CRITICAL VALUE SETS OF GENERIC MAPPINGS

GOO ISHIKAWA, SATOSHI KOIKE AND MASAHIRO SHIOTA

Let Y be a real analytic set. The subset of Y consisting of all points where the local dimension of Y is maximal is called the main part of Y. A subset Y' of a real analytic manifold N is called a main semi-analytic set if Y' is the main part of some analytic set in a neighborhood of each point of N. In this paper it is shown that any proper C^{∞} mapping between analytic manifolds can be approximated by an analytic mapping in the Whitney topology so that the critical value set is a main semi-analytic set. An analogue holds true for the algebraic case too.

1. Analytic results. The topology of our spaces of C^{∞} or analytic mappings is the Whitney C^{∞} topology [see M. Hirsch [11]] except for the last section, and M, N always mean real analytic manifolds of dimension n, p respectively. We denote by Σf the critical point set $\{x \in M \mid \text{rank } df_x < \min(n, p)\}$. Our main result is the following.

THEOREM 1. Let f be a proper C^{∞} mapping from M to N. Then every neighborhood of f in $C^{\infty}(M, N)$ contains a proper analytic mapping g such that $g(\Sigma g)$ is a main semi-analytic set of dimension $l = \min(n-1, p-1)$.

It is natural to ask if $g(\Sigma g)$ can be analytic in the above. The answer is negative.

EXAMPLE. Let $f: \mathbf{R}^3 \to \mathbf{R}^3$ be the polynomial mapping defined by $f(x_1, x_2, x_3) = (x_1, x_2, x_3^4 + x_2 x_3^2 + x_1 x_3)$. Then $f(\Sigma f)$ is "Swallow's Tail" [see T. H. Bröcker [5] or M. Golubitsky and V. Guillemin [8]]. It is known that $f(\Sigma f)$ is not analytic. Moreover there exists a neighborhood U of f in $C^{\infty}(\mathbf{R}^3, \mathbf{R}^3)$ such that for any g of U, $g(\Sigma g)$ is not an analytic set. (See Figure 1.)

We see easily that a main semi-analytic set is semi-analytic [see S. Łojasiewicz [12]]. Any nowhere dense semi-analytic set is the critical value set of some analytic mapping, to say more precisely.

REMARK. Let K be a semi-analytic subset of N of codimension > 0. Then there exist an analytic manifold M and an analytic mapping $f: M \to N$ such that

$$\dim M = \dim N > \dim \Sigma f$$
 and $f(\Sigma f) = K$.

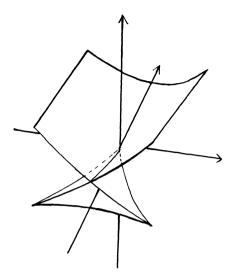


FIGURE 1

Let Y be a main semi-analytic set of dimension l. Then we define the fundamental class of Y in the homology group $H_l(Y; \mathbb{Z}_2)$ as follows, where we use infinite chains if Y is not compact. By [12] we have a triangulation of Y. Consider the homology groups of the simplicial complex with coefficient \mathbb{Z}_2 . Then the sum of all l-simplexes defines a cycle, because any analytic set has the fundamental class [see A. Borel and A. Heafliger [4]]. The cycle is called the fundamental class of Y. If Y is a subset of N, we denote by [Y] the image of the fundamental class of Y in $H_l(N; \mathbb{Z}_2)$.

Proper C^{∞} mappings f_1 , f_2 : $M \to N$ are called *proper homotopic* if we have a proper C^{∞} mapping F: $M \times [0, 1] \to N$ such that $F|_{M \times 0} = f_1$ and $F|_{M \times 1} = f_2$.

Theorem 2. There exists an open dense subset G of the set of all proper analytic mappings from M to N such

- (i) for any f of G, $f(\Sigma f)$ is a main semi-analytic set of dimension $l = \min(n-1, p-1)$,
- (ii) the fundamental class of Σf is mapped to it of $f(\Sigma f)$ by f_* for $f \in G$,
- (iii) if f and g of G are proper homotopic, we have $[f(\Sigma f)] = [g(\Sigma g)]$ in $H_l(N; \mathbb{Z}_2)$.
- **2.** Preliminaries. First, we prepare some notations of singularities [see J. Boardman [3] and J. Mather [14]]. For any integer $r \ge 1$, J'(n, p) is the linear space of r-jets of C^{∞} map germs $(\mathbb{R}^n, 0) \to (\mathbb{R}^p, 0)$, and J'(M, N) is the set of all r-jets of germs $(M, x) \to (N, y)$ for any $x \in M$, $y \in N$.

Then J'(M, N) is fiber bundles over $M \times N$ and M with fibers J'(n, p), $J'(n, p) \times N$ respectively. We put for any integer r > 0

$$M^{(k)} = \{(x_1, \dots, x_k) \in M^k : x_i \neq x_j \text{ for } i \neq j\},$$

 ${}_k J^r(M, N) = q^{-1}(M^{(k)})$

where $q: J^r(M, N)^k \to M^k$ is the projection. For any C^{∞} mapping $f: M \to N$, we denote by j'f the cross section of the fiber bundle $J^r(M, N) \to M$ naturally defined by f, and by $_k j^r f$ the restriction of $(j^r f)^k$ to $M^{(k)}$. If a subset B of $J^r(n, p)$ is invariant under the coordinate transformations of $(\mathbf{R}^n, 0)$ and $(\mathbf{R}^p, 0)$, we denote by B(M, N) the total space of the subbundle whose fiber is B, and by B(f) the inverse image $j^r f^{-1}(B(M, N))$ for a C^{∞} mapping $f: M \to N$.

Let Σ^i or $\Sigma^{i,j}$ denote the Thom-Boardman symbol (see J. Boardman [3]). We put

$$B_0(f) = \begin{cases} \sum^{n-p+1,0} (f) & (n \ge p), \\ \sum^{1,0} (f) & (n < p). \end{cases}$$

We further put

$$\Delta = \{ (j^2 f_1(x_1), j^2 f_2(x_2)) \in {}_2 J^2(M, N) : f_1(x_1) = f_2(x_2) \}.$$

Here we introduce the transversal condition concerning the Thom-Board-man singularities. We say that a C^{∞} mapping $f: M \to N$ satisfies the condition (T-B), if f has the following properties:

- (I) In the case $n \ge p$,
 - (1) $j^1 f$ is transversal to each $\Sigma^i(M, N)$,
 - (2) $j^2 f$ is transversal to each $\sum_{n=p+1,j} (M, N)$,
 - (3) $_2j^2f$ is transversal to $(\Sigma^{n-p+1,0}(M,N)\times\Sigma^{n-p+1,0}(M,N))\cap\Delta$.
- (II) In the case n < p,
 - (1) $j^1 f$ is transversal to each $\Sigma^i(M, N)$,
 - (2) $j^2 f$ is transversal to each $\Sigma^{1,j}(M, N)$,
 - (3) $_2j^2f$ is transversal to $(\Sigma^{1,0}(M,N)\times\Sigma^{1,0}(M,N))\cap\Delta$.
- 3. Proof of Theorem 1. In this section we give the proof of Theorem 1.

LEMMA 3.1. [Multi Transversality Theorem [8], [11], [14].] Let S be a Whitney stratification of a closed subset of $_kJ'(M,N)$. Then the set of C^∞ mappings $f: M \to N$ such that $_kj'f$ is transversal to each stratum of S is dense in $C^\infty(M,N)$.

A germ of C^{∞} mapping $f:(M,x) \to (N,f(x))$ is called \mathcal{K} -finite, if the quotient $\mathcal{E}_{M,x}/(J_{f,x}+f_x^*(\mathcal{M}_{N,f(x)})\mathcal{E}_{M,x})$ is finite dimensional over \mathbf{R} , where $J_{f,x}$ is the ideal in $\mathcal{E}_{M,x}$ generated by $(p \times p)$ -minors of the Jacobian matrix of f at x and $\mathcal{M}_{N,f(x)}$ is the maximal ideal of $\mathcal{E}_{N,f(x)}$. Especially, a germ is called \mathcal{K} - ν -finite, if the quotient is at most ν dimensional. The following lemma is an easy consequence from III, Theorem 7.2 in G. Gibson et al. [7] and Lemma 3.1.

LEMMA 3.2. For sufficiently large v, the set of C^{∞} mappings $f: M \to N$ such that the germ f_x is \mathcal{K} -v-finite for all $x \in M$ is an open dense subset of $C^{\infty}(M, N)$.

LEMMA 3.3 [H. Whitney [19].] The set $C^{\omega}(M, N)$ of analytic mappings is dense in $C^{\infty}(M, N)$.

LEMMA 3.4. Let $g: M \to N$ be a proper analytic mapping which satisfies the condition (T-B). Then g has the following properties:

- (i) $B_0(g)$ is dense in Σg .
- (ii) There exists a semi-analytic subset $L \supset \Sigma g B_0(g)$ such that dim $L < \dim \Sigma g$, and $g|_{\Sigma g L} : \Sigma g L \to g(\Sigma g L)$ is an analytic isomorphism.

Proof. It follows from (1) and (2) of (T-B) that $B_0(g)$ is dense in Σg , has dimension p-1, and the restriction of g to it is an immersion. Put

$$L_1 = \{ y \in N : \text{ there exist points } x_1, x_2 \in B_0(g)$$

such that $x_1 \neq x_2$ and $g(x_1) = g(x_2) = y \}.$

Since g is a proper analytic mapping, $g(B_0(g))$ and L_1 are semi-analytic. By (3) of (T-B), we have dim $L_1 < \dim g(B_0(g))$. Putting $L_2 = \Sigma g - B_0(g)$, L_2 is semi-analytic and dim $L_2 < \dim \Sigma g$. Here we put $L = g^{-1}(L_1) \cup L_2$. Then (ii) follows.

LEMMA 3.5. Let $g: M \to N$ be a proper analytic mapping such that for any point x of M, the germ of g at x is \mathcal{K} -finite. Suppose that $B_0(g)$ is dense in Σg and for an analytic subset L of Σg with dim $L < \dim \Sigma g$, $g|_{\Sigma g - L}$: $\Sigma g - L \to g(\Sigma g - L)$ is an analytic isomorphism. Then $g(\Sigma g)$ is main semi-analytic.

Note. From the assumption that $B_0(g)$ is dense in Σg , we see that the local dimension of $g(\Sigma g)$ is constant.

Proof. Since g is proper and $g|_{\Sigma g}$ is locally finite-to-one, $g(\Sigma g)$ is closed and $g|_{\Sigma g}$ is finite-to-one. Hence, $g(\Sigma g)$ turns out to be main semi-analytic if we show that for any point x of Σg the image by $g|_{\Sigma g}$ of a neighborhood of x in Σg is the main part of some analytic set in a neighborhood of g(x).

Since the germ of g at x is analytic and \mathcal{K} -finite, there exists a representative $g_C \colon U \to V$ of the complexification of g such that $g_C |_{\Sigma g_C \cap U}$ is proper and finite-to-one, where U [resp. V] is an open neighborhood of x [resp. g(x)] in a complexification M_C [resp. N_C] of M [resp. N] [see C. T. C. Wall [20] and H. Hironaka [10]]. Then, using the same argument as the proof of Lemma 1.1 in R. Benedetti and A. Tognoli [2], we can prove that $g(\Sigma g \cap U)$ is the main part of some analytic set in $V \in N$ if we take U, V smaller, as follows:

We take a desingularization $\pi: X \to \Sigma g_{\mathbb{C}} \cap U$ and an irreducible component Y of X with $\dim_{\mathbb{R}} \pi(Y) \cap \Sigma g = \dim_{\mathbb{R}} \Sigma g$. Put $\sigma = g_{\mathbb{C}} \circ \pi$: $Y \to \sigma(Y) (\subset V \subset N_{\mathbb{C}})$. First we prove

(*)
$$\dim[(\sigma(Y) \cap N) - g(\pi(Y) \cap (\Sigma g - L))] < \dim g(\Sigma g).$$

From a reason of dimension, a regular value of $\pi|_Y$ is contained in $\Sigma g - L$. Thus, at a point of Y, σ is isomorphic. Hence there exists a complex analytic subset S' of Y with codimension > 0 such that $S' \supset (\pi|_Y)^{-1}(L)$ and $\sigma|_{Y-S'}$ is a local isomorphism. Then $S = \sigma^{-1}(\sigma(S'))$ is a complex analytic subset of codimension > 0 in Y. As Y is connected, $\sigma(Y-S)$ is connected. Furthermore, σ is proper. Thus $\sigma|_{Y-S}: Y \to S \to \sigma(Y-S)$ is a covering of finite degree. We claim that this degree is odd. In fact, $(\pi(Y) \cap \Sigma g) - \pi(S) \neq \emptyset$ and for a point $y \in g((\pi(Y) \cap \Sigma g) - \pi(S)) = \sigma(Y-S) \cap g(\Sigma g - L)$, $\sigma^{-1}(y)$ consists of a unique real point and several pairs of non-real conjugate points. This implies that $\#(\sigma^{-1}(y))$ is odd. Now assume inequality (*) does not hold. Then the difference

$$(\sigma(Y-S)\cap N)-(g(\pi(Y))\cap \Sigma g)$$

has an element y'. But we see that $\sigma^{-1}(y')$ consists of only several pairs of non-real conjugate points, and $\#(\sigma^{-1}(y'))$ is even for the element $y' \in \sigma(Y-S)$, which is a contradiction. We consider the analytic closure $g(\pi(Y) \cap \Sigma g)$ of the germ $g(\pi(Y) \cap \Sigma g)$ at g(x). Since σ is proper, $\sigma(Y)$ is a complex analytic subset of V and $\sigma(Y) \cap N \supset g(\pi(Y) \cap \Sigma g)$ at g(x). Thus, from (*), we have

$$(**) \quad \dim[\widetilde{g(\pi(Y) - \Sigma g)} - g(\pi(Y) \cap (\Sigma g - L))] < \dim g(\Sigma g)$$

at g(x). Lastly, we take a decomposition $X = \bigcup_i Y_i$ into a finite number of irreducible components. We denote by A the union of $g(\pi(Y_i) \cap \Sigma g)$'s.

Then A is an analytic set and contains $g(\Sigma g \cap U)$. Furthermore, from (**), $\dim(A - g(\Sigma g - L)) < \dim g(\Sigma g)$ at g(x). From *Note*, we have that $g(\Sigma g \cap U)$ is the main part of A. Thus Lemma 3.5 is proved.

Proof of Theorem 1. Let $f: M \to N$ be a proper C^{∞} mapping. From Lemmas 3.1-3.3 and the fact that the set of proper C^{∞} mappings is open in $C^{\infty}(M, N)$, f can be approximated by a proper analytic mapping $g: M \to N$ such that for any x of M, the germ of g at x is \mathcal{K} -finite, and g satisfies (T-B). Hence, by Lemmas 3.4-3.5, we see that $g(\Sigma g)$ is main semi-analytic. This completes the proof of Theorem 1.

4. Proofs of the other results.

Proof of the statement in Example. It is easy to check [see e.g. [7]] that this f is stable in Mather's sence. Hence there exists a neighborhood U of f in $C^{\infty}(\mathbf{R}^3, \mathbf{R}^3)$ such that for any g of U, we have C^{∞} diffeomorphisms τ_1, τ_2 of \mathbf{R}^3 such that $f = \tau_1 \circ g \circ \tau_2$. Let $g \in U$. We want to see that $g(\Sigma g)$ is not an analytic set. Let τ be a C^{∞} diffeomorphism of \mathbf{R}^3 such that $\tau(f(\Sigma f)) = g(\Sigma g)$. We assume $g(\Sigma g)$ to be analytic.

Now we see easily that the singular point set of $f(\Sigma f)$ contains $S_1 = \{y_1 = 0, y_2 \le 0, 4y_3 = -y_2^2\}$ where $(y_1, y_2, y_3) = f(x_1, x_2, x_3)$ and that $S_2 \cap f(\Sigma f) = \{0\}$ where $S_2 = \{y_1 = 0, y_2 \ge 0, 4y_3 = -y_2^2\}$. We can assume $\tau(0) = 0$. Then the singular point set of $g(\Sigma g)$ contains $\tau(S_1)$. It is well-known that the singular point set of a semi-analytic set is semi-analytic [12]. Since $g(\Sigma g)$ is analytic, there exists a one-dimensional analytic set S in a neighborhood V of S such that

$$g(\Sigma g)\supset S\supset \tau(S_1)\cap V.$$

Let h be an analytic function on V such that $h^{-1}(0) = S$. As S_1 is diffeomorphic to $(-\infty,0]$, there exists a C^{∞} imbedding ϕ : $(-1,0] \to \mathbb{R}^3$ such that $\phi(0) = 0$, $\phi((-1,0]) = \tau(S_1) \cap V$. It follows that $h(\phi(t)) = 0$. Let $\psi = (\psi_1, \psi_2, \psi_3)$ be the Taylor expansion of ϕ at 0. Then $\psi(t)$ is a formal series solution of the equation $h(y_1, y_2, y_3) = 0$. By M. Artin Theorem [1], this equation has a convergent series solution $y(t) = (y_1(t), y_2(t), y_3(t))$ such that $y(t) \equiv \psi(t)$ modulo \mathfrak{M}^c for any given integer c, where \mathfrak{M} is the maximal ideal of the formal series ring. We see easily that the convergent solution is an analytic imbedding. This implies that S is the image of ψ in a neighborhood of 0. Hence S and $\tau(S_2)$ are not regularly situated at the origin [see [12] for the definition of "regularity situated"]. Therefore S_2 and $f(\Sigma f)$ are not regularly situated because of

 $\tau^{-1}(S) \subset f(\Sigma f)$. This contradicts the regular situation property of closed semi-analytic sets [12]. Hence $g(\Sigma g)$ is not analytic.

Proof of Theorem 2. Let G' be the set of proper analytic mappings $g: M \to N$ such that for any $x \in M$, the germ of g at x is \mathcal{K} - ν -finite $[\nu]$ sufficiently large], and g satisfies (T-B). From the proof of Theorem 1, we see easily that G' includes an open dense subset G of the set of proper analytic mappings, and (i) holds.

For any f of G we have a closed semi-analytic subset $K \subset \Sigma f$ such that $\Sigma f - K$ is an analytic manifold, the restriction of f to which is an analytic imbedding, dim $K < \dim \Sigma f$, $f^{-1}f(K) = K$, and $f(\Sigma f - K)$ is semi-analytic. By [12] there exist respective triangulations L_1 , L_2 of Σf , $f(\Sigma f)$, and subcomplexes $L'_1 \subset L_1$, $L'_2 \subset L_2$ such that K and f(K) correspond to the underlying polyhedrons of L'_1 and L'_2 respectively. Hence (ii) follows immediately.

From (ii), in order to prove (iii), it is sufficient to see $[\Sigma f] = [\Sigma g]$ in $H_l(M; \mathbb{Z}_2)$. This follows from the fact that $j^1 f$ and $j^1 g$ are transversal to each $\Sigma^i(M, N)$ [see Theorem 7 in [16] for details of the proof].

5. Algebraic results. In this section we will consider algebraic analogues in the compact open C^{∞} topology. We assume this topology on any C^{∞} mappings space.

Let Y be an algebraic set of \mathbb{R}^p . Then we see that the set $\{y \in Y: \dim Y_y = \dim Y\}$ is semi-algebraic [12]. We call this subset the *main part* of Y, and a semi-algebraic set of \mathbb{R}^p is called *main semi-algebraic* if it is the main part of some algebraic set. We remark that for a main semi-algebraic set Y', the main part of the Zariski closure of Y' is Y'. Here, we denote by \overline{Y}' the Zariski closure of Y'.

A C^{∞} algebraic manifold means at once an affine algebraic set and a C^{∞} manifold. Restrictions on a subset of polynomial mappings or rational mappings between Euclidean spaces are called equally polynomial or rational. A rational mapping of C^{∞} class is called a C^{∞} rational mapping.

THEOREM 3. Let $M \ [\subset \mathbf{R}^m]$ be a C^{∞} algebraic manifold, and $f: M \to \mathbf{R}^p$ be a C^{∞} mapping. Then every neighborhood of f contains a proper polynomial mapping $g: M \to \mathbf{R}^p$ such that the critical value set $g(\Sigma g)$ is main semi-algebraic.

REMARK. If M is a closed C^{∞} manifold, any C^{∞} mapping $f: M \to \mathbb{R}^p$ can be approximated by one whose critical value set is main semi-algebraic. For any closed C^{∞} manifold is C^{∞} diffeomorphic to a C^{∞} algebraic manifold [see A. Tognoli [17]].

Proof of Theorem 3. By Weierstrass' polynomial approximation theorem, f can be approximated by a polynomial mapping g'': $M \to \mathbb{R}^p$ [of degree s]. In this section, we take $s \ge 6$.

We denote by $P(\mathbf{R}^m, \mathbf{R}^p, l)$ the set of polynomial mappings $h: \mathbf{R}^m \to \mathbf{R}^p$ of degree at most l. Then $P(\mathbf{R}^m, \mathbf{R}^p, l)$ is identified with \mathbf{R}^u naturally for some integer u. For a positive number C > 0, let $g': \mathbf{R}^m \to \mathbf{R}^p$ be the polynomial mapping defined by $g'(x) = (C|x|^{2s}, \dots, C|x|^{2s})$. Put

$$Q = P(\mathbf{R}^m, \mathbf{R}^p, s) - \{h \in P(\mathbf{R}^m, \mathbf{R}^p, s) : h + g'|_{M} \text{ satisfies (T-B)} \}.$$

LEMMA 5.1. Q is a semi-algebraic set in \mathbb{R}^u of codimension > 0.

Proof. Let $F: M \times P(\mathbf{R}^m, \mathbf{R}^p, s) \to J^1(M, \mathbf{R}^p)$ be the mapping defined by $F'(x, h) = j^1(h + g'|_M)(x)$, $F': M \times P(\mathbf{R}^m, \mathbf{R}^p, s) \to J^2(M, \mathbf{R}^p)$ the mapping defined by $F'(x, h) = j^2(h + g'|_M)(x)$, and $F'': M^{(2)} \times P(\mathbf{R}^m, \mathbf{R}^p, s) \to_2 J^2(M, \mathbf{R}^p)$ the mapping defined by

$$F''(x, h) = {}_{2}j^{2}(h + g'|_{M})(x).$$

Then F, F', and F'' are onto submersions [see T. Fukuda [6]]. Using arguments given in [8], we easily see that Q has measure zero in \mathbf{R}^u . By Tarski-Seidenberg Theorem, Q is semialgebraic in \mathbf{R}^u , and Q has codim > 0.

From Lemma 5.1, g'' can be approximated by a polynomial mapping $g = h + g'|_{M}$ which is proper and satisfies (T-B), where $h \in P(\mathbf{R}^{m}, \mathbf{R}^{p}, s)$. As g is proper, $g(\Sigma g)$ is closed.

The next lemma follows similarly as Lemma 3.4.

LEMMA 5.2. Let $g: M \to \mathbb{R}^p$ be a polynomial mapping which satisfies (T-B). Then g has the following properties:

- (i) $B_0(g)$ is dense in Σg ,
- (ii) There exists a semi-algebraic subset $L \supset \Sigma g B_0(g)$ such that dim $L < \dim \Sigma g$, $\Sigma g L$ is an analytic submanifold, and $g|_{\Sigma g L} : \Sigma g L \to g(\Sigma g L)$ is an analytic isomorphism.

LEMMA 5.3. Let V be an algebraic subset of \mathbf{R}^s , and $\sigma\colon V\to\mathbf{R}^t$ a C^∞ rational mapping. Suppose L is a semi-algebraic subset of V such that $\dim L < \dim V$ and $\sigma|_{V-L}\colon V-L\to \sigma(V-L)$ is an analytic isomorphism. Then there exists an algebraic subset V' of \mathbf{R}^t such that $V'\supset \sigma(V-L)$ and $\dim(V'-\sigma(V-L))<\dim V$.

For the proof see Lemma 1.1 in [2].

Applying Lemma 5.2 and Lemma 5.3, there exist a semi-algebraic subset $L \subset \Sigma g$ with dim $L < \dim \Sigma g$, and an algebraic subset V' of \mathbf{R}^p such that $V' \supset g(\Sigma g - L)$ and $\dim(V' - g(\Sigma g - L)) < \dim \Sigma g$. Since the closure of the set $\Sigma g - L$ is Σg , we have $\overline{g(\Sigma g)} \subset V'$. Putting $S = \overline{g(\Sigma g)} - g(\Sigma g)$, we have dim $S < \dim g(\Sigma g)$. Set

$$C = \left\{ y \in \overline{g(\Sigma g)} \mid \dim \overline{g(\Sigma g)}_{y} = \dim \overline{g(\Sigma g)} \right\}.$$

For any y of C, S does not include $\overline{g(\Sigma g)}$ as germs at y. Hence the germ of $\overline{g(\Sigma g)}$ at y and it of $g(\Sigma g)$ at y intersect. Since $g(\Sigma g)$ is closed, we have $y \in g(\Sigma g)$. Thus we see that $g(\Sigma g) = C$, that is, $g(\Sigma g)$ is main semi-algebraic.

Let M and N be C^{∞} algebraic manifolds, and $f: M \to N$ a C^{∞} rational mapping. Then $f(\Sigma f)$ is a semi-algebraic subset of N.

Conversely, we have the following remark.

REMARK. Let N be a C^{∞} algebraic manifold of dimension n, and K a semi-algebraic subset of N of codimension > 0. Then there exist a C^{∞} algebraic manifold M of dimension n and a C^{∞} rational mapping $f: M \to N$ with dim $\Sigma f < n$ such that $f(\Sigma f) = K$.

REFERENCES

- [1] M. Artin, On the solutions of analytic equations, Invent. Math., 5 (1968), 277–291.
- [2] R. Benedetti and A. Tognoli, On real algebraic vector bundles, Bull. Sci. Math., 2^e série 104 (1980), 89–112.
- [3] J. Boardman, Singularities of differentiable maps, Publ. Math. I. H. E. S., 33 (1967), 21–57.
- [4] A. Borel and A. Heafliger, La classe d'homologie fondamentale d'un espace analytique, Bull. Soc. Math. France, 89 (1961), 461-513.
- [5] T. H. Bröcker, *Differentiable Germs and Catastrophes*, London Math. Soc. Lecture Notes series, Cambridge Univ. Press.
- [6] T. Fukuda, Local topological properties of differentiable mappings. I, Invent. Math., 65 (1981), 227-250.
- [7] G. Gibson et al., *Topological Stability of Smooth Mappings*, Springer Lecture Notes 552, Berlin, 1976.
- [8] M. Golubitsky and V. Guillemin, *Stable Mappings and Their Singularities*, Graduate texts in Math., 14, Springer Verlag, 1973.
- [9] H. Hironaka, Resolution of singularities of algebraic variety, I-II, Ann. of Math., 79 (1964), 109–326.
- [10] _____, Stratification and Flatness, Real and Complex singularities, Oslo 1976, P. Holm Ed. Sijthoff and Noordhoff.
- [11] M. Hirsch, Differential Topology, Springer Verlag, New York, 1976.
- [12] S. Łojasiewicz, Ensembles semi-analytiques, I. H. E. S. Lecture Notes, 1965.

- [13] E. Looigenga, The discriminant of a real simple singularity, Comp. Math., 37 (1978), 51-62.
- [14] J. Mather, Stability of C^{∞} mappings. V, Transversality, Advances in Math., 4 (1970), 301-336.
- [15] B. Morin, Formes canoniques des singularités d'une application différentiable, Compt. Rend. Acad. Sci., Paris **260** (1965), 5662 5665, 6503 6506.
- [16] R. Thom, Les singulatités des applications différentiables, Ann. Inst. Fourier, 6 (1956), 17–86.
- [17] A. Tognoli, Algebraic Geometry and Nash Functions, London and New York, Academic Press, 1977.
- [18] D. J. A. Trotman, Stability of transversality to a stratification implies Whitney (a)-regularity, Invent. Math., 50 (1979), 273–277.
- [19] H. Whitney, Analytic extensions of differentiable functions defined in closed sets, Trans. Amer. Math. Soc., 36 (1934), 63-89.
- [20] C. T. C. Wall, Finite determinancy of smooth map-germs, Bull. London Math. Soc., 13 (1981), 481-539.

Received April 19, 1982 and in revised form June 9, 1983.

KYOTO UNIVERSITY KYOTO, JAPAN

HYOGO UNIVERSITY OF TEACHER EDUCATION HYOGO, JAPAN

AND

KYOTO UNIVERSITY KYOTO, JAPAN

Current address: Nagoya University Nagoya, Japan