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THE TWO-OBSTACLE PROBLEM FOR THE
BIHARMONIC OPERATOR

Luis A. CAFFARELLI, AVNER FRIEDMAN

AND ALESSANDRO TORELLI

In this work we consider a two-obstacle problem for the
plate, namely, the problem of finding a minimizer u of

ί I Δv \2dx , subject to (v-h)e H\{Ω) , φ ̂  v g ψ
}Ω

where Ω is a bounded domain in Rn; n = 2, 3. We prove
that ueC1-1 and that, in general, u£C\

1* The main results* Let Ω be a bounded domain in Rn

(n = 2, 3) with C2+α boundary 3i2, where 0 < a < 1. Let ft(a) be a
function in C2+a(Ω), and let φ(x), ψ(x) be functions in C\Ω) satisfying

Φ < n!r in Ω 9
(1.1)

K K f on 3i2.

Then the set

K = {v; (v - h) e H%(Ω), φ^v ^ψ a . e . }

is nonempty.
Consider the variational inequality: find u such that

(1.2) minί \Δv\2dx=\ \Δu\2dx , ueK.
veK JΩ JΩ

By standard results [4] [5] this problem has a unique solution. We
shall prove:

THEOREM 1.1. u belongs to Chl(Ω).

That means that F2ueL°°(Ω).

We shall also show that, in general,

(1.3) uίC2 locally.

For the corresponding variational inequality (for Δ2) with one
obstacle only (i.e., u Ξ> φ instead of φ ̂  u < ψ) it was proved by
Caffarelli and Friedman [1] that, for w ^ 2 , u e C1'1 locally and, for
n = 2, ueC2 locally.

Notice that if in Theorem 1.1 φ < ψ in a subdomain Ωo of Ω,
then the coincidence sets {u = φ}, {u = ψ} are disjoint in Ωo (since u

325



326 L. A. CAFFARELLI, A. FRIEDMAN AND A. TORELLI

is continuous). Thus (1.3) can only hold (at least for n = 2) in a
neighborhood of a point x° for which φ(x°) = ψ(x°).

In §2 we shall prove that Δue L°°(Ω) and in §3 we shall complete
the proof of Theorem 1.1. An example for which (1.3) holds is
given in §4.

2* An is bounded* Set

φε = φ - ε , ε > 0 ,

Kε = the set K with φ replaced by φε .

Denote by uε the solution of the variational inequality (1.2) with K
replaced by Kε. Clearly,

r

I I Auε \
2dx ^ C , C independent of ε .

)Ω

Since n <L 3 we can apply Sobolev's inequality to deduce that

uε is uniformly continuous in x, with modulus

of continuity independent of ε .

It follows that the coincidence sets

are closed disjoint sets. Furthermore, by (1.1), (2.1),

(2.2) d(If, dΩ) ̂  δ > 0 , δ independent of ε ,

where

d(A, B) - dist. (A, B) .

We now claim that

(2.3) uε >u uniformly in ώ , as ε >0 .

Indeed for any sequence em —> 0 there is a subsequence εm> —» 0 such
that

u*m> > ΰ weakly in H2(Ω) .

The variational inequality for uEm, can be written in the form (Minty's
lemma)

\ Δv Δ(y — u,m) ^ 0 for every v e K,m, .

Taking m' —> 00 we get
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\ Δv Δ(v — u) ^ 0 for every v e K ,
JΩ

so that u is the solution u of (1.2); this completes the proof of (2.3).
Since It, IT are disjoint closed sets, there is a version of An

which is subharmonic and upper semicontinuous in Ω\It and super-
harmonic and lower semicontinuous in Ω\Ir; this is proved exactly
as in [1],

Set

Ωr = {x e Ω; d(x, BΩ) > r) , r > 0 .

Let ζ be a C™(Ω) function such that

ζ = 1 in Ωm , ζ = 0 in Ω\Ωm ,

0 ^ ζ ^ 1 elsewhere δ as in (2.2) .

We can represent Δu& as in [1; (3.8)] in the form

(2.4) Ju$(x) = - \ V{x, y)dμ{y) + y(x)

where |7(α?)| is a bounded function in Ωδ/2, with an upper bound
independent of ε, dμ = J2uε and V is Green's function for —Δ, for
a ball containing Ω; here we have used the fact (which follows from
(2.2)) that Δ2uε — 0 in Ω\Ωδ and, consequently, the first two deriva-
tives of uε are bounded in Ωδ/2 by a constant independent of ε.

Notice that μ is a signed measure; it can be written as a
difference μι — μ2 of two positive measures, where μι is Δ2uε supported
on IT and μ2 is Λe-supported on /+.

Introduce the notation:

B(y, p) = {x; \x~y\<p}, B(p) = B(0, p),

SP(y) - dB(y, p), SP -

\SP\ = surface area of S

We reason as in [1]. Let x0el7. Then

\Sδ\ JSδ[x0) JBδ(x0)

Here G denotes
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— in R2

0

for some constant G > 0. Since

JSδ(x0)

and

ilii, ,*.
\bδ\ JSδ(xQ)

is a monotone function of <5, for δ -» 0, we get

(2.5) Auε(x0) ^ Aφε(xQ) if # 0 6 supp μx .

Similarly

(2.6) Auε <; Aψε on supp μ2 .

The function

(2.7) V{x) = ( F(x, »)djM(i/)
JΩδ

satisfies, by (2.4)-(2.6),

V(x) ^ C on supp /ίj,

where C is a constant independent of s. As in the proofs of
Theorems 1.6, 1.10 of [3], we then have

lim sup V(x) ^ C , lim sup V(x) ^ — C .

Hence, by the maximum principle,

I V(x) \^C i n Ωδ

and (2.4) gives

I Auε I ̂  C in i2δ/2

with another C. Taking e -»0 and recalling (2.3), we obtain:

LEMMA 2.1. An is in L°°(Ω).

3. ue C1'1. Let

weH\Ω), AweL°°(Ω), w^Q,
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and set

J = {x 6 Ω; w{x) = 0} , || Δw \\L^{Q) ^ Λf0 .

LEMMA 3.1. There exists a constant M depending only on Mo

such that if xoeJ then

(3.1) I w(x) I ^ MI x - a?01
2 , | Fw(a?) | ^ Λf | OJ - xQ \ if xe B(x0, p/2)

where p — d(x0, dΩ).

Proof. Take for simplicity x0 = 0 and consider the function

p() (p) in

Then

W p (0) = 0 , I ΔwP(x) I = I {Aw)(ρx) \ ^ Mo .

Consider the function

λ(a ) = - t V{x-y)ΔwP(y)dy in 5(1)

when F is Green's function for —Δ in 5(1). Then

and

(3.2) | | λ | | L oo ( B ( 1 ) ) ^ d , | ^ | L o o ( B ( 1 J ) ^ C x

where the Ct will be used to denote constants depending only on Λf0.
The function

(3.3) 2J = wP - λ

is harmonic in 5(1) and

By Harnack's inequality we obtain

|2(α?)|^C2 in 5(3/4);

therefore

\Fz(x)\£Cz in 5(1/2).

Recalling (3.2), (3.3) are get

\wP(x) \£M, I FwP(x)\ ^M in 5(1/2)

and (3.1) follows.
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Set

/- = {x e Ω; u(x) = φ(x)} ,

I+ = {xe Ω; u(x) = ψ(x)} ,

Since ueC(Ω),

(3.4) d(I, dΩ) > 0 .

In view of Lemma 2.1 we can apply Lemma 3.1 to u — <j> and
conclude, upon using also (3.4), that

\(u - φ)(x)\ ̂  M(d(x, I-)f ,

' \F(u-φ)(x)\ £

Similar estimates hold for u — ψ.

LEMMA 3.2. There exists a positive constant N such that

(3.6) \Diu(x)\^N in Ω\I.

Proof. Let x°eΩs\I, d(x°, I) < d(I, dΩ). Suppose for definiteness
that

d(x", I) = d{x\ I") .

Consider the function

wd(x) = hu - φ)(d(x - x0)) (d = d(x\ I))
a

and take for simplicity x° — 0. Then, by (3.5),

Also

(3.7)

By elliptic estimates it then follows that

(3.8) \D2wd(x)\^C in 5(1/2).

Thus

\D\u-φ)(x)\^C in β(x\ ±

and consequently,

I D*u(x) \^C if I x - x° | < ±-
2
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provided d(x°, I) < d(I, dΩ). Recalling (3.4), the assertion (3.6)
follows.

We can now complete the proof of Theorem 1.1. Let ex be the
unit vector in the direction of the positive α -̂axis and h = hteu ht

real. Consider the finite difference

Dlu{x) =

for xeΩ and \kt\ small enough.
If d(x, I) < 41&!I then we choose a point xoe I with \x — xo\ =

d(x, I) and suppose, for definiteness, that xoel~. Using (3.5) we
get

\D2

h(u - φ)(x)\ ̂  \-2{\u{x + h) - φ{x + h)\ + \u(x - λ) - φ(x - h)\
hi

+ 2\u(x) -φ(x)\}

so that

\Dlu(x)\£C+\Dlφ(x)\.

If d(αj,I)>4|Λ1| then

I Dlu(x) \ = \DXlXlu(x)\

for some x in Ω\I, and d(x, I) < 2d(x, I). Using Lemma 3.2 we
obtain

We have thus proved that for any xeΩ

I Dlu(x) I <; C if I hx I is small enough ,

where C is a constant independent of #, h^ This implies that

Similarly one can show that each second derivative of u belongs to

REMARK 1. The assumption φfψeC\Ω) was used in order to
deduce (3.8) from (3.7). One can actually justify this derivation
assuming merely that φ, ψeC2+0C(Ω).

REMARK 2. The assumption n = 2, 3 made in Theorem 1.1 is
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used only at one point, namely, in deducing (2.1). The remaining
arguments are all valid for any n ^ 2.

REMARK 3. Theorem 1.1 extends, with obvious modifications in
the proof, to the case n = 1.

4* Counterexample* We shall show by a counterexample that,
in general, u is not in C2, locally.

Take Ω the unit ball in Rn, n^2, and

φ(x)= ~ M 2 - M S
f(χ) = I x I2 + I x I4 .

For K we take

if = \v e iϊ2(i2); 0 ^ t; ^ ψ; v = A, — = £ on dΩ

where A, i? are constants satisfying

(4.1) | A | < 2

and

(4.2) 2A^B, or \A\>1, or | B | > 2 .

Notice that

φ = - 2 < A < 2 = ψ on 3£

and that if is nonempty.

THEOREM 4.1. // (4.1), (4.2) hold then the solution u is not in
C2, locally in Ω.

Proof. Notice that

(4.3) /+ ΓΊ /- = {0} .

It is clear, by symmetrization, that the solution u must be a func-
tion of p — \x\. We shall write

u = u(ρ) , φ = φ{ρ) , ψ = ψ(p) .

Since u(p) is in i P , it is continuously differentiable for 0 < p < 1.
In view of (4.3), u then has the same regularity properties in Ω\{0}
as the solution of the one obstacle problem; i.e., by [2] [6],

(4.4) u(p) G C2(0, 1) .
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We claim that

(4.5) int I+ = 0 .

Indeed (cf. [1]) in int I + we have Δ2u = Δ2ψ > 0 and also (since
u > φ in a neighborhood of (int J+)\{0}) Δ2u <; 0; thus (4.5) follows.

Similarly one shows that int I~ — 0 .

LEMMA 4.2. T&ere holds:

(4.6) 0 61\{0} where ί = / + U ί " .

Proof. If the assertion is not true then

Δ2u(ρ) = 0 if 0 < p < δ , for some δ > 0 .

Thus

One can now either use a general theorem on removable singularities
for solution of Δ2w = 0 or else write u explicitly (i.e.,

u = cL + c2lo
2 + c3 log |O + c4p

2 log p if ^ = 2 , etc.)

in order to deduce (after making use of the fact that φ ̂  u <̂  ψ)
that u{ρ) = cρ2 if 0 < p < δ and |c | < 1.

By analytic continuation we then get u — cp2 it 0 < p <1. Hence
B = 2A and |A\ < 1. Since, by (4.1), |A\ < 2, we now get a con-
tradiction to (4.2).

LEMMA 4.3. Suppose

a, βel+ , 0 < a < β < 1 , (α, β) c (0,1)\I.

Tfoew ί/^erβ exists a p e [a, β] such that

Δu(ρ) = Δψ(ρ) .

Proof. Since ψ — u takes minimum at a, β, we have (using
(4.4))

- u)(a) ^ 0 , J ( t - u)(/3) ^ 0 .

Hence if the assertion is not true then

Δ(f - u){ρ) > 0 for all p 6 [a, β] .

Recalling that (f — u)(a) = (ψ — u)(β) = 0, and applying the maximum
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principle, we get ψ < u in (a, β)9 which is impossible.

LEMMA 4.4. There holds:

(4.7) 0eI-\{0}, 0eJ+\{0}.

Proof. It is enough to prove the first assertion. If this asser-
tion is not true then

(4.8) (0, δ) Π I~ = 0 for some δ > 0 .

By Lemma 4.2 we then have

OeTψ) .

Recalling (4.5) we deduce that there exist

α , e / + , /s4el+ (i = 1, 2)

such that

0 < a, < βx < a2 < β2 < δ

and

(ai9 β<) c (0, 1)\I,

From Lemma 4.3 it follows that there exist pt e [aί9 βt] such
that

(4.9) A{ψ - u){Pi) = 0 .

Since u does not touch the lower obstacle in 0 < p < δ, we have

42u^0 in 0 < p < δ

and consequently,

A\f - u) > 0 in (ft, ft) .

We can therefore apply the maximum principle to conclude that

0 in (ft, ft).

But this contradicts the fact that Δ{ψ — u)(a2) ^ 0.
From Lemma 4.4 it follows that there exist sequences pm —> 0,

pm->0 such that

u(p) = ρ2 + p* if p = pm,

u(p) - -ρ2 - p* if p = ρm .

This implies that u&C2 in any neighborhood of p = 0.
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REMARK. In the above example u touches both the upper
obstacle and the lower obstacle (by Lemma 4.4).
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