THE TWO-OBSTACLE PROBLEM FOR THE BIHARMONIC OPERATOR

Luis A. Caffarelli, Avner Friedman and Alessandro Torelli

In this work we consider a two-obstacle problem for the plate, namely, the problem of finding a minimizer u of

$$
\int_{\Omega}|\Delta v|^{2} d x, \text { subject to }(v-h) \in H_{0}^{2}(\Omega), \quad \dot{\phi} \leqq v \leqq \psi
$$

where Ω is a bounded domain in $R^{n} ; n=2,3$. We prove that $u \in C^{1,1}$ and that, in general, $u \notin C^{2}$.

1. The main results. Let Ω be a bounded domain in R^{n} ($n=2,3$) with $C^{2+\alpha}$ boundary $\partial \Omega$, where $0<\alpha<1$. Let $h(x)$ be a function in $C^{2+\alpha}(\bar{\Omega})$, and let $\phi(x), \psi(x)$ be functions in $C^{4}(\bar{\Omega})$ satisfying

$$
\begin{array}{ll}
\phi \leqq \psi & \text { in } \Omega, \\
\phi<h<\psi & \text { on } \partial \Omega . \tag{1.1}
\end{array}
$$

Then the set

$$
K=\left\{v ;(v-h) \in H_{0}^{2}(\Omega), \phi \leqq v \leqq \psi \text { a.e. }\right\}
$$

is nonempty.
Consider the variational inequality: find u such that

$$
\begin{equation*}
\min _{v \in K} \int_{\Omega}|\Delta v|^{2} d x=\int_{\Omega}|\Delta u|^{2} d x, \quad u \in K \tag{1.2}
\end{equation*}
$$

By standard results [4] [5] this problem has a unique solution. We shall prove:

Theorem 1.1. u belongs to $C^{1,1}(\Omega)$.
That means that $\nabla^{2} u \in L^{\infty}(\Omega)$.
We shall also show that, in general,

$$
\begin{equation*}
u \notin C^{2} \quad \text { locally } \tag{1.3}
\end{equation*}
$$

For the corresponding variational inequality (for Δ^{2}) with one obstacle only (i.e., $u \geqq \phi$ instead of $\phi \leqq u<\psi$) it was proved by Caffarelli and Friedman [1] that, for $n \geqq 2, u \in C^{1,1}$ locally and, for $n=2, u \in C^{2}$ locally.

Notice that if in Theorem $1.1 \phi<\psi$ in a subdomain Ω_{0} of Ω, then the coincidence sets $\{u=\phi\},\{u=\psi \psi\}$ are disjoint in Ω_{0} (since u
is continuous). Thus (1.3) can only hold (at least for $n=2$) in a neighborhood of a point x^{0} for which $\phi\left(x^{0}\right)=\psi\left(x^{0}\right)$.

In $\S 2$ we shall prove that $\Delta u \in L^{\infty}(\Omega)$ and in $\S 3$ we shall complete the proof of Theorem 1.1. An example for which (1.3) holds is given in $\S 4$.
2. Δu is bounded. Set

$$
\begin{aligned}
& \phi_{\varepsilon}=\phi-\varepsilon, \quad \varepsilon>0 \\
& K_{\varepsilon}=\text { the set } K \text { with } \phi \text { replaced by } \phi_{\varepsilon} .
\end{aligned}
$$

Denote by u_{ε} the solution of the variational inequality (1.2) with K replaced by K_{ε}. Clearly,

$$
\int_{\Omega}\left|\Delta u_{\varepsilon}\right|^{2} d x \leqq C, \quad C \text { independent of } \varepsilon
$$

Since $n \leqq 3$ we can apply Sobolev's inequality to deduce that

$$
\begin{align*}
& u_{\varepsilon} \text { is uniformly continuous in } x \text {, with modulus } \\
& \text { of continuity independent of } \varepsilon \text {. } \tag{2.1}
\end{align*}
$$

It follows that the coincidence sets

$$
I_{\varepsilon}^{+}=\left\{u_{\varepsilon}=\psi \gamma\right\}, \quad I_{s}^{-}=\left\{u_{\varepsilon}=\dot{\phi}\right\},
$$

are closed disjoint sets. Furthermore, by (1.1), (2.1),

$$
\begin{equation*}
d\left(I_{\varepsilon}^{ \pm}, \partial \Omega\right) \geqq \delta>0, \quad \delta \text { independent of } \varepsilon, \tag{2.2}
\end{equation*}
$$

where

$$
d(A, B)=\operatorname{dist} .(A, B)
$$

We now claim that

$$
\begin{equation*}
u_{\varepsilon} \longrightarrow u \text { uniformly in } \Omega, \quad \text { as } \varepsilon \longrightarrow 0 \tag{2.3}
\end{equation*}
$$

Indeed for any sequence $\varepsilon_{m} \rightarrow 0$ there is a subsequence $\varepsilon_{m^{\prime}} \rightarrow 0$ such that

$$
u_{\varepsilon_{m^{\prime}}} \longrightarrow \bar{u} \quad \text { weakly in } \quad H^{2}(\Omega)
$$

The variational inequality for $u_{\varepsilon_{m}}$, can be written in the form (Minty's lemma)

$$
\int_{\Omega} \Delta v \cdot \Delta\left(v-u_{\varepsilon_{m^{\prime}}}\right) \geqq 0 \quad \text { for every } v \in K_{\varepsilon_{m^{\prime}}}
$$

Taking $m^{\prime} \rightarrow \infty$ we get

$$
\int_{\Omega} \Delta v \cdot \Delta(v-u) \geqq 0 \quad \text { for every } \quad v \in K,
$$

so that u is the solution u of (1.2); this completes the proof of (2.3).
Since $I_{\varepsilon}^{+}, I_{\varepsilon}^{-}$are disjoint closed sets, there is a version of Δu which is subharmonic and upper semicontinuous in $\Omega \backslash I_{\varepsilon}^{+}$and superharmonic and lower semicontinuous in $\Omega \backslash I_{\varepsilon}^{-}$; this is proved exactly as in [1].

Set

$$
\Omega_{r}=\{x \in \Omega ; d(x, \partial \Omega)>r\}, \quad r>0
$$

Let ζ be a $C_{0}^{\infty}(\Omega)$ function such that

$$
\begin{aligned}
& \zeta=1 \quad \text { in } \Omega_{\partial / 2}, \quad \zeta=0 \text { in } \Omega \backslash \Omega_{\partial / 4} \\
& 0 \leqq \zeta \leqq 1 \quad \text { elsewhere } ; \quad \delta \text { as in }(2.2) .
\end{aligned}
$$

We can represent Δu_{ε} as in [1; (3.8)] in the form

$$
\begin{equation*}
\Delta u_{\varepsilon}(x)=-\int_{\Omega_{\delta}} V(x, y) d \mu(y)+\gamma(x) \tag{2.4}
\end{equation*}
$$

where $|\gamma(x)|$ is a bounded function in $\Omega_{\partial / 2}$, with an upper bound independent of $\varepsilon, d \mu=\Delta^{2} u_{\varepsilon}$ and V is Green's function for $-\Delta$, for a ball containing $\bar{\Omega}$; here we have used the fact (which follows from (2.2)) that $\Delta^{2} u_{\varepsilon}=0$ in $\Omega \backslash \Omega_{\delta}$ and, consequently, the first two derivatives of u_{ε} are bounded in $\Omega_{\delta / 2}$ by a constant independent of ε.

Notice that μ is a signed measure; it can be written as a difference $\mu_{1}-\mu_{2}$ of two positive measures, where μ_{1} is $\Delta^{2} u_{\varepsilon}$ supported on I_{ε}^{-}and μ_{2} is $\Delta^{2} u_{\varepsilon}$-supported on I_{ε}^{+}.

Introduce the notation:

$$
\begin{gathered}
B(y, \rho)=\{x ;|x-y|<\rho\}, \quad B(\rho)=B(0, \rho), \\
S_{\rho}(y)=\partial B(y, \rho), \quad S_{\rho}=\partial B(\rho) \\
\left|S_{\rho}\right|=\text { surface area of } S_{\rho}
\end{gathered}
$$

We reason as in [1]. Let $x_{0} \in I_{\varepsilon}^{-}$. Then

$$
\begin{aligned}
& u_{\varepsilon}\left(x_{0}\right)=\frac{1}{\left|S_{\delta}\right|} \int_{S_{\delta}\left(x_{0}\right)} u_{\varepsilon}-\int_{B_{\delta}\left(x_{0}\right)} G \Delta u_{\varepsilon}, \\
& \phi_{\varepsilon}\left(x_{0}\right)=\frac{1}{\left|S_{\delta}\right|} \int_{S_{\delta}\left(x_{0}\right)} \phi_{\varepsilon}-\int_{B_{\delta}\left(x_{0}\right)} G \Delta \dot{\phi}_{\varepsilon}
\end{aligned}
$$

Here G denotes

$$
C\left(\frac{1}{r}-\frac{1}{\delta}\right) \quad \text { in } \quad R^{3}
$$

$$
C \log \frac{r}{\delta} \quad \text { in } R^{2}
$$

for some constant $C>0$. Since

$$
\begin{gathered}
u_{\varepsilon}\left(x_{0}\right)=\phi_{\varepsilon}\left(x_{0}\right) \\
\int_{s_{\delta}\left(x_{0}\right)} u_{\varepsilon} \geqq \int_{S_{\delta}\left(x_{0}\right)} \phi_{\varepsilon}
\end{gathered}
$$

and

$$
\frac{1}{\left|S_{\delta}\right|} \int_{S_{\delta}\left(x_{0}\right)} \Delta u_{\varepsilon}
$$

is a monotone function of δ, for $\delta \rightarrow 0$, we get

$$
\begin{equation*}
\Delta u_{\epsilon}\left(x_{0}\right) \geqq \Delta \dot{\phi}_{\varepsilon}\left(x_{0}\right) \quad \text { if } \quad x_{0} \in \operatorname{supp} \mu_{1} . \tag{2.5}
\end{equation*}
$$

Similarly

$$
\begin{equation*}
\Delta u_{\varepsilon} \leqq \Delta \psi_{\varepsilon} \quad \text { on } \quad \text { supp } \mu_{2} . \tag{2.6}
\end{equation*}
$$

The function

$$
\begin{equation*}
\hat{V}(x)=\int_{\Omega_{0}} V(x, y) d \mu(y) \tag{2.7}
\end{equation*}
$$

satisfies, by (2.4)-(2.6),

$$
\begin{array}{lll}
\hat{V}(x) \leqq C & \text { on } & \operatorname{supp} \mu_{1}, \\
\hat{V}(x) \geqq-C & \text { on } & \operatorname{supp} \mu_{2}
\end{array}
$$

where C is a constant independent of ε. As in the proofs of Theorems 1.6, 1.10 of [3], we then have

$$
\lim _{d\left(x, s \sup \mu_{1}\right) \rightarrow 0} \hat{V}(x) \leqq C, \quad \lim _{d(x, s \operatorname{supp} p} \sup _{2} \rightarrow 000(x) \geqq-C .
$$

Hence, by the maximum principle,

$$
|\hat{V}(x)| \leqq C \quad \text { in } \quad \Omega_{\delta}
$$

and (2.4) gives

$$
\left|\Delta u_{\varepsilon}\right| \leqq C \quad \text { in } \quad \Omega_{\partial / 2}
$$

with another C. Taking $\varepsilon \rightarrow 0$ and recalling (2.3), we obtain:
Lemma 2.1. Δu is in $L^{\infty}(\Omega)$.
3. $u \in C^{1,1}$. Let

$$
w \in H^{2}(\Omega), \quad \Delta w \in L^{\infty}(\Omega), \quad w \geqq 0,
$$

and set

$$
J=\{x \in \Omega ; w(x)=0\}, \quad\|\Delta w\|_{L^{\infty}(\Omega)} \leqq M_{0}
$$

Lemma 3.1. There exists a constant M depending only on M_{0} such that if $x_{0} \in J$ then
(3.1) $\quad|w(x)| \leqq M\left|x-x_{0}\right|^{2}, \quad|\nabla w(x)| \leqq M\left|x-x_{0}\right| \quad$ if $x \in B\left(x_{0}, \rho / 2\right)$
where $\rho=d\left(x_{0}, \partial \Omega\right)$.
Proof. Take for simplicity $x_{0}=0$ and consider the function

$$
w_{\rho}(x)=\frac{1}{\rho^{2}} w(\rho x) \quad \text { in } \quad B(1)
$$

Then

$$
w_{\rho}(0)=0, \quad\left|\Delta w_{\rho}(x)\right|=|(\Delta w)(\rho x)| \leqq M_{0}
$$

Consider the function

$$
\lambda(x)=-\int_{B(1)} V(x-y) \Delta w_{\rho}(y) d y \quad \text { in } \quad B(1)
$$

when V is Green's function for $-\Delta$ in $B(1)$. Then

$$
\Delta \lambda=\Delta w_{\rho}
$$

and

$$
\begin{equation*}
\|\lambda\|_{L^{\infty}(B(1))} \leqq C_{1}, \quad|\nabla \lambda|_{L^{\infty}(B(1))} \leqq C_{1} \tag{3.2}
\end{equation*}
$$

where the C_{i} will be used to denote constants depending only on M_{0}.
The function

$$
\begin{equation*}
z=w_{\rho}-\lambda \tag{3.3}
\end{equation*}
$$

is harmonic in $B(1)$ and

$$
|z(0)|=|\lambda(0)| \leqq C_{1}, \quad z \geqq-C_{1} .
$$

By Harnack's inequality we obtain

$$
|z(x)| \leqq C_{2} \quad \text { in } \quad B(3 / 4) ;
$$

therefore

$$
|\nabla z(x)| \leqq C_{3} \quad \text { in } \quad B(1 / 2) .
$$

Recalling (3.2), (3.3) are get

$$
\left|w_{\rho}(x)\right| \leqq M, \quad\left|\nabla w_{\rho}(x)\right| \leqq M \quad \text { in } \quad B(1 / 2)
$$

and (3.1) follows.

Set

$$
\begin{aligned}
I^{-} & =\{x \in \Omega ; u(x)=\phi(x)\} \\
I^{+} & =\{x \in \Omega ; u(x)=\psi(x)\} \\
I & =I^{-} \cup I^{+}
\end{aligned}
$$

Since $u \in C(\bar{\Omega})$,

$$
\begin{equation*}
d(I, \partial \Omega)>0 \tag{3.4}
\end{equation*}
$$

In view of Lemma 2.1 we can apply Lemma 3.1 to $u-\phi$ and conclude, upon using also (3.4), that

$$
\begin{align*}
|(u-\phi)(x)| & \leqq M\left(d\left(x, I^{-}\right)\right)^{2} \\
|\nabla(u-\phi)(x)| & \leqq M d\left(x, I^{-}\right) . \tag{3.5}
\end{align*}
$$

Similar estimates hold for $u-\psi$.
Lemma 3.2. There exists a positive constant N such that

$$
\begin{equation*}
\left|D^{2} u(x)\right| \leqq N \quad \text { in } \quad \Omega \backslash I \tag{3.6}
\end{equation*}
$$

Proof. Let $x^{0} \in \Omega_{\delta} \backslash I, d\left(x^{0}, I\right)<d(I, \partial \Omega)$. Suppose for definiteness that

$$
d\left(x^{0}, I\right)=d\left(x^{0}, I^{-}\right)
$$

Consider the function

$$
w_{d}(x)=\frac{1}{d^{2}}(u-\phi)\left(d\left(x-x^{0}\right)\right) \quad\left(d=d\left(x^{0}, I\right)\right)
$$

and take for simplicity $x^{0}=0$. Then, by (3.5),

$$
\left.\begin{array}{r}
\left|w_{d}(x)\right| \leqq M \\
\left.\left|\nabla w_{d}(x)\right| \leqq M\right\}
\end{array}\right\} \quad \text { in } \quad B(1)
$$

Also

$$
\begin{equation*}
\Delta^{2} w_{d}(x)=\Delta^{2} \dot{\phi}(d x) . \tag{3.7}
\end{equation*}
$$

By elliptic estimates it then follows that

$$
\begin{equation*}
\left|D^{2} w_{d}(x)\right| \leqq C \quad \text { in } \quad B(1 / 2) . \tag{3.8}
\end{equation*}
$$

Thus

$$
\left|D^{2}(u-\phi)(x)\right| \leqq C \quad \text { in } \quad B\left(x^{0}, \frac{1}{2} d\right)
$$

and consequently,

$$
\left|D^{2} u(x)\right| \leqq C \quad \text { if } \quad\left|x-x^{0}\right|<\frac{1}{2} d\left(x^{0}, I\right)
$$

provided $d\left(x^{0}, I\right)<d(I, \partial \Omega)$. Recalling (3.4), the assertion (3.6) follows.

We can now complete the proof of Theorem 1.1. Let e_{1} be the unit vector in the direction of the positive x_{1}-axis and $h=h_{1} e_{1}, h_{1}$ real. Consider the finite difference

$$
D_{h}^{2} u(x)=\frac{u(x+h)+u(x-h)-2 u(x)}{2 h_{1}^{2}}
$$

for $x \in \Omega$ and $\left|h_{1}\right|$ small enough.
If $d(x, I)<4\left|h_{1}\right|$ then we choose a point $x_{0} \in I$ with $\left|x-x_{0}\right|=$ $d(x, I)$ and suppose, for definiteness, that $x_{0} \in I^{-}$. Using (3.5) we get

$$
\begin{aligned}
\left|D_{h}^{2}(u-\phi)(x)\right| \leqq & \frac{1}{h_{1}^{2}}\{|u(x+h)-\phi(x+h)|+|u(x-h)-\phi(x-h)| \\
& +2|u(x)-\phi(x)|\} \\
\leqq & \frac{1}{h_{1}^{2}} C h_{1}^{2},
\end{aligned}
$$

so that

$$
\left|D_{h}^{2} u(x)\right| \leqq C+\left|D_{h}^{2} \phi(x)\right|
$$

If $d(x, I)>4\left|h_{1}\right|$ then

$$
\left|D_{h}^{2} u(x)\right|=\left|D_{x_{1} x_{1}} u(\bar{x})\right|
$$

for some \bar{x} in $\Omega \backslash I$, and $d(\bar{x}, I)<2 d(x, I)$. Using Lemma 3.2 we obtain

$$
\left|D_{h}^{2} u(x)\right| \leqq M
$$

We have thus proved that for any $x \in \Omega$

$$
\left|D_{h}^{2} u(x)\right| \leqq C \quad \text { if } \quad\left|h_{1}\right| \quad \text { is small enough },
$$

where C is a constant independent of x, h_{1}. This implies that

$$
\frac{\partial^{2} u}{\partial x_{1}^{2}} \in L^{\infty}(\Omega)
$$

Similarly one can show that each second derivative of u belongs to $L^{\infty}(\Omega)$.

Remark 1. The assumption $\phi, \psi \in C^{4}(\bar{\Omega})$ was used in order to deduce (3.8) from (3.7). One can actually justify this derivation assuming merely that $\phi, \psi \in C^{2+\alpha}(\bar{\Omega})$.

Remark 2. The assumption $n=2,3$ made in Theorem 1.1 is
used only at one point, namely, in deducing (2.1). The remaining arguments are all valid for any $n \geqq 2$.

Remark 3. Theorem 1.1 extends, with obvious modifications in the proof, to the case $n=1$.
4. Counterexample. We shall show by a counterexample that, in general, u is not in C^{2}, locally.

Take Ω the unit ball in $R^{n}, n \geqq 2$, and

$$
\begin{aligned}
& \phi(x)=-|x|^{2}-|x|^{4}, \\
& \psi(x)=|x|^{2}+|x|^{4} .
\end{aligned}
$$

For K we take

$$
K=\left\{v \in H^{2}(\Omega) ; \phi \leqq v \leqq \psi ; v=A, \frac{\partial v}{\partial \nu}=B \text { on } \partial \Omega\right\}
$$

where A, B are constants satisfying

$$
\begin{equation*}
|A|<2 \tag{4.1}
\end{equation*}
$$

and

$$
\begin{equation*}
2 A \neq B, \quad \text { or } \quad|A|>1, \quad \text { or } \quad|B|>2 \tag{4.2}
\end{equation*}
$$

Notice that

$$
\phi=-2<A<2=\psi \quad \text { on } \quad \partial \Omega
$$

and that K is nonempty.
Theorem 4.1. If (4.1), (4.2) hold then the solution u is not in C^{2}, locally in Ω.

Proof. Notice that

$$
\begin{equation*}
I^{+} \cap I^{-}=\{0\} \tag{4.3}
\end{equation*}
$$

It is clear, by symmetrization, that the solution u must be a function of $\rho=|x|$. We shall write

$$
u=u(\rho), \quad \phi=\phi(\rho), \quad \psi=\psi(\rho)
$$

Since $u(\rho)$ is in H^{2}, it is continuously differentiable for $0<\rho<1$. In view of (4.3), u then has the same regularity properties in $\Omega \backslash\{0\}$ as the solution of the one obstacle problem; i.e., by [2] [6],

$$
\begin{equation*}
u(\rho) \in C^{2}(0,1) . \tag{4.4}
\end{equation*}
$$

We claim that

$$
\begin{equation*}
\operatorname{int} I^{+}=\varnothing \tag{4.5}
\end{equation*}
$$

Indeed (cf. [1]) in int I^{+}we have $\Delta^{2} u=\Delta^{2} \psi>0$ and also (since $u>\phi$ in a neighborhood of (int $\left.I^{+}\right) \backslash\{0\}$) $\Delta^{2} u \leqq 0$; thus (4.5) follows.

Similarly one shows that int $I^{-}=\varnothing$.

Lemma 4.2. There holds:

$$
\begin{equation*}
0 \in \overline{I \backslash\{0\}} \quad \text { where } \quad I=I^{+} \cup I^{-} \tag{4.6}
\end{equation*}
$$

Proof. If the assertion is not true then

$$
\Delta^{2} u(\rho)=0 \quad \text { if } \quad 0<\rho<\delta, \quad \text { for some } \quad \delta>0
$$

Thus

$$
\left(\frac{d^{2}}{d \rho^{2}}+\frac{n-1}{\rho} \frac{d}{d \rho}\right)^{2} u(\rho)=0 .
$$

One can now either use a general theorem on removable singularities for solution of $\Delta^{2} w=0$ or else write u explicitly (i.e.,

$$
u=c_{1}+c_{2} \rho^{2}+c_{3} \log \rho+c_{4} \rho^{2} \log \rho \quad \text { if } \quad n=2 \text {, etc.) }
$$

in order to deduce (after making use of the fact that $\phi \leqq u \leqq \psi$) that $u(\rho)=c \rho^{2}$ if $0<\rho<\delta$ and $|c|<1$.

By analytic continuation we then get $u=c \rho^{2}$ if $0<\rho<1$. Hence $B=2 A$ and $|A|<1$. Since, by (4.1), $|A|<2$, we now get a contradiction to (4.2).

Lemma 4.3. Suppose

$$
\alpha, \beta \in I^{+}, \quad 0<\alpha<\beta<1, \quad(\alpha, \beta) \subset(0,1) \backslash I
$$

Then there exists a $\bar{\rho} \in[\alpha, \beta]$ such that

$$
\Delta u(\bar{\rho})=\Delta \psi(\bar{\rho})
$$

Proof. Since $\psi-u$ takes minimum at α, β, we have (using (4.4))

$$
\Delta(\psi-u)(\alpha) \geqq 0, \quad \Delta(\psi-u)(\beta) \geqq 0
$$

Hence if the assertion is not true then

$$
\Delta(\psi-u)(\rho)>0 \quad \text { for all } \rho \in[\alpha, \beta]
$$

Recalling that $(\psi-u)(\alpha)=(\psi-u)(\beta)=0$, and applying the maximum
principle, we get $\psi<u$ in (α, β), which is impossible.
Lemma 4.4. There holds:

$$
\begin{equation*}
0 \in \overline{I^{-} \backslash\{0\}}, \quad 0 \in \overline{I^{+} \backslash\{0\}} . \tag{4.7}
\end{equation*}
$$

Proof. It is enough to prove the first assertion. If this assertion is not true then

$$
\begin{equation*}
(0, \delta) \cap I^{-}=\varnothing \quad \text { for some } \quad \delta>0 \tag{4.8}
\end{equation*}
$$

By Lemma 4.2 we then have

$$
0 \in \overline{I^{+} \backslash\{0\}}
$$

Recalling (4.5) we deduce that there exist

$$
\alpha_{i} \in I^{+}, \quad \beta_{i} \in I^{+} \quad(i=1,2)
$$

such that

$$
0<\alpha_{1}<\beta_{1}<\alpha_{2}<\beta_{2}<\delta
$$

and

$$
\left(\alpha_{i}, \beta_{i}\right) \subset(0,1) \backslash I
$$

From Lemma 4.3 it follows that there exist $\rho_{i} \in\left[\alpha_{i}, \beta_{i}\right]$ such that

$$
\begin{equation*}
\Delta(\psi-u)\left(\rho_{i}\right)=0 \tag{4.9}
\end{equation*}
$$

Since u does not touch the lower obstacle in $0<\rho<\delta$, we have

$$
\Delta^{2} u \leqq 0 \quad \text { in } \quad 0<\rho<\delta
$$

and consequently,

$$
\Delta^{2}(\psi-u)>0 \quad \text { in } \quad\left(\rho_{1}, \rho_{2}\right) .
$$

We can therefore apply the maximum principle to conclude that

$$
\Delta(\psi-u)(\rho)<0 \quad \text { in } \quad\left(\rho_{1}, \rho_{2}\right) .
$$

But this contradicts the fact that $\Delta(\psi-u)\left(\alpha_{2}\right) \geqq 0$.
From Lemma 4.4 it follows that there exist sequences $\rho_{m} \rightarrow 0$, $\tilde{\rho}_{m} \rightarrow 0$ such that

$$
\begin{aligned}
& u(\rho)=\rho^{2}+\rho^{4} \quad \text { if } \quad \rho=\rho_{m} \\
& u(\rho)=-\rho^{2}-\rho^{4} \quad \text { if } \quad \rho=\tilde{\rho}_{m} .
\end{aligned}
$$

This implies that $u \notin C^{2}$ in any neighborhood of $\rho=0$.

Remark. In the above example u touches both the upper obstacle and the lower obstacle (by Lemma 4.4).

References

1. L. A. Caffarelli and A. Friedman, The obstacle problem for the biharmonic operator, Ann. Scu. Norm. Sup. Pisa, 6 (4) (1979), 151-184.
2. G. Cimatti, The constrained elastic beam, Meccanica, 8 (1973), 119-129.
3. N. S. Landkoff, Foundation of Potential Theory, Springer Verlag, Berlin, 1972.
4. J. L. Lions, Quelques Méthodes de Resolution des Problèmes aux Limites Non Linéaires, Dunod, Gauthier-Villars, Paris, 1969.
5. J. L. Lions and G. Stampacchia, Variational inequalities, Com. Pure Appl. Math., 20 (1967), 493-519.
6. G. Stampacchia, $S u$ una disequazione variazionale legata al comportamento elastoplastico delle travi appoggiate agli estremi, Boll. U.M.I., 11 (4) (1975), 444-454.

Received September 29, 1980. This paper is partially supported by the National Science Foundation Grants 7406375 A 01 and MCS 7915171 and by C.N.R. of Italy through L.A.N. of Pavia.

University of Minnesota
Minneapolis, MN 55455
and
Northwestern University
Evanston, IL 60201
and
University of Pavia
Pavia, Italy

