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A GENERALIZATION OF THE
GLEASON-KAHANE-ZELAZKO THEOREM

CHANG-PAO CHEN

In this paper, we consider two classes of commutative Banach
algebras, which include Cn(T\ Lipβ(Γ), BV(T), L1 Π LP(G), AP(G),
U Π C0(G), lp, c0, and C0(S). We characterize ideals of finite codimen-
sion in these two classes of algebras and thereby partially answer a
question suggested by C. R. Warner and R. Whitley.

In [5] and [9], A. M. Gleason, J. P. Kahane and W. Zelazko gave
independently the following characterization of maximal ideals: Let A be
a commutative Banach algebra with unit element. Then a linear subspace
M of codimension 1 in A is a maximal ideal in A if and only if it consists
of noninvertible elements, or equivalently, each element of M belongs to
some maximal ideal. This interesting result as first proved depended on
the Hadamard Factorization Theorem.

This characterization of maximal ideals was extended in [15] and [16]
to algebras without identity. In [16], C. R. Warner and R. Whitley also
gave a characterization of ideals of finite codimension in L\R) and
C[0,1]. They showed: Let A be any one of L\R) and C(5), where S is a
compact subset of R. If M is a closed subspace of codimension n in A with
the property that each element in M belongs to at least n regular maximal
ideals, then M is an ideal. In fact, M is the intersection of n regular
maximal ideals. Also in [16], C. R. Warner and R. Whitley suggested the
following question: For what locally compact abelian group G does L\G)
have the property of L\R) described above?

In this paper, we partially answer this question and generalize the
work of C. R. Warner and R. Whitley. In this paper, two methods are
introduced; One uses the Baire category theorem and the other generalizes
the ideas of Theorems 2 and 4 in [16].

THEOREM 1. Let A be a commutative Banach algebra with a countable

maximal ideal space Wl. If M is a closed subspace of codimension n in A

with the property that each element in M belongs to at least n regular

maximal ideals, then M is an ideal, which is the intersection of n regular

maximal ideals.
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Proof. From the hypothesis, we know that M C. U / ^ . . . ^ where

ISχSr..5n denotes the space {x E:A: x vanishes at sλ9s29...9sn} and the

union is taken over all sets of distinct elements sx, sl9. . ,sn in 2ft. Since 2ft

is countable, the union is a countable union. By the Baire category

theorem, M C Is s .,. s for some set of distinct elements sl9 s29... 9sn in 2ft.

If not, for any set of distinct elements sλ9s29...9sn in 2ft, we have

M Π ISχS s $• Λf. By the open mapping theorem, we find that M Π

/ . .s is of first category in M and so the union U ( M Π ISχSr. .SJ is of

first category in M. This implies that M is of first category in itself and

contradicts the fact that M is a Banach space. Therefore M C ISιS2.. ,Sn for

some set of distinct elements sλ9 s29...9sn in 2ft. Since M and IS[Sr. .JΛ are

of codimension ninA,M~ Is^r..v We have completed the proof.

EXAMPLE 2. Any of the following spaces has the property described in

Theorem 1: Cn(T)\ Up β (Γ), 0 < a < 1; £K(Γ); L ^ G ) , 1 <p < oo, or

^^(G) or C(G), or any normed ideal in L\G)9 where G is a metrizable

compact abelian group; lp, 1 <p < oo, and c 0 (cf. [1, 2, 4, 7, 8, 10, 11, 12,

14]).

REMARK 3. The structure of a metrizable compact abelian group can

be found in [12, Theorem 2.2.6]. It is well-known that the maximal ideal

space of l°° coincides with the Stone-Cech compactification /?Z+ , whose

cardinal number is uncountable. (See [2, pp. 58] and [3, pp. 244].)

Therefore Theorem 1 cannot be applied to this case. Theorem 1 answers

the question suggested by C. R. Warner and R. Whitley for V(G) in the

case G is compact and metrizable.

The following theorem extends the results presented in Theorem 1 to

another kind of algebra while not hypothesizing that M be closed.

(Compare this with Theorem 1 and [16, Theorems 2 and 4].) This theorem

generalizes Theorems 2 and 4 in [16].

THEOREM 4. Let A be a commutative Banach algebra with involution

x -> x* satisfying jc* = x~ . Suppose that there is an element x 0 in A, with

x0 never zero, and that there is a one-to-one real-valued function φ on the

maximal ideal space 2ft of A such that xoφ
J = Xj for some Xj in A

(\ <j <n). If M is a subspace {not a priori closed) of codimension n in A

with the property that each element in M belongs to at least n regular

maximal ideals, then M is an ideal which is the intersection of n regular

maximal ideals.
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Proof. Without loss of generality, we may assume that x0 is real-val-

ued. Let xθ9 x!,...,xn_λ denote the cosets in the quotient space A/M

corresponding to x0, xλ9...9xn_v If λo3co + λιxι + +λn_ιxn_ι = 0,

then λ o x o + λιxι + +λn_ιxn_ι E M and so the equation λ 0 +

\λφ(s) + - " +λA 7_ 1φ(5)"~ 1 = 0 has n distinct solutions in s. This implies

that the polynomial λ o + λ1ί + + λ π _ 1 ί n ~ 1 has n distinct zeros, which

occurs only if all λy 's are zero. Hence x0, xl9.. -9xn-\ form a basis for

A/M.

There exist scalars λ 0 , . . . ,λ π -i s u c h that xn — λoxo — — λn_ιxn_ι

is in M. Denote this element of M by m0. We claim that m0 is real-valued.

By hypothesis and since m 0 E M, we find that the equation λ 0 + λ}φ(s)

+ ••• +λn-lφ(s)n~] = φ(s)n h a s n d i s t i n c t s o l u t i o n s , say sl9sl9-..9sn.

We write down these relations as follows:

v n 1

λ0 + λχφ(Sn) + * π 1 φ ( J (j

By hypothesis, we know that Φ(ΛΊ), φ(52),. ..,φ(»yrt) are n distinct real

numbers. By Cramer's rule, we find that λ o ,λ 1 , . . . ,λ π _ 1 are all real and

so m0 is real-valued. As we saw above, m0 vanishes exactly atsl9s2,...9sn.

Let m be an element in M with m real-valued. We have m + im0 E M

and so the equation rh(s) + imo(s) = 0 has « distinct solutions in ,s. This

implies that m(sx) = - = m(sn) = 0, because m0 vanishes exactly at

5,, S29- 9Sn.

Fix m in M. There exist scalars λ 0, λ l 9 . . . ,λ n -i such that m* — λ o x o

— — λn_ιxn_ι is in M. We havem + m* — λ o x o — — λn_λxn_λ E

M and so the equation 2Re rh{s) — λoxo(s) — ~λw_1Jc0(Λ )φ(^)"~ 1 =

0 has n distinct solutions in s. By Cramer's rule, we find that

λ 0, λ 1,...,λ r t_ 1 are all real. On the other hand, we have — m + m* —

λojco — —\n_λxn_x E M and so the equation —2/Im m(s) —

λojco(s) — — λn_]xo(s)φ(s)n~} = 0 has n distinct solutions in s. By

Cramer's rule, we find that λ 0, λ,,... ,λΛ-i are all pure imaginary. Com-

bining these two results we find that all λ y 's are zero. This shows that m*

is in M.

We know that

m = 2~\m + m*) + i[(2i)~\m - m*)],
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where the Fourier-Gelfand transforms of m + m* and {2i)~\m — ra*)

are real-valued. From the results presented in the preceding two para-

graphs, we find that m vanishes at sl9 s2, .. ,sn for every m in M. This says

that M C 7 ^ . . ,s, where Is^r. .s denotes the space {x E A : jc vanishes at

sl9sl9...9sn}. Since M and 7 5 J 2.. .^ are of codimension;? in^4,M = ISιS2 ..s

We have completed the proof.

EXAMPLE 5. Any of the following spaces has the property described in

Theorem 4: Cn(T)\ Lipα(Γ), 0 < α < 1; BV{T)\ Lx Π LP(G), 1 < j 9 < oo,

or AP(G) or L1 Π C0(G), or any normed ideal in L\G) which is invariant

under involution, where G is either a metrizable compact abelian group or

the direct product of the real line R and a metrizable compact abelian

group; lp

9 1 < / ? < O O , and Co(5), where 5 is any closed subset of

R X Z°°.

Example 5 follows immediately from the following lemma:

LEMMA 6. The following two types of algebras have the property de-

scribed in Theorem 4:

(i) Any normed ideal in Lλ(G) which is invariant under involution,

where G is a metrizable compact abelian group or the direct product of R and

such a G.

(ii) C0(S), where S is any closed subset ofRXZ00.

Proof. Let A be a normed ideal in L\G) which is invariant under

involution, where G is either a metrizable compact abelian group or the

direct product of the real line R and a metrizable compact abelian group.

From Theorems 2.2.2 and 2.2.6 in [12] we find that Γ is of the form

Γ, X Γ2, where Γ, is {0} or R and Γ2 is countable. Write Γ2 as {γ1? γ 2 , . . . } .

Define a function φ on Γ as follows:

φ(Ύm) = m ifΓ, = {0},

(1 + 4 T Γ 2 J C 2 ) 1 / 2

then φ is a one-to-one real-valued function on Γ.

Choose an integrable function h0 on G with the following property:
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It is well-known that Γ is sigma-compact, say Γ = U°°=1 KJ9 where Kj are
compact subsets of Γ. There exists functions gy in A such that g • > 0 o n Γ

and gj = 1 on Ky Define

2, —2 and /0 =

then/0 is in Λ and^ is never zero.
For the case Γ, = R we have

where

' ./I-;•(;-0(7-2)

G (x) ~

Σ

2^2\l/2 +
(1+4Λ2)

Σ

A; terms

The definition of Gx can be found in [13, pp. 132]. The existence of
integrable functions Hk on R is based on the fact that the function e~χl is
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rapidly decreasing. We have Gλ G L\R), Hk G Lλ(R) and the functions

are integrable. This implies that Fj G L\G) and so/^ is in A. This result is

also true for the case Tλ = {0}; with minor modifications the preceding

proof applies.

It remains to show (ii). Let S be any closed subset of the space

R X Z 0 0 . From Theorem XI.6.5 in [3] we find that S is locally compact. It

is well-known that R X Z 0 0 is the dual group of R X Tω. (See [12, §2.2].)

Take G = R X Tω and define φ and h0 as above. Denote the restriction of

λ 0 on S by/ 0 and the restriction of φ on S by itself, then/ 0 E C0(S), /0 is

never zero, φ is one-to-one and real-valued and foφ
J E C0(S) for ally.

(Here we use the assumption that S is closed.) We have completed the

proof.

The problem of characterizing the ideals of finite codimension for

L\R2) and C(D)9 D the closed unit disk, raised in [16] remains open.

Acknowledgement. I would like to thank the referee for his valua-
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