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NOTES ON GENERALIZED BOUNDARY VALUE
PROBLEMS IN BANACH SPACES, II

INFINITE DIMENSIONAL
EXTENSION THEORY

R. C. BROWN

LetX, Γbe Banach spaces and ^f\X^ Y, &\ Γ*-+X*
be linear relations. Suppose ̂ f is a restriction of the adjoint
(or preadjoint) ^ * of & and the codimension of G(-$O in
G(&*) is not necessarily finite. Under certain hypotheses
we can describe in computationally useful ways extensions
^ of sf which are restrictions of ^* and their adjoints.
The theory is applied to a number of examples and is a
direct extension of a previous paper which mainly treated
the finite dimensional case.

1* Introduction* This paper is a continuation of [3] which
outlined an adjoint and extension theory for generalized boundary
value problems (g.b.v.p) in a Banach space setting.

Specifically [3] was concerned with two fundamental problems:

The Adjoint Problem. Let A be a densely defined closed operator
in a Banach space X with range in a Banach space Y. Suppose
further that H is an operator on D(A) with range in a locally convex
topological vector space (l.c.t.v.s.) F such that D(A) Π N(H) Φ 0.
Form the operators AH: X —> Y and AH: X-^Y x F given by AH(x) =
Ax on N(H) and

ΛH (Ax\

Then a question of interest is the determination of A% and AH* and
the investigation of their mutual relationship.

The Extension Problem. Suppose Jzf and & are two closed
relations i n l x Γ such that s/ c &. We now wish to characterize
^ and ^ * where ^ is an arbitrary closed relation such that
J ^ c ^ c ^ . An interesting version of this problem is the case
where sf = AH and & — B% where B: F* —> X*, K is an operator
on D(B) with range in an l.c.t.v.s. G such that D(B) Π N(K) Φ 0,
and A is an operator restriction of the adjoint (or preadjoint) of B*
(also an operator) so that AH c ^ c B% and Bκ c <&* c A%. Here
we wish to relate ^ and ^ * to the structure—presumably already
known—of B% and A%.

In [3] solutions to both of the above problems were sought in
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terms of a theory which should be both applicable to particular
b.v.p. (especially those determined by differential operators and
multipoint, Stieltjes, or interface boundary conditions) and capable of
extension to more difficult problems involving functional differential
operators, PDE, evolution operators, etc.

The focus of the present paper will be on the extension problem.
Our goal is to refine and generalize two distinct theories reflecting
different points of view sketched in [3]. We will also mostly deal
here with the most difficult case—when H is an operator with infinite
dimensional range.

The first approach which seeks to characterize ^ and &* in
terms of mutually adjoint boundary conditions is developed in § 3.
The second which uses the Fredholm alternative rather than boundary
operators is presented in § 4, § 5 contains a nonexhaustive list of
examples. The last section consists of some historical remarks.

2Φ Notation and preliminaries* At this point to motivate the
results of the next two sections and to make the paper notationally
self-contained we will review some of the main ideas and conventions
in [3].

We follow Arens [1] and call a closed linear possibly multivalued
mapping from a Banach space X to a Banach space Y a linear rela-
tion.1 It notationally convenient to distinguish between s/ and its
graph G(J*O (a closed subspace of 1 x 7 ) although logically the
distinction is an artificial one. We often refer to J&f by the nota-
tion J ^ : X-+Y. But this will not imply either that D(j%?) = X or
R(j^) = Y, (We will also often denote an operator with graph in
X x Y with standard type rather than script; e.g., "A" instead of
"jy".) Given a relation J%f we denote the image (a set) of a e X
under Szf by j*f(a) and an arbitrary member of this set by Jϊfa.
Clearly β, βf e Sf{a) if and only if β = βf mod J^(O). J^/* means either
the preadjoint or adjoint of jzf depending on whether or not X and
Y are dual spaces. If S c l , S or "closure" of S means weak* or
topological closure (equivalently weak closure if S is convex) accord-
ing to whether or not X is a dual space. We follow a similar policy
with regard to terms like "complemented", "continuous", "annihilator",
etc. Thus, for example, a complemented set S in a dual space X is
weak* complemented in the sense that there exists a weak* con-
tinuous projection P onto the (weak* closed) set S.

DEFINITION 2.1. // j^:X-+Y and F is a l.c.t.v.s. then a
boundary operator H: XxY—> F is a linear operator suck that D(H)ZD

1 One can also simply identify s>f with its graph X®Y and call stf1 a "subspace"
as is done for example in [6] or [15]-[17].
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N(H) Π G(J^f) Φ 0, and D(H*) is total over F. The condition
H(y, J^y) = 0 is called a boundary condition for j^f. j^fH will denote
the restriction of Szf defined by N(H) Π G

It is easy to show from this definition that H: G(J*f) —> F is
continuous if G(J*f) is given the (relative) product topology as a
subspace of 1 x 7 and F has the weak topology induced by D(H*).
Thus J^H is a closed linear relation. Moreover, one can also show
easily that every closed restriction of J%f is an "j&H" with respect
to a space F which can be viewed either as a Banach space or as a
l.c.t.v.s. under its weak topology. Surprisingly, the second choice
fits some applications better (more will be said about this issue
later).

In the case of an operator A the structure of AH was completely
determined in [3] when R(H) is finite dimensional. Several charac-
terizations of A% were also given in the more difficult infinite dimen-
sional case under several sets of hypotheses. We restate two of the
most useful ones:

THEOREM 2.2. Suppose N(A*) is complemented in Y* and H —
Mo A. Assume that D(M)L is complemented in F* and that D(M*)
is total over F. Then

G(Ai) = {(z, A*z): z + ψeD(A*) and ψeR(M*)} .

In other wordsD(A%) = D(A*)-R(M*), andG{AH) = G(Λ*)-(JB(Λf*)x
{0}).

COROLLARY 2.3. Suppose A is a closed densely defined 1-1 opera-
tor, such that N(A*) is complemented. Let A+ be a (not necessarily
bounded) partial inverse satisfying A+A = /. Assume further that
D(HA+) is complemented and that D(HA+)* is total over F then AH

is the relation with graph

{(z, A*(z + ψθ): z + fe D(A*) and ψ e R(HA+)*} .

We ought to remark here that the assumptions behind these two
results are reasonable ones. For instance, if D(M) — R(A) then
D(M)L = N(A*) and so it is complemented if and only if N(A*) is.
Note also if A is 1-1, H can be a general boundary operator and
not merely defined on R(A). (The case where A is not 1-1 can be
handled by the extension theory.) Furthermore if A is determined
by a regular differential operator, A+ = the Greens function. But
even if A is singular (with essential spectrum) A+ can be identified
with an "algebraic resolvent." For example, if A is determined by
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y" viewed as an operator on Lp[0, oo) —> Lp[0, oo) with boundary

conditions y{ϋ) = #'(0) = 0, A+ is Γ (t - s)( )dβ.
Jo

At this point we indicate why F is sometimes better viewed as
a l.c.t.v.s. rather than a Banach space. Suppose for example Hy =
(βiV{^ί) + diy'(ti+1)} where {£J is an infinite set of points with limit
point co on [0, oo). R(H) may or may not be a Banach space2 but
R{H) r.R+>ω (my notation for the countable direct sum of [0, oo)).
We can make this into a l.c.t.v.s. by giving R+>ω the weak topology
vis a vis Rtoω (sequences in R+'ω with finitely many nonzero terms).
If we can find R(HA+)* or at least the main features of its structure
we have a good idea of A%. This generally is not difficult to do.
This approach can be generalized to more complicated singular
Stieltjes b.v.p. The results are similar to the parametric adjoints
found for such problems by less general methods in [2]. (We will
illustrate further this approach in § 5.)

Two approaches to the extension problem were outlined in [3].
The first one which completely solved the problem in the case
dim F < oo was a straightforward exercise in matrix theory and
depended on the following generalized Green's identity.

THEOREM 2.4. Suppose that s*f\ X-+Y, &\ Γ*-^X* are relations
such that J^f c ^ * and dimG(J^*)/G(^) = G(^*)/G(J^) = n < oo.
Then there exists an n x n nonsίngular matrix & and continuous
operators J: G(&*) -> €n, J: G(Stf*) —> €n with linearly independent
coordinate functionals such that

, z] - [y, J^*z]
**)*^J( &*y) on G{Jtf*) x G(0*) .

Moreover, in a Hilbert space setting where Jzf is symmetric and
— ^ * then & is skew-hermitian.

This result is easily proved using the linear dependence principle.
An easy consequence is the fact that J ^ c z ^ c ^ * if and only if
cέ? is determined by the boundary condition J D J ( G ( ^ * ) ) = 0 where
Z M s a & x w , k ^ n matrix of full rank and that ^ * is given by
the adjoint boundary condition

(2.1) [ND]*^*J(y, J**y) = 0

where [ND] is a matrix whose columns form a basis for the null
space of D.

Unfortunately if dimG(0*)\G{S/) = oo, the foregoing analysis
2 See §6 for further discussion of this point.
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breaks down because the linear dependence principle no longer holds.
To cover this case an alternative approach was developed in [3].
The underlying idea is simple. When A ^ c ^ c J S l , Bκa ^ * c AJ.
If it is assumed that R{^) is closed, one can describe ^ as that
restriction of B% whose range is orthogonal to a certain subspace
of N(A%) and whose null space is a subspace of j?!. Conversely
starting with known subspaces of N(A%) and JV(J?|) one can describe
an extension ^ . Interchanging these subspaces describes ^ * . Un-
fortunately the assumption of closed range is too strong because it
rules out b.v.p. for singular differential operators with essential
spectrum.

This survey of [3] brings us to the point of departure for the
present paper. The next section will show that—suitably reinter-
preted—the simple formulas of the finite dimensional theory (e.g.,
Theorem 2.4) can be extended to the infinite dimensional case. This
is the most significant accomplishment of the paper. In § 4 we in-
vestigate the simple Fredholm alternative approach. This section
is mostly a refinement of previous work. But, it is shown that a
large portion of the theory may be salvaged if we abandon the
closed range hypothesis. Fortunately, the portion that remains is
just what we need to calculate extensions in concrete problems.

3* A theory of boundary operators for the infinite dimen-
sional extension problem* As mensioned above, the purpose of
this section is to show how to preserve the results of [3]—e.g.,
Theorem 2.4 or (2.1) above—describing finite dimensional extensions
in the infinite dimensional setting. However, we state at the outset
that this will be done at a price. &, D, etc., will no longer be
matrices but rather weakly continuous operators. Also, certain
restrictions must be placed on the boundary operators J, J as well
as on the class of extensions considered.

The finite dimensional theory depended on linear algebra argu-
ments and especially the "linear dependence principle": If ψu i =
1, , n and φ are linear f unctionals on a space X such that N(φ) z>
f)N(ψi), then φ is a linear combination of the ψt. Our first step is
to replace this principle by an obvious generalization.

LEMMA 3.1. Suppose X, F, G, are linear spaces and π:X—>F>
φ: X —> G are linear operators such that N(π)zDN(Φ) then there exists
λ: G —> F such that λ°0 = π.

Next we add a refinement to the idea of a boundary operator.

DEFINITION 3.2. Suppose j ^ c ^ c ^ * . We say that & is
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regular if there is a boundary operator H for &* (cf. Definition
2.1) defining <g% i.e., <& — ̂ £ such that H* has closed range in
Y* x X*. In these circumstances H is said to be a regular boundary
operator.

REMARK. Recall from Definition 2.1 that H is considered a map-
ping from X x Y to F. So that i ϊ* has range in 7* x I * . But
although D(H) => G(^*) H need not be densely defined so that H*
may be multivalued.

LEMMA 3.3. Suppose D(H) = G(B*) then & is regular if and
only if

(3.1) R(H*) = GC-^*)- 1 .

Proof If (3.1) holds & is regular since ^ is closed. Con-
versely, if <g* is regular the fact that N(H) = G(^) implies

(N{H)Y = Gi-^*)-1 = R(H*) . D

We now make the following assumptions: (i) J ^ &, ^ are
regular; (ii) the boundary operators J for J%f and J for & (i.e.,
j^ = ̂ j*, & = j^ff) are onto certain fixed l.c.t.v.s. F and G;
(iii) D(J) = G(B*), Z>(J) = G(A*); ^—unless stated otherwise—is a
regular relation which is an extension of j%f and contained in ̂ * .

Throughout the paper we also adopt the following conventions
concerning the topologies of F and G. Unless otherwise mentioned
F* denotes D(J*) endowed with the weak* topology induced by F
and F will have the weak topology induced by F*. Thus F * is the
dual of F and F** = F. A similar policy will be followed with
regard to G. It follows (since D(J*) and D(J*) are total) that J, J
or any other boundary operator may be viewed as continuous on

or

LEMMA 3.4. If G(^) is a subspace (but perhaps neither closed
or regular) of G(&*) then & is closed if and only if J(G(^)) is
closed.

Proof. Since J(&") is a subspace it is sufficient to show that
is weakly closed. Let 7 be a weak limit point of J{G{^)).

Then there exists a net (yh ^*?/z> in G(^) such that

(3.2) [J(yl9 <&*yι), φ] >[Ύ,φ]

for all φ in F*. Since J is onto 7 = J(y, &*y) for some y. Taking
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adjoints we have,

since J ^ c ^ c ^ * , &

yi), <J*^] — , [(

r*cj/ .

= MJ)1 =

:^*», v), J*Φ\

Since ^ r> N(J) =

Since iV^)1 = i2(J*), (because J is regular!), it follows that -if* c
R(J*). Hence we can select φ so that J*φ is an arbitrary member
(z, J^*2) in G ( - ΐ f *). Then (3.2) can be written

W*Vu *] - Ivi, ̂ *z] —> W*v, z\ - [y, J^*Z] .

Since all the terms on the left vanish it follows that (y, ̂ ?*y) e
G{^) so that 7 G J{G{^)) and J{G{^)) is weakly closed.

Now suppose J(G(^)) is closed. Let (y, έ^*y) e (?(9f). Then
there is a sequence (ylf ^?*yi) in G{^) converging to (y, <^?*y).
By the (weak) continuity of J,

[J(Vι, έ?*Vι), Φ] > [J(V, έ?*v), Φ]

for all φ in F*. This implies that J(y, &*y) is a limit point of
J(G(^)) and hence belongs to J(G(ίf)). Since J-V(y,
mod G(j*)f (y, έ§*y) e

The next two results generalize the Greens formula—Theorem
1.2, derived in [3] for finite dimensional F. Together they will serve
as the foundations of our extension theory.

THEOREM 3.5. There exists a 1-1 continuous operator <2%\ G -^ F*
such that

(3.3) W*y, z] - [y, Jϊf*z] = [J(y,

Proof. Fix an element (α, β) in G(J^*). Then [<^?*y, a] — [yf β]
is a functional ψaβ continuous on G ( ^ * ) whose null space contains
N(J). Consequently by Lemma 3.1 κ(a, β) := ψaβJ"1 is well-defined
and

(3.4) W*V, a] - [y, β] = κ(a, β) o Jd/, ^ * y ) .

We now show that ιc(a, β) eF*. Suppose ' <7i> is a weakly conver-
gent net with limit 7 in F. Since J is onto, there exists a net
<2/Ϊ, 3?*yι) and a pair (y, ̂ *^/) such that J(yh &*yt) = Ύι and
J(y, &*y) = 7. Hence by the weak convergence of

^*»,) , Φ] > [J(V, &*V), Φ]
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for all φ in F* := D(J*). Taking adjoints yields

[(yι, έ?*vι), J*Φ] — > ί(y, έ?*y), J*φ].

By Lemma 3.3 R(J*) = G( — S*f*)~\ Hence, choosing φ so that

(3.5) W*yl9 a] - [yh β] > [<^*y, a] - [y, β] .

Putting (3.4) and (3.5) together we conclude that /c(a, β) ° Ύn —>
ιc(a,β)oym Thus fc(a, β) eF*. (3.4) also shows that the mapping

it
(α, β) —> /c(α, /3) is linear and continuous with respect to the graph
topology on G(jy*) and the weak* topology of F*. Further (a, β) e
G{^) if and only if J(α, β) = 0. In this case [J(y, &*y), ιc(a, β)] = 0
on G(0*). Since J is onto, (a, β) eN(£). By Lemma 3.1 there
exists an operator έ%?\G —> F * such that ^oj — κ so that from
(3.4)

(3.6) [^**/, α] - [y, β] = {ώ o j(a, β)) o J(τ/, ̂ *j/) .

To derive the Greens relation (3.3) it remains to show that & has
the stated continuity properties. Let (g{) be a net in G converging
to g. We write gx — J(al9 jy*α z) and g = J(a, J%f*a). Then

[J(ah J^*α z ), φ] > J{a, J*f*a), φ]

for all φ in G*. Taking adjoints yields

(3.7) [(αIf J^*α,), J*φ] > [(α, j ^ * α ) , J*^] .

Since G ( - ^ * ) - χ = R(J*) (Lemma 3.3) (3.7) can be written

[&*y, a{\ - [y, j ^ * α z ] > \0*y, a] - [y,

on G ( ^ * ) . Thus from (3.6)

^ Qι) o J(y, ^ * ^ ) > {0 o g) o J(yf έ^*

Since J(y, &*y) is an arbitrary element of F, & is continuous.
Finally S is 1-1 for if ^J{z, JΪ?*Z) = 0 and (3.3) is true, then
(z, J*f*z) e G{0), implying J(z, J^*z) = 0.

COROLLARY 3.6. Suppose X = Y is a Hubert space ( " ^ " ) and
^?* = Jzf* so that J / C J / * . Then & is skew-hermetian. Since
the argument is no different from the proof in [3] (Lemma 4.2), we
do not repeat it.

The previous theorem has shown that given regular j y , & and
certain conditions on J, J then a Green's relation may be constructed.
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However, in many applications the Green's formula is already known.
The following theorem therefore is sort of a converse of Theorem
3.5 and shows that in certain circumstances given a Green's formula,

and & are regular.

THEOREM 3.7. Let W, Z be linear spaces and suppose J: X x
Y —* W, J: Y* x X* —» Z are linear operators with domains G(&*)
and G(J*f*) respectively. Suppose further that there is a 1-1 operator
έ%? from R(J) onto a total space of functionals over R(J) such that

(3.8) [<5&*y, z] - [y, j**z] = [J(y, έ&*y

Then J and J are regular boundary operators j y and

Proof. We regard R(J) asal.c.t.v.s. F under the weak topology
determined by R(&J) := F* and JF7* as a l.c.t.v.s. endowed with
the weak* topology determined by F. (3.8) implies that J: G(0*)->F
and &J\ G(J^*) -> F* are continuous. Hence &/ and <s*fh = Ssfj*
are closed. (3.8) also shows that ^/ aj*f^= <$/** and J ^ * c & =
^ * * . On the other hand if (y, ^*y)

(3.9) [J(y, <&*y), <&J(z, J**z)] = 0

for all elements of G(jy*). Our assumption of totalness implies that
(y, &*y) e G{0/*). Hence ^f c ^ * and the two relations are equal.
Similarly if (z, jy*z) e G ( ^ ) (3.9) holds for all elements of G{0*)—
i.e., on R{J). This means (since F is automatically total over JP*)
that <£#/(£, j ^*^) = 0. Since ώ is 1-1, J(z, J*f*z) = 0 and & =
J&j*. Since J is continuous, standard theory implies that J* exists
and D{J*) = F*. We now show that JB(J*) = G((- J^*)"1) (showing
in particular that R(J*) is closed). To see this we rewrite (3.8) in
the form

)9 (-JK*, a) - J*ώJ{a, J O ] - 0

for fixed {a, ,JK*) in (?(J^*). It follows that

(3.10) (-JK*, a) - J*M(a, j*a*) c

so that

showing that i?(J*) cG( —J^*" 1 ). However from what was proven
above (z, Jtf*z) c G ( ^ ) if and only if J(z, J^*z) = 0. This and (3.8)
shows that J*(0) - G ί - ^ " 1 ) . Therefore from (3.10)

*, a) 6 J*έi(J(a, j^ς*))
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for any a. Thus G(- J^*"1) czR(J*) and we conclude that R(J*) =

G( — J^*" 1 ). We now consider the operator J. As noted previously

F is automatically a total family of functionals over F* := R(^J).

Since ^ is 1-1 the pairing

(3.11) [/, ^J(z , J^*z)], / e F

induces a total family of functionals in G :— R(J). Thus the usual

way G and .Fcan be regarded as mutually dual l.c.t.v.s. with respect

to the pairing (3.11). The operator &\G-*F* is automatically

continuous. Its adjoint gg*\F' ̂  F* exists and is continuous. έ%?*

is defined by the equation

Also, ^ * is trivially onto and 1-1. In terms of ^?* we can write
the Green's relation (3.8) as

, z] - [y, J^*z] = [^*J(y, ^*y), J(z,

Here R(&*J) defines a total family of functionals over J. By re-
asoning paralleling that for J in the first part of the proof, we can
prove that J is a regular boundary operator. •

REMARK 3.8. In most practical cases ^?* is known and we need
not formally define it as has been done in the previous theorem.

To develop an extension theory paralleling the finite dimensional
case, it is necessary to put a further restriction on the intermediate
relation ^ . At this point we assume that in addition to being regular
^ = &]& where D: F —> F is a, weakly continuous operator. Let us
call such ^ (or the boundary operator defining it) "admissible".

The connection between this assumption and the assumption of
regularity is made clear by the following lemma.

LEMMA 3.9. Suppose D: F —> F is α weakly continuous operator.
Then DJ is regular if and only if D* has closed range.

Proof. Since D is weakly continuous D* exists and the domain
of D* = F*. This implies that (DJ)* = J*Z>*. For if y is in the
domain of (DJ)*

[Jx, D*y] - [x, J*D*τ/] = [x, (Djyy]

so that J*D*y = (DJ)*y and thus J*Z>* =) (DJ)*. On the other hand
the reverse inclusion is trivial. Now suppose that D* has closed
range. Let λz be a net in R(DJ)* converging to λ. Then λz =
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t. Further

[θ, (DJ)*φt] = [θ, J*D*φι] > [θ, λ]

for all θ in F. Since λz 6 R(J*) and J* has closed range, (recall J
is assumed regular) λ = J*η. Hence

D%] >[JΘ,η].

Since J is onto and D* has closed range, η = D*φ. It follows that

λ = J*D*φ = (DJ)*φ .

So (DJ)* has closed range. Conversely if (DJ)* has closed range
and λz = D*φι —• λ is a net in J?(D*), then

So that

[θf(DJ)*φι] >[Θ,J*\].

Hence

J*λ = (DJ)*^ = J*JO*ί5

implying since J* is 1-1 that λ = D*φ. Π

We can now prove our main result concerning admissible relations.

THEOREM 3.10. Suppose <& is admissible. Then

G($f*) = {(z, s/*z)\ M{z, Jϊf*z) e R(&*)} .

Proof. By Green's relation (z, J*f*z) e ^ * if and only if

(3.12) [J(<Sf), SJ(Z, J^*Z)] - 0 ,

that is,

<gf * - {(z, ώ

By hypothesis N(DJ) = & so that N(&) = J(^) because J is sur-
jective. Thus

(3.13) J($?y - N(D)L - R(D*)

because ^ is admissible and R(D*) is closed by Lemma 3.9. •

If ^ is regular but not admissible we have the following result.

COROLLARY 3.11. ^ J ( ^ * ) = R(D*).
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If ^ is not regular we can still say something about <g?*.

COROLLARY 3.12. Two relations ^ and ̂ + are mutually adjoint
if and only if

)] = 0 .

Proof. This follows from (3.12) above.

COROLLARY 3.13. Suppose R(D*) is complemented and & is
regular. Then G(^*) is characterized by the adjoint boundary
condition

(3.14) (I - P)^J{G{^*)) = 0

where P is the projection on

COROLLARY 3.14. If<£* is admissible and R(D*) is complemented,
then &* is admissible.

Proof. Looking at the boundary condition (3.14) characterizing

^ * we must prove that Γ : = ((I— P)&J)* has closed range. Now

((I - P)έ%JY = J*ώ\I - P)* .

It is also easily shown that I — P* is a (weakly continuous) projec-
tion on N(D).

Let λ, := Tφι be a net -> λ in R(T) since λz6i2(J*) and R(J*)

is closed (J being admissible) λ = Jf. Since ^ * is onto, η = ^ * ψ .

Thus

[Tφl9θ] >[J*&T*γ,θ]

or

( - ( I - P*)φh

for all θ in F*. Since &J runs over F* and N(D) is (weakly)
closed, ψ = (I — P*)(5. Going backwards these fact imply that λ =
Tψ so that T has closed range. •

Self-adjoint and symmetric extensions. Suppose X = Y =
F = G = H where 2$f and if are hilbert spaces and *$/ = &. In
this case J^f is symmetric and <S& is skew-Hermetian. We wish to
characterize self-adjoint and symmetric extensions ^ of

Suppose ^ is admissible and regular then:
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THEOREM 3.15. Let P be the orthogonal projection onto
Then & is antisymmetric, i.e., ^ Z ) ^ * if and only if
N(D) and <& is self-adjoint if and only if N(P&) = N(D).

Proof We have i f = (J^*)DJ and, by Corollary 3.13, if* =
(J**)p£jf so that i f = N(DJ) and if* = N{P^J). Since / is sur-
jective it follows that J(<jf) = N(D) and / ( ^ * ) = N(PiΦ). Let
i f =)if*. Then /(if) ID/(if *) and so N(D)ZD N(Pέβ). Conversely,
let N(D) -D N(P^). Then N(DJ) =) N{Pώ^) so that i f => if*. The
second assertion follows from the foregoing lines after replacing the
inclusion signs by equality signs. •

COROLLARY 3.16. Suppose P is an orthogonal projection with
the property that P£%P — 0. Then the intermediate admissible rela-
tion & detemined by DJ where D = P& is antisymmetric and is
self-adjoint if and only if N(P&) = R(P).

Proof Let Q be the orthogonal projection onto N(D). Then
P^P = 0 implies that N(Q^)aN(D) so that by Theorem 3.15 i f
is antisymmetric. To see that N(Q&) c N(D), let x e N(Q&). Then
Q&x — 0 so that £%x e N(D)1 = R(D*) since <& is admissible (see
Lemma 3.9). Hence

έ§*x = —έ^x = —D*y — —έ^*Py for some y .

Here we used the fact that <5& is skew-hermetian. Since ^ * is
1-1 we have that x = —Py so that P&x — —Dέ@Py = 0 showing
that N{Q^)dN{D). The second assertion of the corollary follows
from the second assertion of Theorem 3.15 once we have proved that
N(Qώ) = N(D) if and only if N{Pώ) = R{P). Assume the first
equality. If x e N(P) then x e N(Q) and hence

= R{0D) .

It follows that &x = ^ P j / for some 2/. Since ^ is 1-1 we have
xePyeR(D). Hence N{P3?)aR(P). Clearly P ^ P = 0 implies
R(P) 3 iSΓ(P^) so that N(I>ώ) - B(P). Now assume N{PS) = R(P).
If xeN(Q^) = N(D), then

^ ^ - iSΓ(P)() ί) () ()
so that a? 6 N(P^) = N(D). Hence N(Q^)czN(D). The converse
inclusion can be proved in a similar way.

COROLLARY 3.17. Let S be a closed subspace of H. Then if



284 R. C. BROWN

^ c ^ * is determined by the condition [J(y, &*y), s] = 0 s e S. ^
is self-ad joint if and only if &* maps SL onto S.

Proof Let D be the orthogonal projection onto S. Then <& =
G ^ O v Since D is continuous and R(D*) = R(D) = S is closed, <g"
is admissible. Now by Theorem 3.15 ^ is self-ad joint if and only
if N((I — D)&) = N(D). Taking orthogonal complements we see that
9f is self-adjoint if and only if R(0f*(J - D)) = R(D). Here we use
the fact that R{0*{J - D)) is closed because of Corollaries (3.14),
(3.13) and Lemma 3.9. The last equality is equivalent to ^*SL.

Note that since ^ * is 1-1 and onto a necessary condition that
^ be self-ad joint is that dim SL = dim S.

COROLLARY 3.18. Let S be a (weak*) complemented subspace of
JF*. Then if <& is the restriction of &* determined by the condi-
tion [J(y, &*y), s] = 0 s 6 S. ^ * is the restriction of J ^ * deter-
mined by the condition [s', &J(z, J*f*z)~\, sf eSL.

Proof. The condition determining <& can be written P*J(y,
&*y) = 0 where P is the projection on S. By Theorem 3.10
(z, J*f*z)eG{cίf*) if and only if ώJiz, jz?*z)eR(P). Equivalents

) = 0 ,
or

[v(I - P*), ώ3{z, Jϊf*z)] , veF ,
o r

[s\ ^J(zy J**z)] , s'eSL .

4. Extension theory via Fredholm alternatives* 111 the previ-
ous section we have attempted to characterize extensions ^ and ^ *
in terms of their boundary operators. In this section we pursue a
different strategy by describing ^ and ^ * "parametrically"—by
relating ^ to a "known" extension C and then describing <& in terms
of certain subspaces Sc9 Sf.

We assume throughout the setting of Theorem 2.2. Recall that
A:X->Y and B:Y*—> X* are closed operators such that AcJB*
and N(A*)9 N(B*) are complemented subspaces of X. H and K are
boundary operators (cf. Definition 2.1) for A and B respectively such
that H = Mo A and K = N<>B. The operators M and iSΓhave ranges
in the t.v.s.s. F and G. D(M)L and D(N)L are complemented in F *
and D(Λf *), D(N*) are total over JP and G. Under these hypotheses

G(A£) = G(A*) - (Λ(ΛΓ*) x {0})
( * j G(B$) = G(B*) - (Λ(ΛΓ*) x {0})
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We will often use the notation (z, A*z) or {z, Cz) if Ca A* where z
means z + ψ for an appropriately chosen element in R(M*) to refer
to an element in G(A£) or in the graph of a certain restriction of
A%. Similarly (y, B*y) will denote an element of G(B%).

Next suppose C is closed extension A contained in B*. Let Sc

and Sf be closed subspaces of R(N*) and ϊt(MJ*). Define C" as the re-
striction of C whose range is orthogonal to Sf and let ^ be the linear
relation i n l x Γ with graph G(<if) - G(C') - (Sc x {0}). We shall say
that i f is determined by Sc, S*, and <if. From (4.1) Cc£f. Clearly
AH(zA(zC. Also J2(ilH) is orthogonal to N(A£) and therefore also
to S*. Hence AHaC. Since C ' c C we conclude that AH(zCaBt.

At this point we introduce a new assumption: that every closed
subspace of N(A*) or N(B*) is complemented.3 This will certainly
be true if N(A*) and N(B*) is finite dimensional or the setting is
in a Hubert space.

C" is easily shown to be closed (see Lemma 4.13 [3]). N(C) =
N(C) and is a closed subspace of N(B*). Since it is complemented

sc = sc n N(C) ® sΰ n N(cy

Further

G(C) = G(C) + (osc n isr(θ e sc n M O O x {o»
((Sβ n isr(C)β) x {0}).

The intersection of G(C') and N((C')C) x {0} is clearly trivial. If Q is
a projection of X onto N(C')C we define a projection Q from 1 x 7 to
N(C'Y x {0} by Q(x, y): = (Qs, 0). It follows that (Sc n ̂ (C)) {0} c i?(Q)
and G(C')(zN(Q). Since both (Sβ Π N(C')) x {0} and G(C') are closed
and contained in complementary subspaces G(C) must be closed.

These remarks prove the first part of the following result.

THEOREM 4.1. Suppose every closed subspace of N(A*) or N(B*)
is complemented and let C be an extension of A contained in B*.
Then for every pair of closed subspaces Sc c R(N*) and S* c R{M*)9

there exists a closed extension ^ of AH contained in B\ determined
by C, Sc and Sc*. Morerover, its adjoint &** is determined by C*f

Sf and Sc; i.e., Sc* = Sf and S% = Se.

Proof It is sufficient to show that ^ * is determined by C*,
S* and Se. By repeating the argument for the first part of the
theorem we can show that there is an extension ^ + of Bκ contained
in Ai determined by C*, Sf and Sc. Suppose (a, β) e <£**. Since

3 This assumption needs to be introduced to correct an error in the discussion of
Theorem 4.13 in [3], The argument we give here works with minor changes there.
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<Sf * c A% βe A* a. Further

(4.2) [ΐfy, a] - [y, <έf*a] = 0 = [Cy, a] - [y, A*a] - [Cy, f J - [ % , A*a]

for all yeD{^), where φaeR(M*) and ηvsR(N*). Now

and

showing that ψaeSf, ηyeSc. The last two terms of (4.2) vanish,
so that (ά, A*ά) e G(C*). We conclude that ^ * c <d?+. The reverse
inclusion follows, since

] - [y, ̂ +z] = [C^, g] - [jr, C*^] - [C^, ψ.] + [%, C*^]

= 0 .

It is natural to attempt to determine the class of extensions
between AH and B% determined by a C between A and 5* and a
pair of subspaces Sc and Sf. In particular when does this class equal
all extensions between AH and BfcΊ We have not settled these ques-
tions in general but there are interesting partial results (already-
sketched in [3]) for extensions with closed range or in a Hubert
space setting when A is symmetric.

LEMMA 4.2. Suppose C is an extension of AH contained in J3*
with closed range. Then there is a closed subspace Sf of J?(J£*) and
an extension C between A and B* such that C is determined by C,
{0}, and Sf.

Proof. Define C such that

G(C) = {(y, B*y): y e D(Bf) 0 N{C), B*y JL (Λ(C)1 Π N(A*))}

where Bf is the restriction of 5* to D(B*) Π N(B*)C. Now C is closed
(cf. Lemma 4.12 [3]). Also CaC. Set Sf := R{C)L n N(A*)C. Let

G(C+) - {(y, Cy): Cy j_ Sc*} .

Suppose (α, /S) 6G(C). Since Λ(C) c S ? 1 and CaC, (α, /3) 6G(C+) and
C c C + . On the other hand if (α, β)eG(C+)

β L (Sf + (^(C^ n i\Γ(A*)) =

so that βeR{C) (since C has closed range). If (α', β)eG(C) we find
by subtraction that a — a' e N(C?) = JV(C) so that a e Z)(C) proving
that C+aC. •
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LEMMA 4.3. Suppose that & is an extension of AH contained
in B% with closed range. Then there is an extension C of AH con-
tained in B* and a closed space Sc c R(N*) such that <& is deter-
mined by C, Sc, and {0}.

Proof The argument is similar to that of Lemma 4.2. Define
C by

G(C):={(v,B*y):yeD{<g>)}.

That is, G(C) = (y + φ, B*(y + ψ) when y runs over D{^) and ψ is
an element in B(N*) such that y + ψeD(B^). One checks that C
is an operator restriction of B* but perhaps not closed. Set Sc: —

Π WWη. Define C+ by

(4.3) G(C+): = {(z, B*z): z e D(B*) 0 N(C), B*z

Since N(C) c N(B*) is assumed to be closed, it is easy to show (Lemma
4.12, [3]) that C+ is closed. Also

D(C) = D(C) n N(B*Y 0 D(C) n N(B*) C

And Λ(C) ± N(C*) since J8(C) - i2(^). It follows that C c C+. Since
jβ(^) is closed by the Fredholm alternative, we have

B(C) = Λ(C+) - N(C*)L .

So ie(C+) = R(C). Suppose (a, β) e G(C+) then β = Cα' for some
a'eD(C). Hence

(α' - α, 0) 6 iSΓ(C+) .

By (4.3) N(C+) = N(C). Hence (α, β) eG(C), so that C + c C and the
two operators are equal. (This also shows the incidental fact not
obvious from the definition that C is closed.) Since D(AH) c D(B*)f

N(%f*) c N(A%) and B(AH) ± N(&*) so that AHaC+. By definition
<if is determined by C, Sc, {0}. •

THEOREM 4.4. Suppose ^ is an extension of AH contained in
Bi with closed range. Then there is an extension AcCcJB* and
closed subspaces Se c B(N*)f S*aB(M*) such that ^ is determined
by C, Sc and St.

Proof By Lemma 4.2 there exists AHc:C'(zB* with closed
range and closed Sc c R(N*) determining ^ . By Lemma 4.4 there
exists AcCaB* and closed SfczR(M*) determining <g*'. •

COROLLARY 4.5. Suppose R(B*) is closed. Then every extension
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AH c ^ CBK with complemented nullspace is characterized according
to Theorem 4.4.

Proof. If R{^) = R(B*) we can apply Theorem 4.4. If
R(B*) we observe that <^c (the restriction of 9f to D(&) Π
is 1-1, closed, and has a bounded inverse. It is well-known that
these conditions imply that ^ β has closed range (cf. Goldberg [10],
Lemma IV. 1.1). •

In the Hilbert space setting these special hypotheses are no
longer needed. We close this section by quoting some results con-
cerning self-ad joint extensions of a symmetric A proved in [3].

THEOREM 4.6. Let Abe a symmetric operator defined on a Hilbert
space Sίf. Then if A has a self-adjoint extension C, for each closed
subspace S of R(M*) there exists a self-ad joint extension ^ s of AH

such that
= {ye D{C) - S: A*y ± S}

THEOREM 4.7. Let Abe a symmetric operator defined on a Hilbert
space 3(f. Suppose & is a self-adjoint extension of AH. Then A has
a self-adjoint extension C. Moreover if S: = R(^)> <& is the self-
adjoint extension ^ s determined by C and S given by Theorem 4.4.

THEOREM 4.8. Suppose A is a symmetric operator on a Hilbert
space Sίf with equal deficiency indices. Let R{H) be a Hilbert space
and let the hypotheses of Corollary 2.3 be satisfied. Further let S
be a closed subspace of R(H). Then AH has a self-ad joint extension
determined by the boundary conditions

[HA+{A*z), 0] = 0 , φeS , zeC

where C is a self-ad joint extension of A.

5* Examples* In this section we present a few examples to
illustrate some of the main idea in the previous sections.

1. Differential operators with Stieltjes boundary conditions on
compact intervals. Let ly = y{n) + α^*-1 1 + + any be an wth
order regular differential operator on [α, b] (α< = Cn~ι[a, 6], all i). We
let ly generate a 1-1 closed operator in Lp[a, b] by setting

D:={ye Lp[a, b] n AC*-ι[a, &]: y{j)(a) = y^\b) = 0,

•̂ = 0, . . . , n ~ l f lyeL>[a,b]}



GENERALIZED BOUNDARY VALUE PROBLEMS 289

where AC^la, b] is the space of functions on [a, b] having a n — 1st
absolutely continuous derivative, and defining A by ly on D. We
restrict A by the system of boundary conditions

± **-* = 0, j =

where the {dwiS} are a family of Stieltjes measures each of finite
variation on (α, 6). It will be understood that the boundary condi-
tions are independent so that F = Rm = F*. Also dw^ , i = 1, ,
n — 1, and for all ΐ are singular with respect to Lebesgue measure.
This assumption is made to keep the computations simple; in most
cases it is not unduly restrictive. Since dwiά has an absolutely con-
tinuous part dwϊj it satisfies

S b Γb

a Ja
dt

L.y<*-i-»dt

By assuming dw^/dt is also of bounded variation, etc., repeated
integration by parts results in singular measures. Finally, we supose
that dwnj/dt eLg[a, b]. Using the standard Euclidian pairing, we set
dWi = {dwu dwimy and write

By the method of variation of parameters we can produce a
Green's kernel g(t, s) determing A+, i.e.,

A+Ay = \ g(t, s)lyds
Ja

where g(tf s) has the following properties (cf. [6], Ch. 7):
( i ) D{

t

j)g(t, s) is continuous on [α, b] x [α, &], j = 0, , n — 2;
(ii) g(fi,8) = 0, t <s;
(ii i) Dίg(t, ί-) = 0, j = 0 , . . . , Λ - 2 ;

( iv) A ( n"1 }flr(ί, r ) = 1.
T h e n

[Hy, φ] - [HA+Ay, φ]

= Σ Γ dWtjDl*-" Γ flr(ί, s)lydsφj
i,3 Ja Ja

= Φ* Σ \ dWίDί7"" \* git, s)lyds .
i Ja Jα

Integration by parts yields

Σ Φ*\wJίa, b]Dln-» Γ jr(ί, s)Zί/<ίs
(5.1) ' l J \

- J (wt[a, t]Z>{"-«+1) J ' flr(ί,
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or

Σ0*R[α, b]\b Dmt, s)
i \ Ja ί=6

la, t] Γ Dri+1)g(t,
Ja

Finally, interchanging the order of integration and rearrangement
gives

(®,[α, f\Dln-i+1)g(t, s)dt) + wjα,

The expression in brackets is (HA+)*φ. Then

D(A%) = D(A*) - R(HA+r
( ' } G{A%) = (β, ZJg)

where z = z + {HA+)*φ and Corollary 2.2 says that A£ = A%. The
following description of A% has been given in several previous papers
(e.g., [1], [2]). Introduce the "partial adjoint" expressions:

Itz : = z

Itz := -{Itz + Jtwflb, t)Y + a,z

ϊ++1z := -{Ifz + Φ'wj+.la, t))' + aj+1z

Let D+ be the subspace of functions z c I/[α, b] such that Z/z exists
in Lq[a, b] for appropriate φ in JSW and that Tjz + ^*wi+1[α, ί], i =
0, - , n - 1. Note that D+ ID D(A*) = D(U) and that T+z = -l+z +
φXdwJdt). Now set

G(L+):={(z,liz):zeD+}.

THEOREM. A% = L+.

We now show that L+ = AJ so that these two characterizations
of A% are the same. We require a lemma.

LEMMA 5.1. (HA+)*φ - Σ P 1 (-iyiψwi+1[a, s) e Z>(A*) where P
stands for the j fold integration operator

••• (
a J a Ja
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Proof. From (5.1) and (5.2) we see that

D<»(HA+)* = (~l)ψwj+1[a, s)Drj+1+j-1]9(t, s)\t=s+

Ξ (-l)ty'wi+1[α, β] mod AC[a, b] ,

j = 0, . . . , n - 1 .

By assumption dwjds 6 L*[α, b] and thus D(n)(iϊA+)+^6L9[α, &]. The
smoothness assumptions of the coefficients of It imply that D(A*)]=
{z e AC^la, b]: z{n) e Lq[a, &]}. The lemma follows.

Now suppose zeD(A%). A calculation (similar to the above)
shows that

Σ- Σ (-DjIψwj+1[a, s)eD(A*) .
05=0

By Lemma 5.1 it follows that zeD+ so that D(Ai)(zD+. Further,
it is easy to verify using the singularity of the measures dwl9 ,
dwn_x that

& uz + Φ^ Hz
at

so that A £ c L + . On the other hand the following Green's formula
involving L+ can be proven by repeated integration by parts (cf. [2]).

\ (zly - Ttzy)dt = φ*Hy .
Ja

2. An operator with multipoint conditions on [0, <x>). Let A:
Lp[0, oo)-+L*[0, oo) be given by y{n) on

n AC^tO, oo): yu\0) = 0,

It is known that A is a 1-1 closed operator. Let T — {t0 < ίx < <
ty < •} be an ordered set of points in (0, oo) and restrict A by the
boundary conditions

Vί

Σ
i=o

Let J?ω be the countable Cartesian product of R. We view elements
of Rω as infinite column vectors. Let R*o be the subspace of ele-
ments of Rω with finitely many nonzero components. We set F — Rω

and ί7* = JB?0, giving F and F * respectively the weak and weak*
topologies induced by the pairing
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Then

Hy = Σ
Also

ΓA+z = Γ
Jo (n - 1)!

for 2GJR(A). Note that A+ is not a bounded operator. Hence

[HA+z, φ] = ΦtΣ ai3 (n — 1)1

= Γ *{Σ ^
Jo l*,i

ί = 0, 1, 0 ^ j ^ ft .
fα? if a; > 0

op ' rzr •]

(0 otherwise

Suppose 7]eR(HA+)*. Since R{HA+Y restricted to some compact
interval Δ is a finite dimensional space and η \Δ e R(HA+)* \Δ,

ij (n — 1)!

Hence 57 has the same structure as an element in R(HA+)* except
that (φi)eRω instead of Rω

ooy i.e., the admissible parameters cor-
responding to R(HA+)* comprise some subspace of Rω. What sub-
space this is an interesting question. We are able to answer it in
some circumstances as will be shown in Example 3 below.

At any rate, Corollary 2.2 implies that

G{A%) = {(u, A*ΰ)}

where A* is given by ( — l)Vn ) on

Z>* = {zeLq[0, 00] n ACn~\0, 00): l imΣ (-lYz^y^it) = 0,

y e D(A); z{n) e L«[0, oo)} .

Note that uU) e D(A%), i — 0, , n — 2, is continuous, but that

«<»-»(«?•) - ^ '-"( ir ) = - Σ atiφf .

3. Operators on R with interface conditions. Let T = [t^ <
ti < ti+i} be a biinfinite set of points in R. Set ^ = [ti9 ti+1],
ί<+1 — ίo and
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D* := {yeL%R) n AC'-^JJ all i: y{n)eLp(R)} .

Define B*\ L*(R)-* L%R) by τ/(n) on D* and A*: Lq(R)-* Lg(R) by
( —l)Vn) on Dq, 1/p + 1/q — 1. It can be shown that A is given by

y{n) on

L»{R) n - j = 0, . , n - 1 ,
U ) e

Similarly B is given by ( — l)z{n) on J9g.
Let Sf be the space of biinfinite sequences <• φi_1 < φi < ^ i + 1 •>

and Έ\ 6^ -> S^ be the shift operator defined by
Introduce the notation for elements in £f\

and

We

define J: D* —

also construct

[a,β]: =

where

yί =

V+ =

> S? and J: D

1 y+ \

Jy =

Ey_

\

\Eyl~~1!

a pairing in

= Σ«*& 4, 1

<y

• (y

1 >

Σ 2 Θ"

IIΛ

^ b y

/ z+ \

Jz =

Ez_
*

zl"1

\EZI-1!

C/? -v "SΠ2W (Z/?

•<«!«>

a =

for those α, β such that the pairing exists. Then since

Wn), z] - [y, (-l)V"'] = Σ (-l)-W-V"-%r+ l - ^"-"a

We arrive at the Green's formula

(5.3) [B*y, z] - [y, A*z] = [Jy,

where & is the 2n x 2n matrix

o

O
\H
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TT I 0

o /,

and the pairing on the right in (5.3) is interpreted according to
(5.2).

Since H* = — H, 3? is skew symmetric. Further if n is even, &
is unitary since

O

o
Iff

(-l)n-ΉH*

o

o

o

o
= /,.

We are interested in using the theory of § 5 to describe inter-
mediate extensions C between A and B* and their adjoints. (This
problem has also been considered by Lee [15], in the case n — p =
q = 2.) We begin by proving that J and J are regular boundary
operators. This will be done by showing that—provided \Λt\ is uni-
formly bounded—J and J are onto certain Banach spaces. The closed
range theorem then implies that B(J*) and R(J*) are closed.

First we require a technical lemma.

LEMMA 5.2. Let Pi}{t), Q{j(t) be polynomials of degree 2n — 1 on
Δt interpolating the data.

PiT(tt) = δkiφti, Ptf(tt+d = o ,

J φ t i ,

k = 0, •••, TO - 1.

Then on Δi

(5.4) \Qij(t)\,\Pdt)\^\Φa\\4i\iCί

(5.5) IQ{f(t)I, IP ( f ( t ) \£\φ t i \\A | ' -C,

where the constants Cu Cz depend only on n and j .

Proof. We will prove (5.4) and (5.5) for Qtj(t) and Qlf(t) only,
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since

P,,(β): = (-l)'Q,,(ί,+1 + ί« - β)

is the unique polynomial interpolating the data for Pia and on
Λ|P*il = IQ<il.

By the Newton formula for osculatory interpolation (cf. [6] p. 233).

Quit) = 2 Σ QJίΌ, , h] Π (ί - ?p)
Z=0 (0=0

where

(ί, if Z < n
t l U,+1 if I

The boundary conditions on Qtj imply t h a t Q^ίΌ, •••, 2i] = 0, Z =

0, , n — 1, so t h a t

Define

g i S ( x ) : = Qtί[tof ••-, ? » - i , » ]

Then

ya \τn) _ r > r r . . . r / . .
i i

timβs

(see [6] p. 230 Ex. 4.6-8).
The boundary conditions on Qiό and the definition of the divided

difference imply:

Q"(X) = ^ ' L ^ 1 ' * * ** ^w-l> ^J "~ Qijl^09 ' * '9 tn~U

X %

Hence
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(fc-1)! ^ r

_ / k-1

~{k-l-j.

k-1

fc - l - i.

(—w — (A; — 1 — j) +

So that from (5.7)

x*1 τύ U=ί, + 1

IQwWI^I^HΛI'Σf, T .
* = i \ k - l - j

proving (5.4).
Also

IQίr(«)l ^ \Φ*i\ Σ f, & 7 X .)(»)(» + i) (» + Φ - i - 3) - 1)

x |J|-"-fc+1+imaxZ>l"' " π " ' (ί - tp)
t ρ=0

where

C2 = Σ f, 7 X V X Λ + 1) (» + (fc - 1

Here we are using the estimate

Dln) "ft"2 (t - t,) = Z> '̂(ί - *,)•(* - ί^J*-1

0

n

r

^ 2 T O ^ ! & ! I ^ I * - 1 .

PROPOSITION 5.3. Suppose 0 < N<> \At\ ^ M < oo α i i i .

J{D{B*)) and J(D(A*)) are continuous operators onto Σ® Zp> Σ
1 ^ p ^ oo, i/ ? + l/p = 1.

Proof. Let s be a function in Lff(4) such that z{n~1] is absolutely
continuous z{n) e Lq(Δ%) and satisfying the boundary conditions

(5.8) Λ ί ί ) = « * / 1 ( U = 0, fc = 0, - . . , * * - 1 .

Then if yeD(B*)

[y[n), z]di = [y, ( -D^ U ) k - (-D'-V^Cίί) .
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So that

where
s~i i| | | I | | ~(n) II

If the ti are equally spaced, C* does not depend on i—the same func-
tion z translated works for all intervals. Hence

(5.9) Σ I V^KU) |* ^ (|| y \\l + II „<»> 115)0)

and so (y{n~J)(tt)) e I9.
In any event we can choose for zt the polynomial Pi3-(t) of degree

2n — I interpolating the data (5.8). By Lemma 5.2

Hence

Our hypothesis that the | Λt \ are uniformly bounded above and below
implies that

II Pti(t) L « + II PIT® | U = || z \\q,Δί + II z ^ \\qM g C , al l i

so that (5.9) is true. Varying j shows that / maps into Σ Φ h The
argument for J is the same changing p to q. We now show that
J(D(B*)) and J(D(A*)) are onto, again giving the argument only for
J. Let

<Φio)

It is sufficient to find 2% functions yjt satisfying the boundary con-
ditions

yfiifT) = 0 , k = 0, - - , n — 1 , for j ^ n — 1

or

^*>(ί+) = 0

2/y*}(*Γ) = δ ^ i j , fc = 0, , n — 1 , for n <> j <, 2n — j ,
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so that

Then a function y satisfying the boundary conditions

in D(B*) can be obtained by superposition. We define the yi3 as

= (Piό(t) if 0 ^ j ^ n - 1
Vίj ~ [Quit) i f n^ j ^2n - I .

Lemma 5.2 now implies that yό e D(B*). That J and J are continuous
with respect to the norm topologies on I x 7 or F* x X* and the
weak or weak* topologies on their ranges is obvious. For 1 5g p <
oo, 1 <£ q < oo the boundary oprerators are continuous with respect
to the norm topologies on their ranges (Ch. [10] V. 3.15).

We are now in a position to determine extensions and their
ad joints between A and JB*. For example suppose C is given by y"
and the boundary conditions

Then

D =

{1

0

0

lo

v(tΐ) =
2y(tτ) =

0

2E'1

0

0

2y (t
y'itt

0

^

0

0

i )

) .

-2E-1

0

0

0

The adjoint boundary condition

= R(D*)

may be written

0

0

- 1

0

0

0

0

1

1

0

0

0

which implies the

°\
- 1

0

0/

lz+\
Ez\

z'+
\EZ'J

1

0

0

-2E-1

boundary conditions

Z(ti+ΐ) =

-z' («- )

-2z'{tt)

= 2z(tt)

0

2E~ι

- 1

0

0

0

0

0

0

0

o! \<Φu)l



GENERALIZED BOUNDARY VALUE PROBLEMS 299

4. A family of self-ad joint extensions. We use the same setting
as Example 3 with p = q = 2 and n an even integer so that A* = JB*,
A = i? and J = J. Let Slf , Sn be closed subspaces of I2 and
Pi, ,Pn be orthogonal projections onto these subspaces. Define a
projection P in by

"Pi

o

where

Then

O

I — P 7 ! _ ι

I — Pn+2-i

if i is odd

if * is even

= 0 and

R(Pn)

It follows from Corollary 3.16 that the operator C determined by
the boundary condition P&Jy is self-ad joint. For example if k = 4
and Px = I, P2 = I, P3 = 0, P4 = 0 then Q, = /,<?, = I, Q3 = 0, Q4 = 0
and the (self-adjoint) boundary conditions are

E(z{lil)) = 0
<«««>> = 0

z'_> = 0

with arbitrary jumps at the other points of T in the other deriva-
tives, i.e., the operator is determined by

y'(t() = o

^""'(ί,) = o

y(tt) - y(tτ) = Φu

y"{tt) - y"(tτ) = {
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It would be worthwhile to determine the structure of all projections
P inducing self-ad joint extensions for the minimal operator determined
by y{n) with boundary conditions (ί<) = 0, j — 0, , n — 1, all i.

6* Conclusion* We close the paper with a few historical
remarks concerning generalized b.v.p. and brief mention of some
unsolved problems.

We should point out first of all that concrete b.v.p. posed by
differential equations and nonstandard boundary conditions (often
arising from specific physical problems) have been of interest to the
mathematical community for many years. Perennial problems have
been the determination of adjoints, extensions, Green's functions and
eigenfunction expansions for increasing general systems. Good ex-
amples of recent work on these questions include papers of Krall
[12], [14], Kemp and Lee [11], this writer [1], [2], and the book of
Schwabik, Tvrdy, and Vejvoda [18]. Additional historical informa-
tion can be found in the surveys of Krall [13], and Whyburn [19].

An increasing tendency to abstraction has been evident in the
last decade characterized by the introduction of functional analysis
and spectral theory. This process culminated in the paper [4], of
E. A. Coddington and A. Dijksma. Their achievement was to intro-
duce an abstract setting divorced from particular problems. In [4]
for example, A is a closed subspace of 1 x 7 and AH = An *B where
*JB is the preadjoint of a finite dimensional subspace δ in Γ* x I * .
Such a representation is always possible if H is continuous on G(A)
and F is finite dimensional. This "subspace" intepretation of AH

leads to a simple construction of (Afl*δ)* and also to a more com-
plicated solution of the extension problem) (including self-adjoint ex-
tensions of symmetric b.v.p.). The results (particularly with respect
to the determination of adjoints) are equivalent to those of [3] in
the case where H has finite dimentional range. For some applications
of this approach see [8]. An eigenfunction expansion theory associ-
ated with the problems in [4] can be found in [5]. The theory has
also been extensively further developed by Lee [15], [16], and [17].

While the finite dimensional theory is fairly clear, the same
cannot be said for the infinite dimensional case. In order to get
usable results special hypotheses seem necessary. There is a certain
freedom of choice here. Different assumptions can and do lead to
different theories, and no theory yet seems able to characterize in
a computationally useful fashion every extension C between A and
J5*. For example the efforts of Lee to treat the infinite dimensional
case assume that F is I2. This will be true for example when B*
and A are defined in a separable Hubert space or when G(B*)/G(A) =
Γ. By means of the theory of Hubert Besselian bases and a Green's
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formula similar to our own, Lee is able to solve both the adjoint
and extension problem. Similarly both the theories presented in
this paper, although useful computationally, hold for restricted classs
of problems. In § 3, for example, we must first show that R(J*) is
closed and that H = DJ. While the second condition seems natural
the first is hard to verify unless R(J) happens to be a Banach space
so that the closed range theorem applies. But to check that R(J)
is a Banach space and to describe that space can be difficult for even
simple J (cf. § 5 Example 3—especially Proposition 5). When J is
more complicated—for example defined by a Stieltjes measures—the
question is unsolved.

For these reasons the theory presented in § 4 may be more con-
venient to use. It can be applied directly to many natural extensions.
However, it will not describe all extensions unless all have closed
range.

At this writing relation between these two theories is unclear.
In particular we call attention to the two apparently unrelated
descriptions of self-ad joint extensions given by Theorem 3.15 and
Theorem 4.8. Obviously further work needs to be done on these
issues. It should also be interesting to apply these ideas to difficult
examples such as b.v.p. involving partial differential of functional
differential operators.

ACKNOWLEDGMENT. I wish to thank the referee for many ex-
cellent suggestions for the improvement of this paper. In particular
he is responsible for the present versions of the proofs of Theorem
3.5 and Corollaries 3.16-3.17.

Added in proof. We also refer the reader to the paper of C.
Bennewitz, Spectral theory for pairs of differential operators, Ark.
Mat., 15 (1977), which includes an extension of the classical deficiency
index theory for symmetric operators to the setting of linear re-
lations.
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