices of groups).

Thus if Se K and K S OBG, then Se (KN B)VV (KN SLG). But
by, for example, (6) of [13],
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KNSLG = (KNSLG)NSL) v (KN SLG) N CS)
=(KnSL)V (KNG,

so Se(KNB)V (KN G) (since SL < B).

Therefore K= (KN B)V (KN SLG) and so K belongs to the
sublattice generated by 7°(B) and 7°(G). Hence 7°(B) and 7°(G)
generate 7°(BG) and since BN G = T an application of Result 3.7
yields the result.

REMARK 8.9. Since the description of 7 (NBG) as a direct
product of 7°(SL) and 7°(CS) ([13], §4) was essentially used in the
proof of Theorem 3.1, we cannot of course apply the theorem to
that situation.

4, A closure operator. For each subvariety U of CR we let
P(U), or just PU, be the class consisting of those completely regular
semigroups S whose (completely regular) subsemigroups eSe belong
to U for every ec E.

ProposiTiON 4.1. For any variety UZ CR, PU is a variety
containing U. In fact the operator U— PU s a closure operator
on 7°(CR).

Proof. If SePUUZ CR), T is a (completely regular) subsemi-
group of S and ec E, then ec E; and eTe is a (completely regular) sub-
semigroup of eSe and so belongs to U. If T is a morphic image of S,
under ¢, say, and e¢c E; then by a lemma of Lallement [8], ¢ = f¢ for
some f € K, whence eTe = (fSf)¢ e U. That PU is closed under direct
products is immediate upon noting that an element of a direct
product of semigroups is idempotent if and only if each of its com-
ponents is idempotent. Hence PU is a variety.

Clearly UZ PU, and UZ V implies PUZ PV. 1If SeP(PU)
and ec Ey then eSec PU. But ecKE,;, and so eSec U. Therefore
eSec U, whence P(PU) = PU.

We call PU the variety of pseudo-U semigroups.

LEmmA 4.2. P(BG) = BG.

Proof. Let SeP(BG), z,yeS, x5y and se€S. Now xPy
implies sx.#sy. Let e = axx™' = yy~'. Then since H, < ¢Se, a band
of groups, we have

esx = (ese)x o7 (ese)y = esy .
But esx_ssx sy Sesy so (since Z-classes of S are completely simple)
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sx.FesxoresyFsy. Therefore sxs7sy. Similarly xsS#ys and thus
&% is a congruence, that is S e BG.

As noted above BG S P(BG) and the result follows.

As a result of this lemma, if UZ BG, then PUZ BG also.
Observe that P(T) = RB and P(G) = CS. By Theorem 4.1 of [11],
a completely regular semigroup S is a normal band of groups if and
only if it satisfies “<-majorization”: if e, f,9€Es, ¢e=f, e=g,
f<2g then f = g. Clearly this is equivalent to saying each <-class
of e¢Se contains precisely one idempotent for every ec E,, that is
each ¢Sec SLG. Hence

LeEmmA 4.3. P(SLG) = NBG and P(SL) = NB.

If Ue7°(CR), a congruence on a semigroup S will be called a
U-congruence if S/oc U. If S is completely regular then S has a
least U-congruence. We now show how to derive the least PU-con-
gruence on S in terms of U-congruences on the subsemigroups eSe,
e€ K.

ProproSITION 4.4. If U CR and S<cCR then the least PU-con-
gruence on S is the congruence generated by the union of the least
U-congruences on the subsemigroups eSe, ec Hj.

Proof. Denote by p, the least U-congruence on eSe, ec Ej, and
put p = (U{p,:ec Eg), T = S/p.

If fe E, then, as above, f = e¢p for some ec Eg and so fTf =
(eSe)/(o]eSe). Since p, S pleSe, there is a morphism of eSe/p, upon
eSe/(p|eSe) and thus since eSe/p, € U, fTfc U. Hence Te€PU and p
is a PU-congruence.

Now let z be an arbitrary PU-congruence. For each ec K,
z|eSe is a congruence on eSe and in fact a U-congruence, since
eSe/(t|eSe) = (et)(S/t)(er) € U (since er € Ky, and S/c € PU). There-
fore p, & t|eSe < = for each ec E and p S 7, by definition.

Hence p is the least PU-congruence on S.

A result which is clearly relevant to this proposition and which
is required in the next lemma is the following.

PropPoSITION 4.5. If S is any semigroup, e<€ Es and p is a con-
gruence on eSe, then o*|eSe = p.

Proof. Clearly p S p*|eSe. Conversely, suppose (, y) € p*|eSe.
Then there exists a sequence

X =% €y Lo Tn=1Y
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of elements of S such that for each i1 =<1 <), x,_, = s,at, and
x, = s;b;t, for some s, t,€S*, (a;, b,)€p. Since exe = x and eye = y,
the sequence may be replaced by the sequence

x = exe ex.e ex.e p ex,.e =1,

where for each 14, ex,_.e = es,at.e = (es,e)a;(et,e), since a,ceSe, and
ex,e = (es,e)b;(et,e) similarly. Since (a;, b)cp and ese, et,eceSe,
(ex;_.e, exe) €0, 1 = 1 = n, hence (x, y) € p, as required.

The next lemma is required in §5.

LEMMA 4.6. If SeCR, ecEsand p is a congruence on eSe such
that o N 22 = ¢ (on eSe) then 0*N 22 =¢ on S.

Proof. Suppose (x,y)ep*N o4 x,y€S, x #y. Then as above,
z = s,a;t, for some s, t,€8', a,€eSe. Therefore J, < J, = J, and
since S is a semilattice of completely simple semigroups, exeDx.
Let weR,,.NL, and let ' be the inverse of w in R, N L,,,. Then
uxw’, wyuw' € H,,, and we have (noting that eSe consists of complete
s#-classes of S) (uxu', uyu’) € p*|eSe. By the previous proposition,
o*leSe = p, so uxu’ = uyu’, whence @ = w'(uxu)u = w'(uyuw')u =y, a
contradiction.

5. Lattice joins. In this section we find the join O Vv NBG,
and as a corollary OBG Vv NBG. From the results of [13], it may
be observed that OBG \v NBG = B \/ CS.

Since, as was seen in §4, NBG = P(SLG) and SLG Z O we have
NBG < PO and so OV NBG Z PO. In particular OBG \y NBG <
POBG(=PO N BG). In view of the next example, OBG v NBG is
properly contained in BG.

ExaMPLE 5.1. Let C be a nonorthodox completely simple semi-
group and S = C'. Since 5# is a congruence on C, it is also a con-
gruence on S, that is Se BG. But S¢ POBG since S = 1.S.1 is not
orthodox.

Consider now the property:

(*) apbsFapp~b for all pelF, a,beSsS.

Any band of groups satisfies (*) since of course pS#pp~" and 5# is a

congruence on a band of groups. Moreover any orthodox completely

regular semigroup also satisfies (*), for then (K> = Egand p = pp~*.
We now show (*) may be expressed in terms of identities and

so the class I of all completely regular semigroups satisfying (*)

forms a subvariety of CR containing, as we have just seen O V BG.
For each n =1 let I, be the identity
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(ap,d)(ap,b)™ = (ap,0:'0)(ap,pz'0)*

where p, = (o) (@27 - -+ (@270, a,b,2,€S, ¢ =1. Since any
product p =e, --- ¢, of idempotents of S can be expressed in the
form p = (eei!) -+ (e,ext) it is evident that a completely regular
semigroup has property (*) if and only if it satisfies the set {I,},=:
of identities. The main property of such semigroups which we
exploit is the following.

LEMMA 5.2. If Sel then the congruence on S generated by
Py 18 contained in S57. Hence the least O-congruence on S 18
contained in 7.

Proof. Since 57 is an equivalence on S it is sufficient to show
that if (p, 9) € %% then apbszaqd for all a, be S'. But pozpp™ =
qq~'577q, 80 apbsSFapp~b = aqq b SFaqb, using (*).

The least O-congruence is clearly generated by all pairs
((ef)’, ef), e, feEs. Since ((ef), ef) € 57, the second statement
follows immediately.

Qur main theorem for this section is now

THEOREM 5.3. A completely regular semigroup S€O V NBG if
and only if S is pseudo-orthodox and satisfies (*). That is, O \V
NBG = POI(=PONI).

Proof. That any semigroup in O\ NBG is pseudo-orthodox and
satisfies (*) has been established. The converse will be proved by
showing that any such completely regular semigroup S is a subdirect
product of an orthodox semigroup and a normal band of groups;
this will follow from our proof that, on such a semigroup, the least
O-congruence and the least NBG-congruence have trivial intersection
(see, for example [5], Theorem 20.2).

By the previous lemma the least O-congruence on S, «, say, is
contained in 52 Let 7 be the least NBG-congruence on S. Since
NBG = P(SLG), 7 is the congruence generated by the union of the
least SLG-congruences on the subsemigroups eSe, ec Es (using
Proposition 4.4). Since SLG is precisely the class of completely
regular semigroups which are also inverse semigroups, the least
SLG-congruence on eSe is just the least inverse congruence Z/,.
Moreover since Se PO, each eSe is orthodox and therefore Z/,5 N
&% =t on eSe (see, for example [7, p. 191]). By Lemma 4.6,
Zewsi NSF =¢on S.

At this stage we apply the comment made in Remark 8.3: if
{Tilrex 18 @ collection of congruences contained in < on a completely
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regular semigroup S, and if T,NF =¢ for all keK, then
Vi{ti: ke K} N &7 = ¢ (the join denoting the join in the lattice of
congruences on S).

Therefore PN o7 = (VZ.s )N =¢ and so for any Se POI
we have PN a S 7N SF =¢ as required.

COROLLARY 5.4. BV CS = OBG v NBG = POBG.
Proof. As noted earlier, BG < I.

COROLLARY 5.5 (to the proof).

(i) Any semigroup in POI is a subdirect product of an orthodox
semigroup and a normal band of groups (in fact of the maximum
orthodox morphic image and the maximum NBG morphic image).

(ii) Any pseudo-orthodox band of groups is a subdirect product
of a band and a mormal band of groups.

Proof. (i) is immediate. From the proof of the theorem we
see that if S€ POBG then S is a subdirect of an orthodox band of
groups and a normal band of groups. However more strongly, n N
¥ =t¢, where 7 is the least NBG-congruence and, in a band of
groups, &7 is the least B-congruence. Thus (ii) follows.

Before completing this section we show that pseudo-orthodoxy
and property (*) are independent. As noted earlier every band of
groups satisfies (*) but need not be pseudo-orthodox (Example 5.1).
We now give an example to show that pseudo-orthodoxy need not

imply (*).

ExaMPLE 5.6. Let C be a nonorthodox completely simple semi-
group and let ¢—¢ be a bijection of C upon a disjoint set R.
Define a product on S=CUR by extending that on C, putting
right zero product on R and

@b = (ab) ,

ab=5b, forall abeC.
It is routine to verify that S is a pseudo-orthodox completely regular
semigroup.

Now let ¢, f be two idempotents of C whose product is non-
idempotent and let 2 be the idempotent in H,;,. Then

elef) =ef and eh=eh =h

since C is completely simple. Hence S does not satisfy (*), for
(ef, h) € Sz but (e(ef)eh) ¢ 2 (since R has trivial subgroups).
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Finally a direct decomposition similar to that of 77 (OBG)
(Corollary 3.8) may be found for [RB, POBG], using Corollary 5.5.

COROLLARY 5.7. [RB, POBG] = [RB, B] X [RB, CS].

Proof. Since BN CS = RB it will be sufficient, by Result 3.7,
to show that [RB, B] and [RB, CS] generate [RB, POBG].

Let K £ POBG and Sc€ K. By Corollary 3.8, S is a subdirect
product of the maximum B-image and the maximum NBG-image, so
that Se (KN B) V (KN NBG) and K = (KN B) Vv (KN NBG).

Applying (6) of [13],

KN NBG = (KN NBG)N SL) vV (KN NBG) N CS)
=(KNnSL)V (KNCS),
S0 K=(KnB)V (KnCS).

Thus if Ke[RB, POBG], K belongs to the lattice generated by
[RB, B] and [RB, CS], as required.

REMARK 5.8. By generalizing the methods of [12] this corollary
may be proved directly (with rather more difficulty).

Added in Proof. Since this paper was accepted, the authors
have learned that our Corollary 5.4 has also been obtained by V. V.
Rasin, “On varieties of bands of groups”, in XV All-Union Algebra
Conference, 1979.
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