
PACIFIC JOURNAL OF MATHEMATICS
Vol. 104, No. 2, 1983

CRITERIA FOR OSCILLATORY

SUBLINEAR SCHRODINGER EQUATIONS

C. A. SWANSON

The semilinear Schrόdinger equation

(1) 1 « Ξ A M + / ( Λ , M ) = 0 , J C G Ω

will be considered in an exterior domain Q C Rn, n >2, where / is
nonnegative and locally Holder continuous in Ω X (0, oo). One objective
is to find sharp necessary conditions for (1) to be oscillatory in Ω under
the sublinear hypothesis that maxμ|=/. f~

 ιf(x, ΐ) is a nonincreasing func-
tion of t in (0, oo) for each fixed r > 0. The necessary conditions below
are proved in §2:

/
oo

r max/(jt, clogr) dr — + oo if n = 2;
\x\=r

/oo
r max/(;c, c) dr = +oo if/2^3

\x\=r

for some positive constant c. Sufficient conditions for (I) to be oscilla-
tory in Ω are proved in §3 under a modified sublinear hypothesis. These
results are then combined to yield characterizations of oscillatory sublin-
ear equations of the Emden-Fowler type in exterior domains.

The sublinear Emden-Fowler (or Lane-Emden) equation is the proto-
type

(2) Δw + /?(*) I u | γ sgn u = 0, 0 < γ < 1, x G Ώ,

where ρ(x) is nonnegative and locally Holder continuous in Ω. A theorem
of Kitamura and Kusano [7] states in particular that (2) is oscillatory in a
exterior domain Ω in Rn, n >: 2, if

(3) f*rPx{r)dr= +oo,

where Pλ(r) — mίnw=r/?(.x:). The same is true if Px(r) is replaced by the
spherical mean of p{x) over the sphere of radius r (see §3). Under
additional regularity hypotheses onp{x) it was proved by E. S. Noussair
and the writer [12] that (3) is in fact necessary and sufficient for (2) to be
oscillatory in Ω C Rn if n > 3. However, this is not so if n — 2; an easy
counterexample is provided in the case that (2) is a radial equation;
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where p(r) — r~2(log r)~ δ, 1 < δ < 1 + γ, r > 0. Liouville's transforma-
tion r — e\ h(s) = u{es) sends (4) into the canonical form

h"{s) + e2sp(es)\h(s)\Ύsgn h(s) = 0,

which is oscillatory at s = oo if and only if

f°°sye2sp(es)ds= +oo

by Belohorec's well-known theorem [2], or equivalently, if and only if

(5) J0°r(logr)Ύp(r)dr= + oo.

In the present example, (5) is satisfied while (3) fails. Therefore (3) is not
necessary for oscillation of (2) in 2 dimensions. It might be expected that
a necessary condition for oscillation of (2) (or (1)) is similar to (5), and in
fact Theorem 2.4 below shows, under the hypotheses that p(x) is non-
negative and Holder continuous, that a necessary condition for (2) to be
oscillatory in an exterior domain Ω C R2 is

(6) ί r(logr) γ[max/?(x)| dr = +oo.
J l\χ\=r J

One of our main objectives is to improve (3) in R2; this is accom-
plished in Theorems 3.3 and 3.4. In §2 the necessary conditions for
oscillation mentioned above (i.e. the nonoscillation results) are extended
to the general sublinear case (1). Theorem 3.6 and Corollary 3.7 contain
characterizations of oscillatory sublinear equations (1) or (2) in Rn, n>3,
under suitable regularity hypotheses on/(x, ύ) oτp(x).

2. Necessary conditions for oscillation. Points in Euclidean w-space
Rn are denoted by x = (*„ . . . , JC Λ ) , and the Euclidean length of x is
written | x \ . The following notation will be used throughout the sequel:

Sa= {x GRn: \x\ = a}, a>0;

Ga= {x (ΞRn: | jc |>α}.

An exterior domain Ω in Rn is defined by the property that Ga C Ω for
some a > 0.
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_For a bounded domain M C Rn, the Holder norms of a function
u: M -> Rι are defined by

1*.-=

,ί? = Σ II^'"IU,A7 + Σ sυp_\D'u(x)\,
\i\ = m \i\<m x<=M

0 < λ < 1, m = 1,2,...,

where / denotes a multi-index of length | /1 . The Holder space Cw__
is defined as the set of_all continuous real-valued functions on M with
partial derivatives on M such that ilwllm+x5M is finite, 0 < λ < 1, m —
0,1, . . . . The notation C^~\Ώ) denotes the set of all u: Ω -> R such
that u G Cm+λ{M) for every bounded domain M C Ω. The notation
Cioc+λ(Ω x R + ) i s defined similarly, where R+ = (0, oo).

Equation (1) is to be considered in an exterior domain Ω C Rn subject
to the assumptions below.

ASSUMPTIONS

(A) / G CJ^Ω X i? + ) for some λ in 0 < λ < 1, fixed in the sequel.
(B) 0 < / ( J C , t) < tg{\ x I , 0 for all x G Ω and for all t > 0, where

g G C^ c(i?+ X i? + ) and g(r, t) is a nonincreasing function of t in i? + for
each fixed r > 0.

The above nonincreasing property of g(r, t) is a sublinear condition
for equation (1). For example, assumptions (A) and (B) hold in the
Emden-Fowler prototype (2), i.e. f(x, t) = p(x)tΎ, 0 < γ < 1, where p(x)
is nonnegative in Ω and/? G C£C(Ω). In this case an example of a function
g in (B) is

A solution oΐLu = 0 [Lu <0,Lu> 0] in Ω is a function u G Cj£ λ(Ω),
with λ as in (A), such that (LW)(JC) = 0 [ ( L W ) ( J C ) < 0 , ( L W ) ( J C ) > 0 ,

respectively] for all x G Ω. The operator L given by (1) is called oscillatory
in Ω whenever every solution of (1) defined in Ga C Ω for some α > 0
changes sign in Gr for all r > a. Then L is nonoscillatory in Ω whenever
(1) has a positive solution u(x) in Gft for some b>a.

2.1. THEOREM. Le* L Z>e /Ae operator defined by (1) where f is nonnega-
tive and satisfies assumption (A) m α« exterior domain Ω, απJ suppose that
G a C Ω /or some a > 0. If there exists a positive solution v and a nonnega-
tive solution w of Lv < 0 and Lw > 0, respectively, in Ga such that w(x) <
t)(x) throughout GaU Sa, then equation (1) Λαs αί least one solution u(x)
satisfying u(x) — v(x) on Sa andw(x) < u(x) < v(x) throughout Ga.
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A proof was given by Noussair and the writer [12]. A variation with
an additional monotony hypothesis appears in [11]. Versions of this
theorem for bounded domains appear in the works of Nagumo [9], Cohen
[5], Keller [6], Simpson and Cohen [13], and Amann [1].

The corollary below applies to the case that the ordinary differential
equation

has a positive solution ξ G C 2 + λ [#, b] for some a > 0 and for all b > a.

2.2. COROLLARY. //(A) and (B) hold, equation (1) is nonoscillatory in
an exterior domain Ω C Rn, n>2, if (7) has a positive solution ζ(r) in
a<r<oofor some a>0 such that ξ G C 2 + λ [α, b] for all b> a.

Proof. Let v be the function defined in Ga by v(x) = f(r), r = | JC | > a.
Then

f ( f ) r*-*f(x, υ(x))

and hence (Lυ)(x) < 0 for all x G Ga by (7). Since w{x) Ξ O satisfies
(Lw)(x) > 0, Theorem 2.1 shows that (1) has a solution u{x) satisfying
0 < u(x) < υ(x) = ξ(r) for | x | > a. However, (ΔW)(JC) < 0 in the an-
nulus Gah = {x G Rn: a<\x\< b}9 u(x) = υ(x) > 0 for \x\=a, and

W(JC)>0 for 1x1=6, and therefore u{x) > 0 throughout Gαib by the
maximum principle. Since b is arbitrary, w(x) is a positive solution of (1)

To apply Corollary 2.2, we shall appeal to the following theorem of
Belohorec [3, Theorem 3], Coffman and Wong [4, Theorem 2], concerning
the ordinary differential equation

(8) ^ - + ug(t,u) = 0, 0 < ί < o o .
dt

2.3. THEOREM {Belohorec, Coffman and Wong). Let f(t, ύ) = ug(t, u)
be continuous and nonnegative for 0 < t < o o , 0 < w < oo, and suppose that
g(t,u) is nonincreasing in ufor each t. Then equation (8) has an unbounded
positive solution u(t) in (a, oo) for some a > 0 if and only if

(9) f tg(t,ct)Λ< oo

for some c > 0.
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Although not relevant here, it is proved in [3] and [4] that (9)
characterizes equations (8) possessing an asymptotically linear unbounded
solution.

2.4. THEOREM. Under assumptions (A) and (B), (1) has a positive
solution u(x) in an exterior domain Ga C Rn for some a > 0 if

(10) j r\ogrg(r,clogr)dr<oo (n = 2)

(11) frg(r,c)dr<oo (n Ξ> 3)

for some c > 0.

Proof. If n = 2, Liouville's transformation r = e\ h(s) — ζ(es)
changes (7) into the standard form

(12) h"{s) + e2sh{s)g{e\ h(s)) = 0.

By Theorem 2.3, (12) has a positive solution h{s) in some interval (A, oo)
if and only if

-00

/ 4 s i e 2 ί g(^ ί , C51) ds < oo

for some c > 0, which is equivalent to (10). Since g G C λ by assumption
(B), standard regularity theorems (see e.g. [8]) show that h €Ξ C2+λ[A, B]
for all B > A, or equivalently ξ G C 2 + λ [α, 6] for all b > a = eA. Then
Corollary 2.2 shows that (10) is sufficient for (1) to have a positive
solution u(x) in Ga C R2 for some a > 0.

Similarly if « > 3 the change of variables

where r = \/(n — 2), transforms (7) into

(13) *"(,) + s-4[β(s)]2"-2h(s)g(β(s)t^) = 0.

By Theorem 2.3, (13) has a positive solution in some interval (A9oo) if
and only if

fs^[β(S)]2"~2g(β(s),c)ds<oo

for some c > 0, establishing the sufficiency of (11) for (1) to have a
positive solution in Ga C Rn,n> 3, for some a > 0.
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In the special case (2) of (1), i.e. f(x, u) = p(x)uΎ

9 0 < γ < 1, where
p(x) is nonnegative in Ω and/? G C£C(Ω), we choose g(r, u) in (B) to be
P2(r)uy-\ where

P2(r) = maxp(x).
\x\ = r

In this case, conditions (10) and (11) reduce to, respectively

(14) /"/"(log r) γ P 2 (r) dr < oo, Λ = 2

(15)

3. Sufficient conditions for oscillation. Oscillation criteria for (1) or
(2) will be generated by developing necessary conditions for (1) or (2) to
have a positive solution u(x) in some exterior domain Ga, a > 0, under
the following alternative to assumption (B):

ASSUMPTION

(C) f(x9 u) >p{x)φ(u) for all x G Ω and for all u > 0, where p is
continuous and nonnegative in Ω; φ G Cι[0, oo); φ(w) > 0, φ'(w) > 0,
and Φ(w) < oo for all u > 0, where

(16) Φ(«)=Γ

The sublinear condition Φ(u) < oo is satisfied, for example, if φ(u)
= \ u |γsgn w, 0 < γ < 1. A solution of (1) is now a classical solution, i.e.
u G C2(Ω) and Lu = 0 at every point in Ω.

The extension of (1) to negative u can be made by adjoining the
conditions /(JC, —u)~ -/(*, w) and φ( — w) = -φ(w) for all w > 0, or
weaker requirements. Then the existence of a negative solution u(x) of (1)
is equivalent to the existence of a positive solution, and our theorems
imply criteria for the nonexistence of any one-signed solutions.

3.1. LEMMA. // u is a positive solution of (1) in Ga for some a > 0, and
z G C2(Ga) is an arbitrarypositiυe function in Ga9 then Φ(u) satisfies the
differential inequality

(17) -Δ[z(

M*M*)-Φ("(* ) ) (Δz ) W - 2 W φ , ( u W )

for all x G Ga.
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Proof. An easy calculation on the basis of (1), (16), and assumption
(C) shows that

) < -p - Φ'(

in G ,̂ from which

-Δ(zΦ(w)) >z/> + zφ'( ι ι ) | vΦ(κ) -[zφ'(w)

-Φ(w)Δz-[zφ'(a)ΓΊvz|2,

implying (17) since φ'(u) > 0 for w > 0.
The next lemma is a specialization to the case n = 2, z(x) = φ(h),

A = l o g I * I .

3.2. LEMMA. If u is a positive solution of{\) in Ga C R2 for some a > 0,

where h ~ log r, r = | x | > a.

Proof. If z(x) = φ(A), then

r r

and (17) reduces to (18).
In the classical sublinear case, φ(w) = wγ, 0 < γ < 1, Φ(w)φ'(w)

γ/( l — γ), and hence

[φ'(A)]2 + φ(A)φ//(Λ)Φ(iι)φ/(iι) Ξ 0.

Then (18) simplifies to

(19) - Δw(x) >

where

The spherical mean U(r) = ra(r, M) of a function u: Rn -> Rι over the
sphere Sr of radius r is defined by

1 ί 1 /"
(20) m(r; u) = -y—r I u{x) ds = —τ—γ I iι(x) rfco,

where s and ω denote the measure on Sr and Sλ9 respectively; ds — rn~ι dω.
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3.3. THEOREM. If assumption (C) holds where φ(u) = uy, 0 < γ < 1, a
necessary condition for (1) to have a positive solution u(x) in some exterior
domain Ga C R2 is

(21) y°°r(logr) γ m(r;/?)</r< oo.

Proof. The spherical mean of any function w E C2(Ga) satisfies [10;
Lemma 2, pp. 69-70]

(22) -j- r" ' V ' = / o v I

For « = 2, (19), (20) and (22) imply the differential inequality

ί^\ d \ dm(r\ w)
(23) ~ ^ r [ r d ^

for Λ < r < oo. Define W(r) = m(r; w). Then Z(r) = rW\r) is nonin-
creasing for r > a by (23). Since w(x) > 0 by hypothesis, so also W(r) > 0
by (20), it follows that W\r) > 0 for all r> a; for if

contradicting the positivity of W(r) for all r > a. Integration of (23) over
(α, r) gives

(24) - rW\r) + aW\a) > ('/(log /)γm(ί; />) Λ.

Since ϊF'(r) > 0 for all r > a, (24) implies the conclusion (21) of Theorem
3.3.

Comparison of (21) with (10) or (14) indicates the sharpness of these
criteria. In fact, as the theorem below states, condition (21) characterizes
equations (2) possessing a positive solution in some exterior domain in R2

provided the condition

P (r)
(25) lim sup , \ < oo, P2(r) = max^(x)

r _ 0 0 m\r\ p) \x\=r

is added to the other hypotheses.

3.4. THEOREM. Suppose that p(x) in (2) is nonnegatiυe in an exterior
domain Ω in i?2, p E C ^ Ω ) , and (25) is satisfied. Then (21) is necessary
and sufficient for equation (2) to have a positive solution in some exterior
domain in R2.
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Proof. The necessity of (21) is the content of Theorem 3.3 and the
sufficiency follows from (14) and (25).

The theorem below is a slight modification of a theorem of Kitamura
and Kusano [7], with an alternative proof which seems more direct and
elementary.

3.5. THEOREM {Kitamura and Kusano). If assumption (C) holds, a
necessary condition for (1) to have a positive solution in some exterior
domain in Rn, n >2, is

(26) j rm{r\ p) dr < oo.

Proof. If u{x) is a positive solution of (1) in Ga for some a > 0, and
z{x) = 1 in Lemma 3.1, then (17) reduces to — ΔΦ(W(JC)) >p{x), and
(22) implies the differential inequality

(27) - j

where W{r) — m{r\ Φ(w)) For n > 3 the change of variables

r — β(s) = (PSY h( s) = sW( β( s)) v — — - —

transforms (27) into

(28) - *"(,) > S->[β(s)]2"-2m(β(s); p).

Integration over (A, s0) gives

(29) - /φ 0 ) + h'(A) * v f\m(π p) dr,

where a — β(A), r0 — β(s0). Since h'(s) is nonincreasing by (28) and
h(s) > 0 for s > A, h'(s0) > 0 for all s0 > A by a standard argument, and
(26) follows from (29).

If n — 2, (26) follows directly from integration of (27), but this is
unnecessary because of the stronger conclusion (21) of Theorem 3.3.

Condition (26) characterizes equations (1) with a positive solution in
some exterior domain in Rn, n > 3, provided the extra hypothesis

(30) limsup 8 \ r ' c \ <QO,
r-oo rn(r p)

for some constant c > 0, is adjoined to hypotheses (B) and (C).

3.6 THEOREM. //(A), (B), (C), and (30) hold, then (26) is necessary and
sufficient for (1) to have a positive solution in an exterior domain in Rn,
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Proof. Theorem 3.5 establishes the necessity of (26), and Theorem 2.4
establishes the sufficiency in view of (30).

If (1) is specialized to (2), condition (30) reduces to (25) and the
following corollary results.

3.7 COROLLARY. Suppose that ρ(x) is nonnegative in an exterior
domain Ω in Rn, n > 3, p E C£C(Ω), 0 < λ < 1, and (25) is satisfied. Then
(26) is necessary and sufficient for (2) to have a positive solution in some
exterior domain in Rn, n > 3.

An equivalent statement is that the condition

(31) j°°rm(r;p)dr= +oo

is necessary and sufficient for (2) to be oscillatory in Ω, i.e. for every
solution of (2) in Ga C Ω to change sign in Gr for all r > a. The same
applies to (1) under the hypotheses of Theorem 3.6 if the function/in (1)
is odd in w, i.e./(x, — u) = -f(x, u) for all u > 0.

The original version of Theorem 3.3 contained a slightly weaker
version of condition (21). I am grateful to Professor Takeshi Kura for
supplying me with his typescript "Oscillation criteria for a class of
semilinear elliptic equations of the second order", indicating the present
sharp version.

Added in proof: A variant of Theorem 3.3 has recently been given by
Hiroshi Onose, "Oscillation criteria for the sublinear Schrόdinger equa-
tion", Proc. Amer. Math. Soc, 85 (1982), 69-72.
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