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CODIMENSION TWO ISOMETRIC IMMERSIONS
BETWEEN EUCLIDEAN SPACES

LEE WHITT

Hartman and Nirenberg showed that any C°° isometric immersion/:
E" -> E " + 1 between flat Euclidean spaces is a cylinder erected over a
plane curve. We show that in the codimension two case, /: E" -» E" + 2

factors as a composition of isometric immersions/ ~ f\° fe E" -» E" + 1

-* E w + 2 , when n > 1 and /has nowhere zero normal curvature. Counter-
examples are given if this assumption is relaxed.

How can paper be folded? More precisely, how can flat Euclidean
2-space E 2 be isometrically immersed into flat Euclidean «-space E" (for
simplicity, assume C°° differentiability everywhere). For n = 3, A. V.
Pogorelov [4] announced without proof that the image is a cylinder
erected over a plane curve; proofs may be found in Massey [3] and Stoker
[5]. In this paper, we consider n = 4 and show that any isometric immer-
sion g: E 2 -> E 4 with nowhere zero normal curvature factors as a com-
position of isometric immersions g = g1 <> g2: E 2 -> E 2 -> E4.

The result of Pogorelov has been generalized by Hartman and Niren-
berg [2]. They showed that the image of any codimension-one isometric
immersion between flat Euclidean spaces is a cylinder erected over a plane
curve. Using a result of Hartman [1] we easily show that any codimension-
two, isometric immersion/: E" -> E"+ 2, n > 1, with nowhere zero normal
curvature factors as a composition / = = / 1

o / 2 : E / ί - > E " + 1 - » E " + 2 . The
images of fx and/2 are cylinders. The assumption of nowhere zero normal
curvature is essential; counterexamples are given in §3 when the assump-
tion is relaxed.

From another point of view, the cylinders of Pogorelov and Hartman
and Nirenberg can be deformed ("unrolled") through a one-parameter
family of isometric immersions to a hyperplane. This family is obtained
by deforming the generating plane curve to a straight line. From our
results, it follows easily that any isometric immersion/: Έn -> En+2 with
nowhere zero normal curvature can be deformed through isometric im-
mersions to a standard inclusion i: Eπ «-» En+2 (it would be interesting to
know if the normal curvature assumption can be removed). In addition,
we proved [7] that if the normal curvature is identically zero, then any

481



482 LEE WHITT

isometric immersion h: Έ" -> E m (any codimension) is deformable through
isometric immersions to a standard inclusion. In codimension one, the
normal curvature is always zero.

We thank J. D. Moore for bringing our attention to [1].

1. Preliminaries. We begin with some Riemannian geometry. As
mentioned earlier, C00 differentiability is assumed everywhere.

Let h: M -> M be an isometric immersion between Riemannian
manifolds. Let V, V be the Riemannian connection on M9 M respec-
tively, and let TM and v(h) denote the tangent and normal bundles. If
X ^ T{TM) and N e T{v{h)) are sections of the tangent and normal
bundles, then we can decompose VXN into its tangential and normal
components VXN = AXN + DXN. The linear mapping Ap: Tp <8> vp{h) ->
TpM is the second fundamental form o f Λ a t ^ E M , and D is the normal
connection. It is easy to see that v(h) is a Riemannian vector bundle with
the induced metric and Riemannian connection D. We will use ( , ) to
denote the metric on both v(h) and TM. Associated to A is the second
fundamental tensor B: TM <g> TM -> v{h) defined by (B(X, Y), N) =
(ANX,Y). The curvature tensors associated to V and D are given by

R(X, Y)Z = VxVγZ - VγVxZ - V[X,Y]Z

R*(X, Y)N = DxDγN - DγDxN - D[χγ]N

where X, Y, Z are tangent vector fields on Af, and TV is a normal vector
field on M.

Now we specialize t o M = Em. The following equations are necessary
and sufficiently conditions for the existence of h: M -> Em (see [6]).

R(X, Y)Z = AXB(Y, Z) - AγB(X, Z)

= B(AXN,Y)-B(X,AYN) [

VxAγN — VYAXN — A[x Y]N
(Codazzi-Mainardi).

= AγDxN - AxDγN
 v }

EXISTENCE THEOREM. Let M be a simply connected Riemannian n-
manifold with a Riemannian k-plane bundle v over M equipped with a second
fundamental form A, an associated second fundamental tensor JB, and a
compatible normal connection D {compatible with the Riemannian metric on
Vs). If the Gauss and Codazzi-Mainardi equations are satisfied, then M can
be isometrically immersed in En+k with normal bundle, v, normal connection
D, and second fundamental form A.
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The rigidity theorem states that an isometric immersion is essentially

determined by its Riemannian data.

RIGIDITY THEOREM. Let h,h'\ M -» En+k be isometric immersions of a

connected Riemannian n-manifold (not necessarily simply connected) with

normal bundles v, vf equipped as above with bundle metrics, connections, and

second fundamental forms. Suppose that there is an isometry φ: M -» M that

can be covered by a bundle map φ*: v -> vr which preserves the bundle

metrics, the connections, and the second fundamental forms. Then there is an

isometry φ ofΈn+k such that φ ° h = hr ° φ.

In [7], a one parameter version of the existence theorem is established.

This gives the deformations discussed in the introduction.

2. The results. We will prove,

THEOREM 1. Let f: Έn -*Έn+2, n > 1, be an isometric immersion with

nowhere zero normal curvature. Then f factors as the composition of isomet-

ric immersions f = fx o f2: En -> En+1 -» En+2.

COROLLARY 1. There is a deformation through isometric immersions

between f and the standard inclusion i: En —> En+1.

Proof. The deformation is obtained by first unrolling fx and then

f2. Q.E.D.

The proof of the theorem consists of setting up and solving the

associated algebraic problem at the bundle level, and then apply the

existence theorem to obtain the required isometric immersions. The as-

sumption of nowhere zero curvature is used in its equivalent form that the

second fundamental forms do not commute. These are equivalent point-

wise as is seen by a straight forward calculation to establish

{R*(X, Y)Nl9 N2) =([ANl9 AN2] X, Y)

where [a, β] = aβ — βa.

LEMMA 1. Let g: E 2 -> E 4 be an isometric immersion with nowhere zero

normal curvature. Then there exist unique global C 0 0 unit normal vector

fields Nx and N2 satisfying det ANX = 0 = det AN2.

Proof. The pointwise existence follows from the first Gauss equation

which is equivalent to det AN + det ANX = 0, where N and N1- are
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orthogonal (the orthogonal operation J_ requires an orientation of the

normal bundle, which exists since E 2 is contractible). The uniqueness

comes from the noncommutivity of the second fundamental forms. The

C°° differentiability is demonstrated below.

The mean curvature vector field H is well defined by H = (tτAN)N

+ (tvAN^N1-, for arbitrary orthonormal fields N9 N1-. It is nowhere

zero as can be easily seen by using the frame Nl9 N2 (for otherwise, the

symmetry of the second fundamental form and the condition det ANλ = 0

= tr ANλ imply that ANλ is the zero transformation, a contradiction).

Define σ: E 2 -> E1 by Nλ = cosσi^ + sinσi72 where Hλ = H/\\H\\

and H2 = H± . It suffices to show that σ is C°°. The eigenvectors of AHt

are C°° (since the eigenvalues are distinct) and with respect to a basis of

eigenvectors for, say, AH2, we can write

The first Gauss equation, τ 2 = pr - q2, implies that 0 = det ANλ =

τ 2cos2σ + (τ/2)(r -/?)sin2σ. Hence σ = §arccot((/? - r)/2τ) is C00.

Note that T # 0 and sin2σ Φ 0 since ^if2 # 0. Q.E.D.

If the normal curvature is allowed to be zero, then the normal fields

Nx and N2 may not even be continuous. An example is given in §3.

If N is any unit normal vector field for g: E 2 -> E4, then the

associated normal connection 1-form is denoted by Θ^. The associated

tangent vector field ZN is defined by Θ^( ) = ( , ZN). Observe that

ZN = -ZN± . We assume throughout that the tangent and normal bundles

over E 2 have a preferred orientation so that the orthogonal operation ± is

well-defined.

LEMMA 2. Let g: E 2 -> E 4 be an isometric immersion with nowhere zero

normal curvature. Then Z# lies in the kernel of either ANX or AN2.

Proof. We will first show that Z ^ e ker(^7V2) at p e R2, under the

assumption that Z^ £ ker(^4^x) at p. Let Xi9 Xf~ be the eigenvectors of

ANi9 with corresponding eigenvalues λi and 0, i = 1,2. Let a (resp. β) be

an integral curve of Xf (resp. Z^), throughp e E 2.

We intend to construct two tangent fields X, Y and one normal field

N along a and β (and then extend these fields to a neighborhood of/?).

They will be used in a calculation of the Codazzi-Mainardi equation. Let

X = Xf and define N along β by Λ ^ = Nλ\β. Set Y\β = Z^\β. Then

(^4^)1^ = 0 and so

(1) (VYAXN)P = O.
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Now choose N and Y along a so that ||JV|| = 1, Yp = (Z^)p9 and AγN is
parallel along X. The existence of iV and Y is demonstrated as follows. Let
Fbe the parallel vector field along a with Vp ~ (Xλ)p. Set N = cos pΛ^ -f
sin pN2 and F = 6 ^ + b2X2 with p(/>) = 0 = b2(p). We want F =
AYN, or equivalently,

ĴSfi + b2X2 = λ 1cosp(7, Z j ) ^ + λ 2 s inp(7, X2)X2.

Choose an arbitrary Ϋ along α so that

(Ϋ,X2)ΦO9

(this is easily seen to be possible since (X, ZN) Φ 0 by assumption).
Let p = arcsin(62/λ2(7, X2)) and obtain Y\a by adding to Ϋ a

multiple of X2 so that (Y9 Xx) = Z?1/λ1cosp. This completely defines N
and y along a, and we obtain

(2) (VXAYN)P = O.

Finally extend N and Y arbitrarily to a neighborhood of p. Now,

ZVV = (X cos pJiVi + cos piVVi + (X sin p)N2 -f (sin p)DxN2.

Since ρ(/?) = 0,

(3) ( Z ) ^ ) p = (*• s i n p ) ^ ^ + ( 1 ) ^ ) ^

From equations (1), (2), and (3), the Codazzi-Mainardi equation
becomes

where γ is a nonzero function which depends on the lengths of and the
angle between X and 7. Both sides of this equation vanish because they
are parallel to Xx and X2 respectively. Hence {Z^)p lies in the kernel of
AN2. But N\β == Nx\β9 i.e. N is parallel in the normal bundle along /?, and
so ZN is perpendicular to Z ^ along 8̂. Thus Z ^ is in the kernel of AN2 at
/IGE2.

It remains to show that Z£ cannot be zero along a curve so that, on
opposite sides of this zero curve, Z^ lies in keτiANJ and ker(̂ 4JV2)
respectively. We have already shown that Zjj = kλXj; + k2X2 where
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kl9 k2 are C°° functions satisfying kx k2 = 0. If kλ and k2 vanish on
opposite sides of a curve, then their derivatives vanish on the curve. But
this means that the normal curvature has a zero, contradiction. Q.E.D.

LEMMA 3. Let g: E 2 —> E 4 be an isometric immersion with nowhere zero

normal curvature. Then g factors as the composition of isometric immersions

Proof. Let Nλ and N2 be normals in the previous lemmas with Z# in
ker AN2. Let M be the subbundle of the normal bundle v{g) generated by
Nx with the induced Riemannian data from v(g). It is trivial to see that
the Gauss and Codazzi-Mainardi equations are satisfied by M. From the
existence theorem, M is the normal bundle to an isometric immersion g2:
E 2 -> E3.

The mapping gx essentially identifies E 3 with the normal (sub)bundle
M. To be more precise, first recall that a focal point is, by definition, a
singularity of the identification of E 3 with M. The nonfocal points form
an open dense subset G c E 3 on which this identification is, locally, an
isometric diffeomorphism. Regarding M as a subset of E4, we obtain an
isometric immersion from G to E 4 which extends, by continuity, to all of
E3. It is denoted by gv Q.E.D.

So far, our arguments have been local in nature and simple connectiv-
ity has been the only topological assumption needed to apply the ex-
istence theorem. We now state a general result.

THEOREM 2. Let U be an open 2-dimensional flat manifold and consider

an isometric immersion g: U —> E 4 with nowhere zero normal curvature.

Then there exists an open 3-dimensional flat manifold N and two isometric

immersions g1: U -> N and g2: N -> E 4 so that g = g2 ° gv

The manifold N may be chosen as a tubular neighborhood of zero
section of an appropriate line subbundle of v(g). If U (and hence N) is
simply connected, then both may be regarded as open subsets of Euclidean
space. Simple connectivity is not needed in Theorem 2 because the desired
mappings already exist—our main effort has been to find a subbundle of
v{g) which is flat, viewed as a submanifold of E4.

Proof of Theorem 1. Hartman [1] showed that any isometric immer-
sion /: E " - > E " + 2 , H > 2 , (no assumption on the normal curvature)
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factors as a Riemannian product / = g X id: E 2 -> E"~2 -> E 4 X E"~2.
If/has nonzero normal curvature, then so does g. By Lemma 3, g factors
as a composition, and hence so does/. Q.E.D.

3. Counterexamples. If the normal curvature is allowed to vanish,
then/: Έ" •-> En+2 may not factor as a composition. The idea behind the
counterexample is to roll E2, regarded as complementary half-planes Pλ

and JP2, into two distinct hyperplanes in E4. To insure that the two
rollings fit together smoothly, we may assume that near the boundary of
each half-plane, the rolling "flattens out" (like x -> e~1/χ2 near 0). In this
way, we obtain unique normals Nλ and N2 on each open half-plane Pt. But
these do not extend continuously across their common boundary for they
are uniquely determined on each half-plane by rollings into different
hyperplanes.
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