# THE NUMBER OF EQUATIONS DEFINING POINTS 

IN GENERAL POSITION

Tim SaUER


#### Abstract

Bounds are established for the number of generators of the graded homogeneous ideal of a set of points in generic or in uniform position in the projective plane. For $n \leq 11, n$ points in uniform position must have the "general" number of generators. It is shown by example that this fails for $n=12$.


Introduction. Let $Z$ be a set of points in $\mathbf{P}_{k}^{2}, k$ algebraically closed. We say the points of $Z$ lie in generic position if $Z$ imposes independent conditions on curves containing it. If this holds for all subsets of $Z$ we say that $Z$ lies in uniform position. Given a set $Z$ in one of these types of "general position", one would like to count the number of equations needed to cut out $Z$, or more precisely, the minimal number of generators $\nu$ of the graded homogeneous ideal $I(Z)$.

This question has arisen most recently in calculations of the Cohen-Macaulay-type of singularities. For example, it is shown in [7] that if $A$ is the local ring at a curve singularity $P$ in $\mathbf{A}_{k}^{3}$, and if the lines of the tangent cone at $P$ correspond to a set of distinct points $Z$ in generic position in $\mathbf{P}_{k}^{2}$, then the Cohen-Macaulay-type of $A$ is equal to $\nu(I(Z))-1$. It is then natural to look for geometric conditions on $Z$ which will allow the Cohen-Macaulay-type to be computed.

Let $s$ denote the number of points belonging to $Z, d$ the integer such that $\binom{d+1}{2} \leq s<\binom{d+2}{2}$, and define

$$
N(s)= \begin{cases}d+1-s+\binom{d+1}{2} & \text { if }\binom{d+1}{2} \leq s \leq \frac{d(d+2)}{2} \\ d+2+s-\binom{d+2}{2} & \text { if } \frac{d(d+2)}{2} \leq s<\binom{d+2}{2}\end{cases}
$$

Geramita and Maroscia [6] have shown that almost all sets of $s$ points in $\mathbf{P}^{2}$ are defined by exactly $N(s)$ equations. We give a new proof of this fact (1.7). However, $\nu(I(Z))$ is not constant on the sets of $s$ points in generic position. It follows from a theorem of Dubreil [4] that the best one can say is that if $Z$ lies in generic position, then $N(s) \leq \nu(I(Z)) \leq d+1$.

Uniform position was introduced in [7] as a more stringent condition on $Z$; it is known that $\nu(I(Z))=N(s)$ if $Z$ is a set of $s$ points in uniform position and $s \leq 11$. If $s=12$, then $N(s)=3$, but we construct in §2 a set $Z$ of 12 points in uniform position for which $\nu(I(Z))=4$. Therefore, in a sense, some sets of points in uniform position are "more general" than others. We also establish an upper bound for $\nu(I(Z))$, where $Z$ lies in uniform position:

$$
\begin{array}{ll}
N(s) \leq \nu(I(Z)) \leq d & \text { if }\binom{d+1}{2}<s<\binom{d+2}{2}-1 \\
N(s)=\nu(I(Z))=d+1 & \text { if } s=\binom{d+1}{2} \text { or }\binom{d+2}{2}-1 .
\end{array}
$$

For example, if $s=12$, this result shows that $3 \leq \nu \leq 4$.
The author is grateful to W. C. Brown for many valuable conversations.

## 1. Bounds on the number of generators.

Definition. Let $Z$ be a set of $s$ points contained in $\mathbf{P}^{2}=\mathbf{P}_{k}^{2}, k$ an algebraically closed field, and $\mathscr{I}_{Z}$ its sheaf of ideals. We say $Z$ lies in generic position if for every nonnegative integer $m, \operatorname{dim} H^{0}\left(\mathscr{I}_{Z}(m)\right)=$ $\max \left\{0,\binom{m+2}{2}-s\right\}$, where $\mathscr{I}_{Z}(m)$ denotes $\mathscr{I}_{Z}$ twisted $m$ times by the hyperplane line bundle. We say $Z$ lies in uniform position if each subset of $Z$ (including $Z$ itself) lies in generic position.

Remark 1.0 .1 . Roughly speaking, $Z$ lies in generic position if $Z$ imposes independent conditions on curves containing it. The sets of $s$ points in generic position in $\mathbf{P}^{2}$ form a Zariski-open subset of the Hilbert scheme $\operatorname{Hilb}^{s}\left(\mathbf{P}^{2}\right)$ parametrizing subschemes of $\mathbf{P}^{2}$ of length $s$. The sets of $s$ points in uniform position form an open subset of the sets of $s$ points in generic position.

Let $Z$ be a zero-dimensional subscheme of $\mathbf{P}^{2}$ of length $s$. Because the projective dimension of an ideal sheaf in $\mathbf{P}^{n}$ is at most $n-1, I_{Z}$ has a minimal projective resolution

$$
\begin{equation*}
0 \rightarrow \sum_{i=1}^{\nu-1} \mathcal{O}_{\mathbf{P}^{2}}\left(-t_{i}\right) \xrightarrow{A} \sum_{j=1}^{\nu} \mathcal{O}_{\mathbf{P}^{2}}\left(-r_{j}\right) \xrightarrow{\left(f_{1}, \ldots, f_{\nu}\right)} \mathscr{I}_{Z} \rightarrow 0 \tag{1}
\end{equation*}
$$

where $A$ is a $(\nu-1) \times \nu$ "relations matrix" of homogeneous forms of degrees $\alpha_{i j}=t_{i}-r_{j}$, and we arrange $t_{1} \leq \cdots \leq t_{\nu-1}$ and $r_{1} \leq \cdots \leq r_{\nu}$. A standard Chern class calculation shows $\sum_{i=1}^{\nu-1} t_{i}=\sum_{j=1}^{v} r_{j}$ and $2 s=$ $\sum_{i=1}^{\nu-1} t_{i}^{2}-\sum_{j=1}^{\nu} r_{j}^{2}$. Further, the minimality of the resolution implies that
the entries of $A$ are in the irrelevant ideal, so we have $t_{1}>r_{1}$ and $t_{\nu-1}>r_{\nu}$.

Lemma 1.1 (Burch, [3]). If I is an ideal of projective dimension one in a regular local ring $(R, \mathscr{M})$, then given a minimal resolution

$$
0 \rightarrow R^{n-1} \xrightarrow[\rightarrow]{A} R^{n}{ }^{\left(f_{1}, \ldots, f_{n}\right)} I \rightarrow 0
$$

there exists $r \in R$ such that $f_{i}=r \Delta_{i}, i=1, \ldots, n$, where the $\Delta_{i}$ are the maximal minors of the matrix $A$.

The lemma applies in our case with $R=k\left[x_{0}, x_{1}, x_{2}\right]_{\left(x_{0}, x_{1}, x_{2}\right)}$ and $I(Z)=\sum_{m=0}^{\infty} H^{0}\left(\mathscr{I}_{Z}(m)\right)$ localized at $\left(x_{0}, x_{1}, x_{2}\right)$ for $I$. Since ht $I=2, r$ must be a unit, and we may assume in the following that $f_{i}=\Delta_{i}$.

Example 1.1.1. If $Z$ is a complete intersection of curves of degrees $r_{1}$ and $r_{2}$, then the minimal resolution is the familiar Koszul complex

$$
0 \rightarrow \mathcal{O}_{\mathbf{P}^{2}}\left(-r_{1}-r_{2}\right) \rightarrow \mathcal{O}_{\mathbf{P}^{2}}\left(-r_{1}\right) \oplus \mathcal{O}_{\mathbf{P}^{2}}\left(-r_{2}\right) \xrightarrow{\left(f_{1}, f_{2}\right)} \mathscr{I}_{Z} \rightarrow 0
$$

and the relations matrix is $\left(-f_{2}, f_{1}\right)$. It is easy to check that the complete intersection of $f_{1}$ and $f_{2}$ lies in generic position if and only if $\operatorname{deg} f_{i} \leq 2$. More generally:

Proposition 1.2. (a) A subscheme $Z$ of length $s$ in $\mathbf{P}^{2}$ lies in generic position if and only if $0 \leq \alpha_{i j} \leq 2$ for a minimal resolution (1). (b) Moreover, in this situation, $r_{1} \leq r_{i} \leq r_{1}+1$ for all $1 \leq i \leq \nu$.

Proof. (a) Consider the long exact sequence of cohomology

$$
\begin{aligned}
& 0 \rightarrow H^{0}\left(\mathscr{I}_{Z}(m)\right) \\
& \rightarrow H^{0}\left(\mathcal{O}_{\mathbf{P}^{2}}(m)\right) \rightarrow H^{0}\left(\mathcal{O}_{Z}(m)\right) \\
& H^{1}\left(\mathscr{I}_{Z}(m)\right) \rightarrow 0 .
\end{aligned}
$$

Denote $\operatorname{dim} H^{i}$ by $h^{i}$. Because $h^{0}\left(\mathcal{O}_{\mathbf{P}^{2}}(m)\right)=\binom{m+2}{2}$ and $h^{0}\left(\mathcal{O}_{Z}(m)\right)=s$, it is clear that $Z$ lies in generic position if and only if $\mathscr{I}_{Z}$ has "seminatural cohomology", i.e. for each $m \geq 0$, at most one of $H^{i}\left(\mathscr{J}_{z}(m)\right), i=0,1,2$, is nonzero. Since $H^{0}\left(\mathscr{I}_{Z}(m)\right) \neq 0$ if and only if $m \geq r_{1}, \mathscr{I}_{Z}$ has seminatural cohomology if and only if $H^{1}\left(\mathscr{\mathscr { I }}_{Z}(m)\right)=0$ for $m \geq r_{1}$. By (1) and the fact that $t_{\nu-1}>r_{\nu}$, this condition is equivalent to $t_{\nu-1} \leq r_{1}+2$.
(b) In this situation, since $t_{\nu-1}>r_{i}$ for all $i, r_{1} \leq r_{i}<t_{\nu-1} \leq r_{1}+2$ for all $i$.

Remark 1.2.1. Fact (b) was proved in [7].

One of the advantages of generic position is that it is preserved under linkage. We say that two closed subschemes $Z, Z^{\prime}$ of $\mathbf{P}^{n}$, equidimensional and without embedded components, are linked via the complete intersection $X$ containing $Z$ and $Z^{\prime}$ if $I(Z)=I(X): I\left(Z^{\prime}\right)$ and $I\left(Z^{\prime}\right)=I(X)$ : $I(Z)$, where $I(Z)$ denotes the homogeneous graded ideal of $Z$, and so forth. The next proposition was essentially known to Apéry (see [5]) and has an elementary proof, which is provided in an appendix for lack of a reference.

Proposition 1.3. Let $Z$ be a projectively Cohen-Macaulay subscheme of $\mathbf{P}^{n}$ of codimension two, and let

$$
0 \rightarrow \sum_{i=1}^{\nu-1} \mathcal{O}_{\mathbf{P}^{n}}\left(-t_{i}\right) \xrightarrow{A} \sum_{j=1}^{\nu} \mathcal{O}_{\mathbf{P}^{n}}\left(-r_{j}\right) \xrightarrow{\left(f_{1}, \ldots, f_{\nu}\right)} \mathscr{I}_{Z} \rightarrow 0
$$

be a minimal projective resolution for the ideal sheaf, where $f_{i}$ is the ith maximal minor of $A$. Suppose $\left\{f_{i}, f_{j}\right\}$ forms a regular sequence of length two in $k\left[X_{0}, \ldots, X_{n}\right]$, and let $Z^{\prime}$ be the (projectively Cohen-Macaulay) subscheme of $\mathbf{P}^{n}$ linked to $Z$ via $\left\{f_{i}, f_{j}\right\}$. Then a relations matrix for a minimal resolution for $\mathscr{I}_{Z^{\prime}}$ is obtained by deleting columns $i$ and $j$ from $A$ and transposing.

Remark 1.3.1. The liaison theorem ([9, Thm. 3.2]) follows directly from (1.3) and the fact that if $I$ is an ideal in $k\left[x_{0}, \ldots, x_{n}\right]$, a graded quotient of a polynomial ring, and $I$ contains a non-zero-divisor, then there exists a non-zero-divisor $x \in I$ belonging to a set of minimal generators for $I$.

Remark 1.3.2. If we assume $i=\nu-1, j=\nu$ in (1.3), then $\alpha_{k l}^{\prime}=\alpha_{l k}$ for $1 \leq k \leq \nu-2,1 \leq l \leq \nu-1$.

Corollary 1.4. Let $Z$ be a set of points in $\mathbf{P}^{2}$ lying in generic position and $f_{1}, f_{2}$ two homogeneous forms with no common factor which belong to a minimal set of generators of the ideal $I(Z)=\sum_{m=0}^{\infty} H^{0}\left(\mathscr{I}_{Z}(m)\right)$. Let $Z^{\prime}$ be the scheme linked to $Z$ via $\left\{f_{1}, f_{2}\right\}$. Then $Z^{\prime}$ lies in generic position.

Proof. Follows from (1.2) and (1.3.2).
Next we find a lower bound on the number of generators $\nu$ of the graded ideal $I(Z)$, where $Z$ is a length $s$ subscheme of $\mathbf{P}^{2}$ lying in generic position. A set of generators must contain a basis for $H^{0}\left(\mathscr{I}_{Z}(r)\right)$, where $r$
is the least degree of a curve containing $Z$. Generic position implies that $r$ is the least integer such that $\binom{r+2}{2}>s$, and we have $\nu \geq k$ where $k=$ $h^{0}\left(\mathscr{I}_{Z}(r)\right)=\binom{r+2}{2}-s$. Using (1.2) we see that a minimal resolution for $\mathscr{I}_{Z}$ has the form

$$
\begin{aligned}
0 & \rightarrow \sum_{i=1}^{\nu-l-1} \mathcal{O}_{\mathbf{P}^{2}}(-r-1) \oplus \sum_{i=1}^{l} \mathcal{O}_{\mathbf{P}^{2}}(-r-2) \\
& \rightarrow \sum_{i=1}^{k} \mathcal{O}_{\mathbf{P}^{2}}(-r) \oplus \sum_{i=1}^{\nu-k} \mathcal{O}_{\mathbf{P}^{2}}(-r-1) \rightarrow \mathscr{I}_{Z} \rightarrow 0
\end{aligned}
$$

where $l=r+1-k$. Since $\nu-k$ and $\nu-l-1$ are nonnegative, $\nu \geq$ $\max \{k, r-k+2\}$. Set $N(s)=\max \{k, r-k+2\}$ (clearly $r$ and $k$ depend only on $s$ ). Then we can compute

$$
\begin{aligned}
N(s) & =\max \{k, r-k+2\} \\
& =\max \left\{\binom{r+2}{2}-s, r-\binom{r+2}{2}+s+2\right\} \\
& =\left\{\begin{array}{cc}
r+1-s+\binom{r+1}{2} & \text { if }\binom{r+1}{2} \leq s \leq \frac{r(r+2)}{2} \\
r+2+s-\binom{r+2}{2} & \text { if } \frac{r(r+2)}{2} \leq s<\binom{r+2}{2}
\end{array}\right.
\end{aligned}
$$

Therefore, $N(s)$, a number depending only on $s$, is a lower bound on the number of generators for the ideal $I(Z)$. To show this bound is sharp, we will exhibit for each integer $s$ a zero-dimensional scheme of length $s$ in generic position with exactly $N(s)$ ideal generators. By the following Lemma 1.5, having $N(s)$ ideal generators is an open condition on the set $Z$. It follows (1.7) that the general set of $s$ distinct points in $\mathbf{P}^{2}$ has $N(s)$ ideal generators.

Lemma 1.5. Let $\mathscr{U}$ be the open dense subset of $\operatorname{Hilb}^{s}\left(\mathbf{P}^{2}\right)$ corresponding to schemes in generic position. For any integer $N$, the subset of $\mathscr{U}$ corresponding to schemes defined by at most $N$ equations is open in $\operatorname{Hilb}^{s}\left(\mathbf{P}^{2}\right)$.

Proof. The sheaf of differentials $\Omega_{\mathbf{P}^{2}}$ fits in the following exact sequence:

$$
0 \rightarrow \Omega_{\mathbf{P}^{2}} \rightarrow 3 \mathcal{O}_{\mathbf{P}^{2}}(-1) \xrightarrow{(x, y, z)} \mathcal{O}_{\mathbf{P}^{2}} \rightarrow 0
$$

where $\mathbf{P}^{2}=\operatorname{Proj} k[x, y, z]$. Let $Z \in \operatorname{Hilb}^{s}\left(\mathbf{P}^{2}\right)$, lying in generic position. Tensor the above sequence with $\mathscr{I}_{Z}(r+1)$, where $r$ is the least integer
such that $\binom{r+2}{2}>s$. The long exact sequence of cohomology yields

$$
H^{0}\left(3 \mathscr{I}_{Z}(r)\right) \xrightarrow{(x, y, z)} H^{0}\left(\mathscr{I}_{Z}(r+1)\right) \rightarrow H^{1}\left(\Omega_{\mathbf{P}^{2}} \otimes \mathscr{I}_{Z}(r+1)\right) \rightarrow 0
$$

since $H^{1}\left(3 \mathscr{I}_{Z}(r)\right)=0$ by the seminatural cohomology of $\mathscr{I}_{Z}$. The dimension of $H^{1}\left(\Omega_{\mathbf{P}^{2}} \otimes \mathscr{I}_{Z}(r+1)\right)$ measures the number of generators of $I(Z)$ of degree $r+1$. Thus

$$
\nu(I(Z))=\binom{r+2}{2}-s+h^{1}\left(\Omega_{\mathbf{P}^{2}} \otimes \mathscr{I}_{Z}(r+1)\right) .
$$

By the semicontinuity theorem ([8], Thm. III.12.8), $\nu(I(Z))$ is an upper semicontinuous function of $Z$ in $\mathscr{U}$.

Lemma 1.6 (Buchsbaum, Eisenbud [2]). Let $R$ be a commutative noetherian ring, $F_{j}$ free $R$-modules. The complex

$$
0 \rightarrow F_{n} \xrightarrow{\varphi_{n}} F_{n-1} \xrightarrow{\varphi_{n-1}} F_{n-2} \rightarrow \cdots \rightarrow F_{0}
$$

is exact if and only if for $j=1,2, \ldots, n$,
(a) rank $\varphi_{j}+\operatorname{rank} \varphi_{j-1}=\operatorname{rank} F_{j-1}$,
(b) the ideal of maximal minors of $\varphi_{j}$ contains a regular sequence of length $j$.

Proposition 1.7 (Geramita, Maroscia [6]). If $Z$ is a set of $s$ points in generic position in $\mathbf{P}^{2}$, then $\nu(I(Z)) \geq N(s)$. Moreover, equality holds for all $Z$ in an open dense subset of $\operatorname{Hilb}^{s}\left(\mathbf{P}^{2}\right)$.

Proof. The first statement is proved above. For the second, it remains to construct for each $s$ a length $s$ scheme $Z$ in generic position with $\nu(I(Z))=N(s)$.

Case 1. Suppose $\binom{r+1}{2} \leq s \leq r(r+2) / 2$ for some integer $r$. Set $m=r(r+2)-2 s, N=N(s)=r+1-s+\binom{r+1}{2}>0$. An easy calculation shows $0 \leq m \leq N-1$. Consider the $(N-1) \times N$ matrix

$$
A=\left(\begin{array}{ccc}
l_{11} & \cdots & l_{1 n} \\
\vdots & & \vdots \\
l_{m 1} & \cdots & l_{m N} \\
c_{m+1,1} & \cdots & c_{m+1, N} \\
\vdots & & \vdots \\
c_{N-1,1} & \cdots & c_{N-1, N}
\end{array}\right)
$$

where $\operatorname{deg} l_{i j}=1$ and $\operatorname{deg} c_{i j}=2$. If the entries of the matrix are chosen generally it is clear that at least two of the maximal minors $f_{1}, \ldots, f_{N}$ will share no common factor, and grade $\left\langle f_{1}, \ldots, f_{N}\right\rangle \geq 2$. Now (1.6) applies to show that the corresponding sequence (1) is exact with $\nu=N$, so that we have constructed a zero-dimensional scheme $Z$ with $A$ as relations matrix.

Counting degrees, we have $r_{1}=\cdots=r_{n}=2 N-m-2, t_{1}=\cdots=$ $t_{m}=2 N-m-1$, and $t_{m+1}=\cdots=t_{N-1}=2 N-m$. A calculation shows the length of $Z$ is $s$, and by (1.2) $Z$ lies in generic position. The resolution is minimal, so $\nu(I(Z))=N(s)$.

Case 2. Suppose $r(r+2) / 2 \leq s<\binom{r+2}{2}$ for some integer $r$. Set $m=\binom{r+2}{2}-s$ and $N=N(s)=s-\binom{r+2}{2}+r+2>0$. Note that $0 \leq m$ $\leq N$. Consider the $(N-1) \times N$ matrix

$$
A=\left(\begin{array}{cccccc}
c_{11} & \cdots & c_{1 m} & l_{1, m+1} & \cdots & l_{1 N} \\
\vdots & & \vdots & \vdots & & \vdots \\
c_{N-1,1} & \cdots & c_{N-1, m} & l_{N-1, m+1} & \cdots & l_{N-1, N}
\end{array}\right)
$$

where $\operatorname{deg} l_{i j}=1$ and $\operatorname{deg} c_{i j}=2$. As before, if the entries are chosen generally there exists a minimal projective resolution of an ideal sheaf $I_{Z}$ with $A$ as relations matrix. We have

$$
r_{1}=\cdots=r_{m}=N+m-2, r_{m+1}=\cdots=r_{N}=N+m-1
$$

$t_{1}=\cdots=t_{N-1}=N+m$, showing that $Z$ consists of $s$ points in generic position, and $\nu(I(Z))=N(s)$.

Proposition 1.8. Let $Z$ be a set of $s$ points in generic position in $\mathbf{P}^{2}, r$ the least integer such that $\binom{r+2}{2}>s$. Then $\nu(I(Z)) \leq r+1$.

Proof. Let $Z$ be a length $s$ subscheme of $\mathbf{P}^{2}$, and $r$ the least degree of a curve containing $Z$. Let $A$ be a relations matrix for a minimal resolution (1) of $\mathscr{I}_{z}$. We may arrange $A$ such that $\alpha_{11} \geq \alpha_{12} \geq \cdots \geq \alpha_{1 \nu}$; then $\operatorname{deg} f_{1}=r$ and $f_{1}$ is the determinant of a $(\nu-1) \times(\nu-1)$ matrix whose nonzero entries are of degree at least one. Therefore $r=\operatorname{deg} f_{1} \geq \nu(I(Z))$ -1 , i.e. $\nu(I(Z)) \leq r+1$. This is a theorem of Dubreil ([4], Thm. I).

For points in uniform position, the upper bound of (1.8) can be improved:

Proposition 1.9. Let $Z$ be a set of $s$ points in uniform position in $\mathbf{P}^{2}$, such that $\binom{r+1}{2}+1 \leq s \leq\binom{ r+2}{2}-2$ for some $r$. Then $v(I(Z)) \leq r$.

Proof. Let $k=\binom{r+2}{2}-s$; so that $2 \leq k \leq r$. Suppose $\nu(I(Z))=r+$ 1 , and let $A$ be the relations matrix of a minimal resolution (1) of $\mathscr{I}_{Z}$.

$$
A=\left(\begin{array}{ccc}
a_{11} & \cdots & a_{1, r+1} \\
\vdots & & \vdots \\
a_{r, 1} & \cdots & a_{r, r+1}
\end{array}\right)
$$

By (1.2), $0 \leq \alpha_{i j} \leq 2$, and $\alpha_{i j}=\operatorname{deg} a_{i j}$. We may assume $\alpha_{11} \geq \alpha_{12} \geq \cdots$ $\geq \alpha_{1, r+1}$; then we have
(2) $\alpha_{i 1}=\alpha_{i 2}=\cdots=\alpha_{i k}=\alpha_{i, k+1}+1=\cdots=\alpha_{i, r+1}+1$.

We may also assume $\alpha_{11} \leq \alpha_{21} \leq \cdots \leq \alpha_{r 1}$.
Since $\operatorname{deg} f_{r+1}=r+1$, we have

$$
\begin{aligned}
r+1 & =\alpha_{11}+\alpha_{22}+\cdots \alpha_{r r} \\
& =\alpha_{11}+\cdots+\alpha_{k l}+\left(\alpha_{k+1,1}-1\right)+\cdots+\left(\alpha_{r 1}-1\right) \\
& =\alpha_{11}+\cdots+\alpha_{r 1}-r+k
\end{aligned}
$$

and thus

$$
\begin{equation*}
2 r-k+1=\alpha_{11}+\cdots+\alpha_{r 1} \tag{3}
\end{equation*}
$$

By (2), $\alpha_{i 1} \geq 1$ for all $i$.
Suppose $\alpha_{k-1,1} \geq 2$. Then $2 \leq \alpha_{k-1,1} \leq \alpha_{k 1} \leq \cdots \leq \alpha_{r 1}$ and so $\alpha_{11}$ $+\cdots+\alpha_{r 1} \geq k-2+2(r-k+2)=2 r-k+2$, contradicting (3). Therefore, $1=\alpha_{k-1,1}=\alpha_{k-2,1}=\cdots=\alpha_{11}$.
$\operatorname{By}(2), \alpha_{i j}=0$ for $1 \leq i \leq k-1, k+1 \leq j \leq r+1$. Since all entries of $A$ lie in the maximal homogeneous ideal ( $X_{0}, X_{1}, X_{2}$ ) of $k\left[X_{0}, X_{1}, X_{2}\right]$, $a_{i j}=0$ for $1 \leq i \leq k-1, k+1 \leq j \leq r+1$. $A$ has the following form:


Case 1. If $s=\binom{r+1}{2}+1$, then $k=r$, and the form of $A$ is

$$
\left(\begin{array}{c|c}
B & 0 \\
\vdots & 0 \\
a_{r, r+1}
\end{array}\right)
$$

where $\operatorname{deg} a_{r, r+1}=1$. The complete intersection of the curves $\operatorname{det} B=0$ and $a_{r, r+1}=0$ lies in $Z$. Since $r \geq 2, \operatorname{deg}(\operatorname{det} B) \geq 3$, so $Z$ contains three
collinear points (counted with multiplicity), a contradiction to the uniform position assumption.

Case 2. If $\binom{r+1}{2}+2 \leq s \leq\binom{ r+2}{2}-2$, then $f_{1}=\left(\operatorname{det} A_{1}\right) \cdot\left(\operatorname{det} A_{3}\right)$, so $f_{1}$ is the composite of curves of degrees $k-1 \geq 1$ and $\nu-k \geq 1$. This contradicts the following fact:

Lemma 1.10 (Geramita, Maroscia [6], Thm. 3.4). Let $Z$ be a set of $s$ points in uniform position in $\mathbf{P}^{2}$ where $\binom{r+1}{2}+2 \leq s \leq\binom{ r+2}{2}-1$. Then every curve of degree $r$ containing $Z$ is irreducible.

Proposition 1.11. Let $Z$ be a set of $s$ points in $\mathbf{P}^{2}$, and set

$$
N(s)=\left\{\begin{array}{lc}
r+1-s+\binom{r+1}{2} & \text { if }\binom{r+1}{2} \leq s \leq \frac{r(r+2)}{2} \\
r+2+s-\binom{r+2}{2} & \text { if } \frac{r(r+2)}{2} \leq s<\binom{r+2}{2}
\end{array}\right.
$$

(a) If $Z$ lies in generic position, then $N(s) \leq \nu(I(Z)) \leq r+1$.
(b) If $Z$ lies in uniform position, then

$$
\begin{array}{ll}
N(s) \leq \nu(I(Z)) \leq r & \text { if }\binom{r+1}{2}<s<\binom{r+2}{2}-1 \\
N(s)=\nu(I(Z))=r+1 & \text { if } s=\binom{r+1}{2} \text { or }\binom{r+2}{2}-1
\end{array}
$$

Proof. Follows from (1.7), (1.8) and (1.9).
Corollary 1.12. (Geramita, Maroscia, Orecchia [6], [7]). (a) If $Z$ lies in generic position and $s=\binom{r+1}{2}$ or $\binom{r+2}{2}-1$, then $\nu(I(Z))=r+1$. (b) If $Z$ lies in uniform position and $s=\binom{r+1}{2}+1$ or $\binom{r+2}{2}-2$, then $\nu(I(Z))=r$.

Corollary 1.13. If $Z$ lies in uniform position and $s=\binom{r+2}{2}-3$, then $r-1 \leq \nu(I(Z)) \leq r$.

Remark 1.13.1. It follows from (1.11) that if $s \leq 11$, $s$ points in uniform position have exactly $N(s)$ ideal generators. In the next section we show that this statement fails for $s=12$.
2. A counterexample. The following result is related to the classical Cayley-Bacharach Theorem.

Lemma 2.1. Let $S, T$ be zero-dimensional subschemes of $\mathbf{P}^{2}$ linked by two curves $C, D$ of degrees $c$ and $d$, respectively, having no common components. Suppose $d \leq c+2$. Then $h^{0}\left(\mathscr{I}_{S}(d-3)\right)=h^{1}\left(\mathscr{I}_{T}(c)\right)$.

Proof. Suppose $\mathscr{I}_{T}$ has minimal resolution

$$
0 \rightarrow \sum_{i=1}^{\nu-1} \mathcal{O}_{\mathbf{P}^{2}}\left(-t_{i}\right) \rightarrow \sum_{j=1}^{\nu} \mathcal{O}_{\mathbf{P}^{2}}\left(-r_{j}\right) \rightarrow \mathscr{I}_{T} \rightarrow 0
$$

Then linkage implies ([9], Prop. 2.5)

$$
\begin{aligned}
0 & \rightarrow \sum_{j=1}^{\nu} \mathcal{O}_{\mathbf{P}^{2}}\left(r_{j}-c-d\right) \\
& \rightarrow \sum_{i=1}^{\nu-1} \mathcal{O}_{\mathbf{P}^{2}}\left(t_{i}-c-d\right) \oplus \mathcal{O}_{\mathbf{P}^{2}}(-c) \oplus \mathcal{O}_{\mathbf{P}^{2}}(-d) \rightarrow \mathscr{I}_{S} \rightarrow 0
\end{aligned}
$$

is a projective resolution for $\mathscr{I}_{s}$. By the long exact sequences of cohomology,

$$
\begin{aligned}
h^{0}\left(\mathscr{I}_{S}(d-3)\right) & =\sum_{i=1}^{\nu-1} h^{0}\left(\mathcal{O}_{\mathbf{P}^{2}}\left(t_{i}-c-3\right)\right)-\sum_{j=1}^{\nu} h^{0}\left(\mathcal{O}_{\mathbf{P}^{2}}\left(r_{j}-c-3\right)\right) \\
& =\sum_{i=1}^{\nu-1} h^{2}\left(\mathcal{O}_{\mathbf{P}^{2}}\left(c-t_{i}\right)\right)-\sum_{j=1}^{\nu} h^{2}\left(\mathcal{O}_{\mathbf{P}^{2}}\left(c-r_{j}\right)\right) \\
& =h^{1}\left(\mathscr{I}_{T}(c)\right)
\end{aligned}
$$

Lemma 2.2. Suppose $P_{1}, \ldots, P_{13}$ are points in $\mathbf{P}^{2}$ such that no three are collinear, and suppose $\left\{Q_{1}, Q_{2}, Q_{3}\right\}$ is linked to $\left\{P_{1}, \ldots, P_{13}\right\}$ via two quartic curves. Then every subset of $\left\{Q_{1}, Q_{2}, Q_{3}, P_{1}, \ldots, P_{10}\right\}$ imposes independent conditions on quartics.

Proof. Set $T=\left\{Q_{1}, Q_{2}, Q_{3}, P_{1}, \ldots, P_{10}\right\}$ and $S=\left\{P_{11}, P_{12}, P_{13}\right\}$ in (2.1). Since $P_{11}, P_{12}, P_{13}$ are not collinear, $h^{1}\left(\mathscr{I}_{T}(4)\right)=0$, i.e. $T$ imposes independent conditions on quartics. Since each point imposes at most one condition, it follows that every subset of $T$ imposes independent conditions on quartics.

According to (1.13) a set of 12 points in uniform position must have either 3 or 4 ideal generators. We know almost all have 3 ideal generators (1.7). If $\nu(I(Z))=3$, then the minimal resolution for $\mathscr{I}_{Z}$ must be

$$
0 \rightarrow 2 \mathcal{O}_{\mathbf{P}^{2}}(-6) \xrightarrow{A} 3 \mathcal{O}_{\mathbf{P}^{2}}(-4) \xrightarrow{\left(f_{1} f_{2} f_{3}\right)} \mathscr{I}_{Z} \rightarrow 0
$$

and $A$ has form

$$
\left(\begin{array}{lll}
c_{11} & c_{12} & c_{13} \\
c_{21} & c_{22} & c_{23}
\end{array}\right)
$$

where $\operatorname{deg} c_{i j}=2$.

Suppose there are two quartic curves with no common component containing $Z$. We may assume they are given by $f_{1}=0$ and $f_{2}=0$. By (1.3), $Z$ is linked via $f_{1}$ and $f_{2}$ to the complete intersection of the two conics $c_{13}=0$ and $c_{23}=0$.

Example 2.3. A set of 12 points in uniform position in $\mathbf{P}^{2}$ with $\nu(I(Z))=4$.

We will construct a set $Z$ in uniform position that is linked via two quartics to four points, three of which are collinear. By the preceding argument, we conclude $\nu(I(Z))=4$.

The following criterion for uniform position will be used below.
Lemma 2.4 (Brun, [1]). A set of points $Z$ in $\mathbf{P}^{2}$ is in uniform position if and only if
(a) at most $\binom{r+2}{2}-1$ points of $Z$ lie on a degree $r$ curve, for each $r$, and
(b) for each $z \in Z$, there exists a degree $d$ curve $Y$ such that $Y \cap Z=$ $Z \backslash\{z\}$, where $d$ is the smallest integer such that $\binom{d+2}{2} \geq s$.

Construction. Fix a nonsingular quartic $C$ in $\mathbf{P}^{2}$ and three distinct collinear points $Q_{1}, Q_{2}, Q_{3}$ on $C$. We will show that the general quartic passing through $Q_{1}, Q_{2}, Q_{3}$, intersects $C$ in $Q_{1}, Q_{2}, Q_{3}, P_{1}, \ldots, P_{13}$ such that any twelve of $P_{1}, \ldots, P_{13}$ lie in uniform position.

The family of quartics in $\mathbf{P}^{2}$ is parametrized by $\mathbf{P}^{14}$, and an 11-dimensional subfamily $S$ passes through $Q_{1}, Q_{2}, Q_{3}$, since it is clear that none of these three points is a base point for quartics through the other two.

The quartics in $S$ missing the point $Q_{4}$, the residual intersection of $C$ and the line $L$ connecting $Q_{1}, Q_{2}, Q_{3}$, form again an 11-dimensional family $S^{\prime}$. Suppose $C^{\prime} \in S^{\prime}$ and $C \cap C^{\prime}=\left\{Q_{1}, Q_{2}, Q_{3}, P_{1}, \ldots, P_{13}\right\}$, counting multiplicities, and that $P_{1}, P_{2}, P_{3}$ are collinear. None of the $P_{i}$ lie on $L . P_{3}$ is not a base point for quartics through $\left\{Q_{1}, Q_{2}, Q_{3}, P_{1}, P_{2}\right\}$ : for example, set $L_{1}=\overline{P_{1} Q_{i}}$, where we choose $Q_{i} \notin \overline{P_{1} P_{2}}$, and $L_{2}, L_{3}, L_{4}$ lines containing $P_{2}, Q_{j}, Q_{k}$, respectively, where $\{i, j, k\}=\{1,2,3\}$. Then there exists a quartic $L_{1} L_{2} L_{3} L_{4}$ containing $\left\{Q_{1}, Q_{2}, Q_{3}, P_{1}, P_{2}\right\}$ but not $P_{3}$. Similar arguments show that none of the six points $\left\{Q_{1}, Q_{2}, Q_{3}\right.$, $\left.P_{1}, P_{2}, P_{3}\right\}$ is a base point for quartics through the other five, so that the six points induce independent conditions on quartics.

Thus there are 8 dimensions of quartics through $\left\{P_{1}, P_{2}, P_{3}\right.$, $\left.Q_{1}, Q_{2}, Q_{3}\right\}$. The choice of a set of collinear points $\left\{P_{1}, P_{2}, P_{3}\right\}$ on $C \backslash L$ is 2-dimensional (since there is a finite choice (four) of three-point sets
associated with each line in $\mathbf{P}^{2}$ ). Therefore there is a 10-dimensional set of quartics $C^{\prime}$ belonging to $S^{\prime}$ such that the remaining 13 points of the complete intersection $C \cap C^{\prime}$ contain three collinear points. We conclude that the general quartic through $Q_{1}, Q_{2}, Q_{3}$ is such that the residual intersection with $C$ does not contain three collinear points.

Showing the general residual intersection contains no six on a conic and no ten on a cubic requires similar arguments; we argue only the latter. Suppose $C^{\prime}$ is a general quartic such that $C \cap C^{\prime}=\left\{Q_{1}, Q_{2}, Q_{3}\right.$, $\left.P_{1}, \ldots, P_{13}\right\}$ where $\left\{P_{1}, \ldots, P_{10}\right\}$ are situated on a cubic. Since no three of $P_{1}, \ldots, P_{13}$ are collinear, (2.2) applies to show $\left\{Q_{1}, \ldots, P_{10}\right\}$ imposes independent conditions on quartics, so that the family of quartics through $\left\{Q_{1}, \ldots, P_{10}\right\}$ is one-dimensional. The family of 10 -point sets on $C$ lying on a cubic is at most 9 -dimensional, therefore the family of quartics through $Q_{1}, Q_{2}, Q_{3}$ such that the residual 13 points of $C \cap C^{\prime}$ contain 10 cocubic points is at most 10 -dimensional. We conclude that the general quartic through $Q_{1}, Q_{2}, Q_{3}$ intersects $C$ in 13 residual points that have no three collinear, no six on a conic, and no ten on a cubic.

Let $C^{\prime}$ be such a general quartic. We will show that any twelve of $P_{1}, \ldots, P_{13}$ satisfy the criterion of (2.4). Condition (a) is verified; for (b) we reason as follows. Given any point $z$ among a subset of twelve, choose a cubic containing nine of the rest and a line containing the other two. The point $z$ cannot lie on this reducible quartic $Y$, therefore $Y \cap Z=Z \backslash\{z\}$. Such a set $Z$ of twelve points lies in uniform position and is linked via $C$ and $C^{\prime}$ to a set of four points, three of which are collinear, so $\nu(I(Z))=4$.

Remark 2.4.1. It is clear, at least if char $k=0$, that by Bertini's theorem the general such $C^{\prime}$ intersects $C$ transversally, i.e. in the terminology of [6], provides sets of 12 points in "transversal uniform position" and $\nu=4$.

Appendix. We present a proof of (1.3). Let $R$ be a commutative ring and

$$
A=\left(\begin{array}{ccc}
a_{11} & \cdots & a_{1 \nu} \\
\vdots & & \vdots \\
a_{\nu-1,1} & \cdots & a_{\nu-1, \nu}
\end{array}\right)
$$

be a matrix whose entries lie in $R$. Set

$$
f_{i}=(-1)^{i+1} \operatorname{det}\left(\begin{array}{c}
(\nu-1) \times(\nu-1) \text { matrix } \\
\text { obtained by deleting } \\
\text { column } i
\end{array}\right)
$$

$$
\Gamma_{i j}^{k}=(-1)^{i+j+k+1} \operatorname{det}\left(\begin{array}{c}
(\nu-2) \times(\nu-2) \text { matrix } \\
\text { obtained by deleting } \\
\text { columns } i, j \text { row } k
\end{array}\right)
$$

Lemma 1. If $i<j$, then

$$
\left(\Gamma_{i j}^{1}, \ldots, \Gamma_{i j}^{\nu-1}\right) \cdot A=\left(0, \ldots, 0, f_{j}, 0, \ldots, 0,-f_{j}, 0, \ldots, 0\right)
$$

Lemma 2. If $1 \leq i<j \leq \nu, l \neq i$ or $j$, then

$$
\Gamma_{i j}^{k} f_{l}=\Gamma_{i l}^{k} f_{j}-\Gamma_{j l}^{k} f_{i} \quad \text { for } k=1, \ldots, \nu-1
$$

Proof. For $l \neq i$ or $j$, multiply the equation in Lemma 1 on the right by the matrix

$$
B_{l}=\left(\begin{array}{cccc}
\Gamma_{1 l}^{1} & \Gamma_{1 l}^{2} & \cdots & \Gamma_{l l}^{\nu-1} \\
\vdots & \vdots & & \vdots \\
\Gamma_{l-1, l}^{1} & \Gamma_{l-1, l}^{2} & \cdots & \Gamma_{l-1, l}^{\nu-1} \\
0 & 0 & \cdots & 0 \\
-\Gamma_{l+1, l}^{1} & -\Gamma_{l+1, l}^{2} & \cdots & -\Gamma_{l+1, l}^{\nu-1} \\
\vdots & \vdots & & \vdots \\
-\Gamma_{\nu l}^{1} & -\Gamma_{\nu l}^{2} & \cdots & -\Gamma_{\nu l}^{\nu-1}
\end{array}\right) .
$$

Lemma 3. Let $(R, \mathfrak{M})$ be a regular local ring, $A a(\nu-1) \times \nu$ matrix with entries in $\mathfrak{M}$. If $\left\{f_{i}, f_{j}\right\}$ is a regular sequence in $\mathfrak{M}$, then $\left(f_{i}, f_{j}\right)$ : $\left(f_{1}, f_{2}, \ldots, f_{\nu}\right)=\left(\Gamma_{i j}^{1}, \ldots, \Gamma_{i j}^{\nu-1}\right)$.

Proof. By Lemma 2, $\left(\Gamma_{i j}^{1}, \ldots, \Gamma_{i j}^{\nu-1}\right) \subseteq\left(f_{i}, f_{j}\right):\left(f_{1}, \ldots, f_{\nu}\right)$. On the other hand, let $r \in\left(f_{i}, f_{j}\right):\left(f_{1}, \ldots, f_{\nu}\right)$. Then

$$
\left(\begin{array}{c}
f_{1} \\
\vdots \\
f_{v}
\end{array}\right) r=C\binom{f_{i}}{f_{j}}
$$

where

$$
C=\left(\begin{array}{cc}
c_{11} & c_{12} \\
\vdots & \vdots \\
c_{\nu 1} & c_{\nu 2}
\end{array}\right), \quad c_{i j} \in R
$$

and we may assume $c_{i 1}=r, c_{i 2}=0, c_{j 1}=0, c_{j 2}=r$. Multiply on the left by $A$ :

$$
0=A C\binom{f_{i}}{f_{j}}
$$

$A C$ is a $(\nu-1) \times 2$ matrix whose first column is divisible by $f_{j}$ and whose second column is divisible by $f_{i}$, since $\left\{f_{i}, f_{j}\right\}$ form a regular sequence. So write

$$
A C=\left(\begin{array}{cc}
d_{1} f_{j} & -d_{1} f_{i} \\
\vdots & \vdots \\
d_{\nu-1} f_{j} & -d_{\nu-1} f_{i}
\end{array}\right)
$$

where $d_{k} \in R$ for all $k=1, \ldots, \nu-1$. Multiplying on the left by the matrix $\left(\Gamma_{i j}^{1}, \ldots, \Gamma_{i j}^{\nu-1}\right)$ and using Lemma 1, we get

$$
r=\sum_{k=1}^{\nu-1} d_{k} \Gamma_{i j}^{k} \in\left(\Gamma_{i j}^{1}, \ldots, \Gamma_{i j}^{\nu-1}\right)
$$

Proposition (1.3) follows from
Lemma 4. Let $(R, \mathscr{M})$ be a regular local ring, I an ideal with a minimal resolution

$$
0 \rightarrow R^{\nu-1} \xrightarrow[\rightarrow]{A} R^{\nu}\left(\begin{array}{c}
f_{1} \\
\vdots \\
f_{v}
\end{array}\right) I \rightarrow 0,
$$

$f_{i}$ the maximal minors of $A$. Suppose $\left\{f_{i}, f_{j}\right\}$ is a regular sequence in $R$, and let $J=\left(f_{i}, f_{j}\right):\left(f_{1}, \ldots, f_{\nu}\right)$ be the ideal linked to $I$ by $\left\{f_{i}, f_{j}\right\}$. Then $J$ has a minimal resolution

$$
0 \rightarrow R^{\nu-2} \xrightarrow{B} R^{\nu-1} \xrightarrow[\rightarrow]{\left(\begin{array}{c}
\Gamma_{1 / 2}^{\nu-1} \\
\vdots \\
\Gamma_{1,}^{1}
\end{array}\right)} J \rightarrow 0
$$

where $B$ is the transpose of the matrix obtained by eliminating columns $i$ and $j$ from $A$.

Proof. Easy to check that

$$
B\left(\begin{array}{c}
\Gamma_{i j}^{\nu-1} \\
\vdots \\
\Gamma_{i j}^{1}
\end{array}\right)=0
$$

Therefore

$$
0 \rightarrow R^{\nu-2} \xrightarrow[\rightarrow]{B} R^{\nu-1}\left(\begin{array}{c}
\Gamma_{i j}^{\Gamma^{-1}} \\
\vdots \\
\Gamma_{i j}^{i}
\end{array}\right) J \rightarrow 0
$$

is a complex. Rank $A=\nu-1 \Rightarrow \operatorname{rank} B=\nu-2$, so the complex is exact on the left. It is exact on the right by Lemma 3. The grade of $J$ is 2 by ([9], Prop. 1.3), so (1.6) applies to prove exactness in the middle. Since the entries of $B$ lie in $\mathscr{M}$, this exact sequence is a minimal resolution of $J$.

Note added in proof. An example with the properties of Example 2.3, constructed by different techniques, is included in a later version of [6].

## References

[1] J. Brun, Les fibrés de rang deux sur $\mathbf{P}_{2}$ et leurs sections, Bull. Soc. Math. France, 108 (1979), 457-473.
[2] D. Buchsbaum and D. Eisenbud, What makes a complex exact? J. Algebra, 25 (1973), 259-268.
[3] L. Burch, A note on ideals of homological dimension one in local domains, Proc. Camb. Phil. Soc., 63, (1967), 661-662.
[4] P. Dubreil, Sur quelques propriétiés des systemes de points dans le plan et des courbes gauches algebriques. Bull. Soc. Math. France, 61 (1933), 258-283.
[5] F. Gaeta, Quelques progrès recents dans la classification des variétiés algébriques d'un espace projectif. Deuxieme Colloque de Geometrie Algébrique Liège, C.B.R.M. (1952), 145-181.
[6] A. V. Geramita and P. Maroscia, The ideal of forms vanishing at a finite set of points in $\mathbf{P}^{n}$, Queen's Mathematical Preprint No. 1981-5.
[7] A. V. Geramita and F. Orecchia, Minimally generating ideals defining certain tangent cones, J. Algebra, 78 (1982), 36-57.
[8] R. Hartshorne, Algebraic Geometry, Graduate Texts in Math. 52, Berlin, Heidelberg, New York: Springer, 1977.
[9] C. Peskine and L. Szpiro, Liaison des variétiés algébriques I, Inventiones Math., 26 (1974), 271-302.

Received April 6, 1984.
Michigan State University
East Lansing, MI 48824

