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THE BEHAVIOR OF CHAINS OF ORDERINGS
UNDER FIELD EXTENSIONS AND PLACES

RON BROWN

In the Artin-Schreier theory of formally real fields, the isomorphism
classes of certain extensions of a formally real field (namely, the real
closures) are shown to correspond bijectively with certain arithmetic
structures (namely, orderings) which these extensions induce on the base
field. £. Becker has generalized the notion of a real closure (by "real
closures at orderings of higher level9'), and the isomorphism classes of
these generalized real closures again correspond bijectively to certain
arithmetic invariants they induce on the base field; these are in essence
Harman's "chains of orderings". This paper includes a rather complete
analysis of the behavior of such chains of orderings up and down both
field extensions and places. The analysis of this behavior is reduced to
tractable problems in abelian group theory (together with the analysis of
the behavior of ordinary orderings under extensions and places).

1. Introduction. Recall that an ordering of higher level (abbreviated:
"ordering") of a field F is a subset of F maximal with respect to
exclusion of -1 and closure under multiplication and addition (i.e., a
Harrison prime) which contains F2" for some n > 1 (the least such n is
the exact level of the ordering) [B]. Following Lam [L], we will call the
orderings of exact level one (i.e., those which figure in the Artin-Schreier
theory) ordinary orderings. A chain of orderings of a field F [H] is a
sequence (P,-),-^ s u c ^ that ^o *s a n ordinary ordering of F and for each
i > 0, P, is an ordering of Fof exact level i such that ZPt = Z(Pi_1 Π Po).
(For any A c F, we are denoting by ZA the set of integer multiples of
elements of A. Note that if (P, ),•>() *s a chain of orderings in the above
sense, then Po Φ Pλ since otherwise ZP2 = ZPQ = i% contradicting that P2

has level 2. One now checks easily that the above definition is equivalent
to Harman's original definition.)

Now let us fix an ordinary ordering P of a field F. We wish to
calculate C(P), the set of all sequences (P,) z>0 which are either chains of
orderings with Po = P, or which have Pt = P for all / > 0. Let Γ denote
the value group of the real-valued place induced by P (i.e., Γ is the group
of Archimedean classes). In §2, we will give a natural bijection

* P : C ( P ) - > H o m ( Γ , / 2 ) / ~
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whose codomain is the set of equivalence classes " [ / ] " of homomor-
phisms / from Γ to I2 (the set of 2-adic integers) under the equivalence
relation: / ~ g if and only if af = bg for some nonzero a,b e I2. In
principle, this bijection allows "local" questions about chains of orderings
to be reduced to questions about (ordinary orderings and) abelian groups.
In §3, we examine this reduction closely with respect to questions about
the behavior of chains of orderings up and down field extensions and
places. Indeed, suppose that E is either a subfield of F or a residue class
field of F with respect to some valuation. Suppose P induces an ordering
T on E\ let Δ be the value group of T. It turns out that we have a natural
map a: C(P) -> C(Γ); the study of this map is a central objective of this
paper. The bijections ΨP and Ψτ transform the map a into precisely that
map

β: Hom(Γ,/ 2 )/~ -> Hom(Δ,/ 2 )/~

which is induced by the canonical embedding Δ -> Γ.
The purely group-theoretic analysis of the map β is carried out in §4;

the key fact is that I2 is pure injective. Basically, we describe the image of
/?, and the set of elements of Hom(Γ, / 2 ) / ~ which map to any element
of this image. This yields necessary and sufficient conditions for when β
is injective or surjective. In §5 we translate the results on the map β into
the results on chains of orderings. We also examine in considerable detail
the degrees, in the sense of Harman [H], of chains of orderings of F over
their images in E.

The notation introduced in this section (and especially, E, T, Δ, and
F, P, Γ) will be used throughout the paper. Z, ζ), R, I2 and Q2 will
denote the sets of integers, rationals, reals, 2-adic integers, and 2-adic
numbers, respectively. S° will denote the group of multiplicative units of
the unitary commutative ring S. Finally, \A\ will denote the number of
elements in the set A, and A \ B will denote the complement of the set B
in A.

2. Chains of orderings. We continue the notation of §1; thus, P is an
ordinary ordering of F. Each ordering S of F induces a unique real-val-
ued place p with p(S) > 0 [B, p. 18; Br2, §1]. Let σ, with associated
valuation v: F-* Γ, be the real-valued place induced by P. One can easily
compute the set of all orderings inducing σ.

2.1. THEOREM [Br2, §2]. The correspondence ψP: S -> v(S Π P) is a
bijection from the set of all orderings of F inducing σ to the set of all

subgroups Ω of Γ with Γ/Ω cyclic of 2-power order. For any such subgroup
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Ω, say of index 2ι > 1,

ψpX(Ω) = {0} u ( P Π v-ι(Ω)) U - ( P Π ι;-1(ί2*\ί2))

Ω* = 2/~1Γ + Ω); ψpX(Ω) has exact level i.

In the statement of 2.1 we use the convention that for any A c F9

"v(A)" abbreviates υ(A Π F#). Thebijection ψp corresponds Γ with P.
We now compute the set C(P). For each / e Hom(Γ, 72), let /(/) be

the ideal of 72 generated by the image of /.

2.2. THEOREM. There is a unique bijection ΨP: C(P) -> Hom(Γ, 7 2 )/~
wcλ ίteί/or Λ///G Hom(Γ,72) αnJ ( P , ) l > 0 e C(P)? ΫP((P/) l >o) = [/]
if and only iff-\2Ί(f)) = ψP(P,) /or α//i > 0.

Recall that for each / e Hom(Γ, I2) we let [/] denote the equivalence
class of / under the equivalence relation: / - g if and only if af = bg for
some nonzero a, b e 72. The set of such equivalence classes,
Hom(Γ, I2)/~ 9 is computed in Lemma 4.4. Note that each nonzero
homomorphism in Hom(Γ, 72) is equivalent to a homomorphism g with
1 e g(Γ); in this case 7(g) = 72.

Theorem 2.2 follows immediately from the following two claims. In
fact ΨP is the composition of the bijection of the first claim with the
inverse of the bijection of the second. Thus ΨpHlΌ]) can be seen to be the
constant sequence (P), > 0 &nd for each nonzero / e Hom(Γ, 72),

(1) ^- 1([/]) = (ψ;1(/-1(2 i/(/)))) !>0

Claim 1. Let F # denote the set consisting of the constant sequence
(Γ) i > 0 together with all filtrations ( Γ ^ ^Q of Γ such that Γ/Γ, is cyclic of
order 2i for all / > 0. Then there is a bijection from C(P) to F # taking

Claim 2. There is a bijection from Hom(Γ, 72)/ ^ to F # such that for
each / e Hom(Γ, / 2 ), [/] is mapped to (/

We now prove Claim 1. Suppose ( P ^ ^ Q is a chain of orderings with
Po = P. We begin by showing that Pz induces σ for all i > 0. (This was
first proved by Harman [H, Theorem 1.8]; A. Prestel has another proof
using V'topologies.) For each i > 0, let σi9 with associated valuation
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vt: F'-+ Γ/? denote the place into R induced by Pi (so σ0 = σ). Just sup-
pose oi__1 Φ σ for some / > 2. Let b e F' represent a generator of
F'/P;, so that vt{b) generates Γ / ^ P ; ) , but v^b2''2) £ ^(P,) (recall that
Ti/υ{Pi) has order 21'""1, e.g., see [Br2, Remark 2.2]). However

so v^iib2' 2/c) = 0 for some c £ P/_1. Using the approximation theorem
[Brl, Theorem 2.1] we can find u e F such that u is a σ-unit with the
same sign as b2' 2 with respect to P, such that w is a σz_1-unit with
az_x(w) having the same sign as o^^b2' 2/c) in 1?, and also such that u is
a unit with respect to σz. Then

&2"2/w = (b2'~2/c){c/u) eP n Pi_1 c ZP;

which contradicts that v(bγ ) & υ(ZP^). Thus all the orderings in any
element of C(P) induce σ. We can now apply Theorem 2.1 to deduce that
if (P ^ o e C(P), then (ψpίP,)),>0 lies in F # . (In applying Theorem 2.1
note that for all / > 1,

ψP(p,) = v(p n P,) c ^ p , ) = ϋ ( p / - 1 n p0) = ψ ^ P , ^ )

by the definition of a chain of orderings.) Since the ψP are injective, so is
the map of Claim 1. Finally, the map of Claim 1 is suqective: for any
nonconstant ( Γ X^Q G F # one can use the formula for ψp1 in Theorem
2.1 to deduce that (ψp^Γ,.)),.^ is a chain of orderings in C(P) which is
mapped to (Γ z.)^0.

We now turn to the proof of Claim 2. First suppose / is a nonzero
element of Hom(Γ, / 2 ) . That (f'\2Ί(f)))^0 is in F # is an easy applica-
tion of the Noether isomorphism theorems (and the properties of 72).
Next suppose / is equivalent to some g e Hom(Γ, J2), say with af = bg
for some nonzero α, b e I2. Then al(f) = bl(g), so that for all i > 0,

f-ψlU)) - (arrι{2'al(f)) = {bg)-\ΎbI{g)) = g-1(2ί/(g))

Thus the map of Claim 2 is well-defined. That it is suqective was proved
in [Br2, Lemma 3.2C]. Next suppose / and g are nonzero in Hom(Γ, J2)
with f-\2Ί{f)) = g-χ(27(g)) for all / > 0; it suffices to prove that / and
g are equivalent (so that our map is also injective). Suppose γ e Γ is
mapped by / to a generator of /(/) . We may suppose /(γ) = 1 (replace
/ by the equivalent map /(γ)" 1 •/). By hypothesis, γ must also be
mapped by g to a generator of I(g) (since γ G / - 1 ( / ( / ) ) \ / ~ 1 ( 2 / ( / ) ) =
g~1(/(g))\g~1(2/(g)). Thus we may also assume g(γ) = 1. Since / and
g have the same kernel (namely, Π ί>0/~1(2//2)), we may suppose they



BEHAVIOR OF CHAINS OF ORDERINGS 285

are injective. Recall that Z is dense in I2 in the 2-adic topology. Give
Γ the group topology with { / " H ^ ) } * ^ a s a neighborhood base at 0.
Then / and g are continuous maps which agree on the dense subset
Z γ of Γ. Thus they are equal. This completes the proof of Theorem 2.2.

3. Field extensions and places. If S is an ordering of F and E is a
subfield of F, then S Π E is easily checked to be an ordering of E. This
and the following analogous fact for places were first observed by Becker
[B, Theorem 8ϋi, p. 18].

3.1. LEMMA. Let S be an ordering of F inducing σ and let τ: F -> E U
{oo } be a (surjective) place. Then r(S) Π E is an ordering of E if and only
if σ factors through T.

Proof. Suppose τ(S) Π E is an ordering of E, say inducing the
real-valued place σ\ Then σ'τ(S') > 0, so σ'τ = σ. Conversely, if σ
factors through T, then S Π τ~1(£") D a - 1(l) z> τ"1(l). Hence T induces
an isomorphism from r~ι(E')/S Π Ί~\E°) (which is cyclic of 2-power
order since it is isomorphic to a subgroup of F'/S') to E'/τ(S) Π E\ It
follows easily that τ(S) Π E is an ordering of E.

For the remainder of this paper, we will assume either that T is the
identity map on a subfield E of F (the "subfield case") or that
T: F -> E U {oo} is a suqective place (the "residue class field case")
through which σ factors. We set A = τ~ι(E) (a ring), U = τ~ι(EΛ) (a
multiplicative group), T = τ(P Π A) (an ordinary ordering of E) and
Δ = ι?(ί/). Thus T = £ Π P in the subfield case, and Γ = τ(P) n E in
the residue class field case. The map vE: E'-+ Δ with vE(r(a)) = v(a) for
all a G [/ may be identified with the valuation associated with the
real-valued place induced by T [R, p. 62].

Now we describe in brief how chains of orderings "go down" in both
cases.

3.2. LEMMA. Let ( P ^ ^ G Q P ) . Then there exists n>0 with
7{Pt ΠA)= T for alii < n andwith (τ(Pn+i Π A))t>0 e C(T).

Notice that Lemma 3.2 gives us a well-defined map a: C(P) -> C(Γ)
(namely, map (Pi)i^0to(τ(Pi+nΠ A))^^ notice that the "n" of Lemma
3.2 is uniquely determined by r and by (P^i^o uϊdess τ(Pi Π A) = T for
all i > 0). Lemma 3.2 will be proved along with the main theorem for this
section, which we now state.
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3.3. THEOREM. We have a commutative diagram

C(P) ^ C(Γ)

% i l*τ

Hom(Γ,/2)/~ Λ Hom(Δ,/2)/~

where β is the map induced by the inclusion Δ -> Γ. That is, Ψτa = βΨP.

The maps Ψτ and ΨP above are the natural bijections of Theorem 2.2.
The diagram reduces the study of how chains of orderings go up and
down field extensions and places to the study of the map β (which is
carried out in the next section) and the study of how ordinary orderings
go up and down field extensions and places (see Remark 3.5).

We now prove 3.2 and 3.3. Let (PΓ);>0

 G c(p) Recall from the
previous section that each P induces σ; similarly, if ( Γ J ^ Q e C(Γ), then
all the Tt induce the same place into R that T induces. For all m > 0,

τ(p nu)n τ(Pm nu) = τ(P npmnu)

(after all, if τ(a) = τ(b) for a e P Π U and b e PmΠ U, then a =
b(a/b) e Pmr~\\) c Pma-X(l) c Pm). Thus

(3) y(P n ? J n A = ϋ(p n pw) n ι?(ι/) = v(P npmn u)

= vE(τ(P npmn u)) = vE(τ(P π ί / ) n τ(pm n u)).

(To verify the second equality note that if υ(a) = υ(b) where a e P Π Pm

and 6 G ί / , then without loss of generality fceP, SO έ = a{b/a) e
(Pnpjσ-Wcpnpj

Now let ft be the supremum (possibly infinite) of all integers m with
ϋ(P Π Pm) D Δ. Suppose m is an integer, 0 < m < n. Then v(P Π Pm) D
Δ (note that for all i > 0, ϋ(P / + 1 Π P) c ι;(Pί+1) c y(Pf Π P) since

)- H e n c e (3) implies that

ψ Γ (τ(P m n ^)) = vE(τ n τ(Pm n ^)) = Δ,

so τ(Pm Π A) = Γ by Theorem 2.1.
By Theorem 2.2 there exists / e H o m ( Γ , / 2 ) with f~\2iI2) =

v(P Π P.) for all / > 0. If n = oo, /(Δ) c n ^ 0 / ( K ^ n Λ)) c

n ^ 0 2 % = {0}. Thus, iSΫpίίP^^o) = M/]) = [0]. Now suppose
n < oo. Let g be the restriction of 2'nf to Δ. Then since /(Δ) c 2V2,
we have g e Hom(Δ, /2) and )8([/]) = [g]. Now (3) imphes that for all
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i > 0,

= Δn/-1(2^/2)

= Δ n v(Pn+i np) = vE(τ n τ ( P n + , n A))

= rPτ(τ(Pn + iΠA)).

Thus (τ(Pn+i Π Λ ) ) ^ o = ΫfHίgD G Q Ό H e n c e α is well defined and
βVpdPi)^) = β(lΩ) = [g] = *r«((Λ)^o) Lemma 3.2 and Theorem
3.3 are proved.

3.4. REMARK. Following Harman [H, Definition 3.1] we will call the
supremum of all integers m with τ(Pm Π A) = T the degree of (P,-),-^ G
C(P) over αtfP,.),.^). If / e Hom(Γ,/2) has f-\2Ί2) = Ϊ;(P Π Py) for
all / > 0, then this degree is the supremum of all integers m with
/(Δ) c 2m/2 (or, equivalent^, with v(P Π Pm) D Δ). Thus if /(Δ) ff
2m + 1/ 2, then the degree is at most m.

3.5. REMARK. We review here some results about the behavior of
ordinary orderings up and down field extensions and places. There is, of
course, an extensive literature on this question (e.g., see [L] and its
bibliography). The key facts are as follows. If E is a subfield of F, an
ordinary ordering S of E will extend to an ordinary ordering of F if and
only if the real-valued place associated with S extends to a real-valued
place, say σ, on F with σ(SF2) > 0 (after all, Sσ-\R'2)F2 will then be a
preorder, since σ~ι(R'2)F2 is a fan). If S has an extension to F inducing
σ, it is easy to account for all such extensions [Br, p. 635, last paragraph].
It remains to consider the problem of how real-valued places lift through
field extensions; we will only say here that there are strong tools, espe-
cially from valuation theory, to attack for particular fields this arithmetic
question.

The situation when E is a residue class field is somewhat simpler.
"Going down" is handled by Lemma 3.1. The set of orderings of F
inducing a given ordering of E is never empty and is described explicitly
in [Br, Appendix].

4. Abelian group theory: The map β. The notation of the previous

sections will be continued here. We begin with preliminary computations
of the following:

(1) Im(β) (and hence, of the set of chains on E which lift to chains of
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(2) β~\[0]) (and hence, of the set of chains of F which collapse to the
constant sequence (Γ) / > 0 on E),

(3) β~ι(g) where g e Im(β) (and hence, of the set of extensions of a
given chain of E to a chain of JF).

A computation of Hom(G, I2) for any abelian group G provides
additional insight into our preliminary computations. Corollaries include
necessary and sufficient conditions for the injectivity and surjectivity of β
and computations of the cardinality of Im(β) and of β~\A) for each A
in the image of β.

We need some notation. Let v2 denote the 2-adic valuation on the
field of 2-adic numbers Q2 (so v2(a) is the supremum of all integers n
with a e 2"/2, for all a e Q2). Let h: Γ -> Z U {oo} denote the 2-height
function (so h(y) is the supremum of all integers w > 0 with γ e 2 T , for
all γ e Γ). We now compute the image of β.

4.1. PROPOSITION. Letf^ Hom(Δ,/2). The following are equivalent:

(2) There exists n e Z such that for all m e Z, /(Δ Π mΓ) c (m/n)I2.
(3) 77*m? exM tt </ e Z racΛ /to/or all 8 <= Δ\ker(/), J >

In the proof of 4.1 and the remainder of the paper, we let Δ' = {γ e Γ:
n γ e Δ for some integer n > 0} denote the divisible hull of Δ in Γ. Then
Δ'/Δ is the torsion subgroup of Γ/Δ, so Γ/Δ' is torsion-free and
Hom(Γ/Δ, I2) is naturally isomorphic to Hom(Γ/Δ', / 2 ) .

Proof of 41. (1) =* (2). /extends to a homomorphism /': Γ -> (\/n)I2

for some « > 0. Then for any γ e Γ with my e Δ, we have /(mγ) =
(m/n)/ 2 .

(2) => (3). We may assume « = 2d for some integer J > 0. Let 8 e
Δ\ker(/). Λ(δ) is finite, since otherwise /(δ) e (2k/n)I2 for all A:, i.e.,
δ e ker(/). Then δ = 2Λ(δ)γ for some y e Γ . Hence /(δ) e 2Λ(δ)- ί//2, so

- d* a s required.

(3) => (1). / extends uniquely to a homomorphism /': Δ' -» Q2.
Suppose γ e Δ', say with δ = 2suy e Δ where u is an odd integer and
s > 0. Then h{8) > s, so f'{y) = (l/2su)f(8) e 2-*2^(δ»/2 c 2~%
since d > Λ(δ) - v2(f(8)) >s- v2(f(8)). Hence / ' maps into 2~%.
Thus 2df extends to a homomorphism /" : Γ -» /2 (after all, Δ' is pure in
Γ and I2 is pure injective [F, 38.1 and 39.4]). But clearly, [/] = β([f'% as
required.
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For any abelian group G, we will regard the divisible hull of
Hom(G, J2) as a subset of Hom(G, Q2) and denote it by gHom(G, / 2 ) ;
its elements are called "quasi-homomorphisms" from G to /2.
Hom(G, I2)/~ denotes the set of equivalence classes of Hom(G, / 2 ),
where we call two elements equivalent if one is a multiple of the other by
an element of Q'2.

4.2. PROPOSITION. Let A be in the image of β. If A = [0], then β~\A)
is naturally bijective with Hom(Γ/Δ,/ 2)/~ . If A Φ [0], then β~ι(A) is
naturally bijective with βHom(Γ/Δ, 72).

Proof. We have a canonical exact sequence

(4) 0 -» Hom(Γ/Δ, I2) Λ Hom(Γ, I2) Λ Hom(Δ, I2).

β~ι([0]) consists precisely of the equivalence classes of elements in ker(ί)
= Im(s); thus it is bijective with Hom(Γ/Δ, I2)/~ . Next suppose A =
β([f]) where 0 # / e Hom(Γ,/2). The correspondence A -> [f + s(h)]
maps ζ)Hom(Γ/Δ,/2) into β~\A) (for any A, J (A)(Δ) = 0; strictly
speaking, we should replace 5 here by its unique extension to a homomor-
phism 2Hom(Γ/Δ, 72) -> βHom(Γ, 72) and replace / + 5(A) by a non-
zero integer multiple of it mapping into J2). The bijectivity of the
correspondence follows easily from the exactness of (4). For example, if
[/ + s(h)] = [/ + s(h')] for some A, A' e βHom(Γ/Δ, / 2 ), then for some
i / G g j and any γ e Δ\ker(/) we have w(/+ s(A)) = / + ^(A'), so
w /( ϊ ) ^ /(Y) ^ 0 Thus M = 1, and so A = A', proving injectivity.

4.3. PROPOSITION. Im(β) w bijective with Hom(Δ', 7 2 )/~ .

Proof, β factors into the composition

Hom(Γ,/ 2 )/~ -> Hom(A'9I2)/~ -• H o m ( Δ , / 2 ) / - .

The left hand map is suqective by Proposition 4.1 (applied with Δ' in
place of Δ). The right hand map is injective by 4.2 (applied with Δ' in
place of Γ; note that Hom(Δ'/Δ, I2) = 0).

In order to apply the above proposition, we need a deeper under-
standing of the set Hom(G, J2) where G is an abelian group, and of the
related sets Hom(G, I2)/ - and Q Hom(G, J2).
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4.4. LEMMA. Let G be an abelian group, say with torsion subgroup Gt.

Let B be a set of coset representatives in G for a basis of G/(Gt + 2G),

considered as a vector space over Z/2Z. Let I2 denote the I2-module of

maps from B to I2.

(A) Restriction of functions from G to B is an I2-module isomorphism

(B) ζ>Hom(G,/2) is bijective with Q ®zlξ and H o m ( G , / 2 ) / ~ is

bijective with the set of equivalence classes of elements of I2 where two

elements of I2 are equivalent if one is a multiple of the other by a nonzero

element of Q2.

(C) If n = \B\ < oo, then ρHom(G, J 2) is bijective with Qn

2 and

Hom(G, I2)/~ is bijective with (n — 1)-dimensional projective Q2-space

together with one extra point (corresponding to [0]).

In part (C) of Lemma 4.4 above, we identify the empty set with

"(-l)-dimensionaΓ projective space. Both (B) and (C) follow easily from

(A). Before proving (A) we give two corollaries.

4.5. COROLLARY. Im(β) has one element if Δ' is 2-divisible, two

elements if |Δ'/2Δ'| = 2, and uncountably many elements otherwise. For

any A e Im(/?), β~ι(A) has one element if Γ/Δ' is 2-divisible, two

elements if A = [0] and |Γ/(Δ' + 2Γ)| = 2, and uncountably many ele-

ments otherwise.

Proof. The first sentence follows immediately from Proposition 4.3

and Lemma 4.4 (applied with G = Δ'). Now suppose A G Im(β). If Γ/Δ r

is 2-divisible then both β H o m ( Γ / Δ , / 2 ) and Hom(Γ/Δ, / 2 ) / ~ have

only one element, so β~\A) is also a singleton (Proposition 4.2). If

|Γ/(Δ' + 2Γ) | = 2, then ^( [O]) is bijective with Hom(Γ/Δ, J 2 ) / ~ (by

4.2) which has two elements (apply 4.4C with G = Γ/Δ). That β~\A) is

uncountable in all other cases follows similarly from Proposition 4.2 and

Lemma 4.4.

4.6. COROLLARY, β is surjective if and only if the 2-primary subgroup of

Δ'/Δ has finite exponent, β is injective if and only if Γ/Δ' is 2-divisible.

Proof. The second sentence follows immediately from Corollary 4.5.

If the 2-primary subgroup of Δ r/Δ has finite exponent 2d

9 then β is

surjective by Proposition 4.1 (take n = 2d in 4.1(2)). Now suppose the

2-primary subgroup of Δ'/Δ does not have finite exponent. Then for each
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integer n > 0 we can find yn e Δ' with 2"γn G A \ 2Δ. We can find an
infinite set S of positive integers such that either the subset {2Mγn + 2Δ:
n e S} of Δ/2Δ has only one element (if {2wγn + 2Δ: n > 0} is finite) or
the indexed set (2"γM + 2Δ: n e 5) is linearly independent (otherwise). In
either case there exists / e Hom(Δ, 72) mapping 2nyn into 1 4- 272 for all
n <Ξ S (apply Lemma 4.4A with G = Δ). For each Λ G S , A(2nγn) -
V2(f(2nyn)) ^ w Thus / is not in the image of β (cf., Proposition 4.1(3)),
so β is not surjective. Corollary 4.6 is proved.

We now prove Lemma 4.4. Let Ω = Z ( 2 ) ®Z(G/Gt) where Z ( 2 ) =
{m/n: m , « e Z a n d 2 l n}9 and let C = {1 ® (6 + G,): & e 5}. We
have a natural isomoφhism G/(Gt 4- 2G) -> Ω/2Ω (tensoring the exact
sequence 0 -» 2Z (2) -» Z ( 2 ) -> Z/2Z -> 0 by (?/(?, yields a right-exact
sequence). This implies that C is a set of coset representatives in Ω for a
basis of Ω/2Ω, and that we have a natural isomorphism Iξ -» Iξ. We
next observe that we have a natural isomoφhism Hom(G, 72)->
Hom(Ω, 72). After all, by adjoint associativity [F, p. 256 (/)] Hom(Ω, 72)
is isomoφhic to Hom(Z(2), Hom( G/G,, 72)), which is isomoφhic to
Hom(G/G?, 72) (all of its elements are Z(2)-module homomoφhisms). But
Hom(G/Gn 72) is isomoφhic to Hom(G, 72) since 72 is torsion-free as an
additive group.

Now let V = Σc^cZφC. Then V is a pure subgroup of Ω which is
free as a Z(2)-module. (E.g., suppose nω = Σi^msibi where 0 < n e Z,
ω G Ω and for all / < m, st e Z ( 2 ) and bt e C. If « is odd, ω e V. If « is
even, then 21$,. for all i < m s ince ! ,< w ^ (^ + 2Ω) = 0. Thus, (n/2)ω G
F. That ω e F now follows by induction on n. This proves "purity";
"freeness" is easier.) Suppose / e Hom(Ω,72) has f(V) = 0. If ω e Ω
then ω = 2ω'H- i; for some ω' e Ω and v e F, so /(ω) = 2/(ωr). Thus
/(Ω) is a 2-divisible subgroup of 72. Hence / = 0. This shows the natural
map Hom(Ω, 72) -» Hom(F, 72) is injective; it is surjective since 72 is pure
injective and F is pure in Ω. Since F is a free Z(2)-module with basis C,
we have a bijection Hom(F, 72) -» Iξ. The composition of our natural
isomoφhisms

Hom(G, 72) -+ Hom(Ω, 72) -» Hom(F, 72) -> 72

C ^ Iξ

is just the restriction map. Lemma 4.4 is proved.

The techniques of Lemma 4.4 are of course quite standard in abelian
group theory. We thank E. Lee Lady for his instruction in and help with
these.
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5. Corollaries and applications to degrees. We now apply the analysis

in §4 of the map β to the study of the map a: C(P) -> C(Γ). We also

study the "degrees" (cf., Remark 3.4) of elements of C(P) over their

images in C(Γ). If B e C(P) has degree n over a(B), we say that B is an

extension of a(B) of degree n. Recall that A' = { γ E Γ : ny e Δ for some

integer n Φ 0), so that Δ'/Δ is the torsion subgroup of Γ/Δ.

5.1. THEOREM. (A) a is injective if and only if Γ/Δ' is 2-divisible.

(B) a is surjectίυe if and only if the 2-Sylow subgroup of Δ'/Δ has finite

exponent.

(C) Suppose Γ/Δ' is 2-divisible and the 2-Sylow subgroup of Δ'/Δ has

exponent 2d. Then a is bijective and if there are any chains of orderings in

C(P), then d is the maximum of the degrees of these chains of orderings over

their images in C(T).

Proof. The assertions about the injectivity and surjectivity of a follow

from Corollary 4.6 and Theorem 3.3. The assertion about d amounts to

the claim that d is minimal with respect to the property that /(Δ) <t 2d+ιI2

for all / e H o m ( Γ , J 2 ) with 1 G Im(/) (Remark 3.4). Suppose / e

Hom(Γ, I2) and /(γ) = 1 for some y e Γ . Since Γ/Δ' is 2-divisible, there

exists p e Γ with γ — 2p e Δ'. Hence there exists an odd integer m with

2dm(y - 2p) e Δ. Then f(2dmy - 2d+1mp) = 2dm + 2d+1rnf(p) £

2d+1I2. That is, /(Δ) <2 2d+ιI2. Next, by the choice of d there exists

8 E Γ with 2d8 G Δ \ 2 Δ . Thus there exists f0 G Hom(Δ,2%) with

fo(2dδ) = 2^ (Lemma 4.4A). / 0 extends to a homomorphism / x: Δ' -> I2

(Corollary 4.6 plus the choice of d) and hence to a homomorphism

/: Γ -> / 2 (Δ' is pure in Γ). But /(«) = 1 and /(Δ) c 2^~1>+ 1/2. This

estabhshes the minimality of d. The corollary is proved.

Part A of the next Corollary was first proved by Harman [H,

Theorem 3.7 and Corollary 3.8].

5.2. COROLLARY. (A) Suppose F/E is an algebraic field extension.

Then a is injective. Moreover, if F/E is a finite degree extension, say with

2d < [F: E] < 2d+ι, then a is bijective and the degree of each chain of

orderings of F over its image in E is at most d.

(B) Suppose T: F -> E U {oo} is a place. Then every chain of order-

ings of E extends to a chain of orderings of F. a is injective if and only if the

value group of T is 2-divisible, whence the degree of any chain of orderings in

C(P) over its image in C(Γ) is zero.
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Proof. That F/E is algebraic implies that Γ = Δ'. That F/E is of
finite degree further implies that the 2-Sylow subgroup of Γ/Δ has at
most 2d elements (since 2d+1 > [F: E] > [Γ: Δ]). The hypothesis of (B)
implies that Δ' = Δ and that Γ/Δ is the value group of T. NOW apply
Theorem 5.1.

We next look more closely at the image of a. One consequence of our
next theorem is that if T: F -> E U {00} is a place, then every chain of
orderings of E has a degree zero extension to one of F.

5.3. THEOREM. (A) Suppose L = (Tn)n>0 e QΎ) is a chain of order-
ings. Then L e Im(α) if and only if there exists an integer d > 0 with

(5) vE(TΠ Γ j D Δ Π 2Λ+ί/Γ foralln>0.

(B) Suppose d0 is the least nonnegatiυe integer d satisfying (5). // a is
infective, then dQ is the degree of «~1(L) over L. If a is not infective, then
for each integer m > 0, the set of extensions of L to an element of C(P) of
degree m over L is empty ifm<d0 and uncountable if m > d0.

Proof. There exists a nonzero / e H o m ( Δ , / 2 ) with f~ι(2nI2) =
vE(T Π Tn) for all n > 0 (Theorem 2.2). The condition (5) is equivalent to
the condition

(6) /(Δ Π 2n+ί/Γ) c 2V2 for all n > 0.

L is in the image of a if and only if [/] is in the image of β (Theorem
3.3) and hence if and only if there exists an integer d > 0 with

(7) /(Δ Π mT) c 2-dmI2 for all m e Z

(Proposition 4.1). Since s/2 = /2 for all odd s e Z, (7) is equivalent to

/(Δ n 2 T ) c 2"-% for all n > 0

which is easily checked to be equivalent to (6). This completes the proof of
5.3A.

Now suppose d0 is as in 5.3B. An extension of L to a chain of
orderings in C(P) corresponds to an extension of / to a homomorphism
/': Γ -> 2"^/2 where e is some nonnegative integer (Theorem 3.3); the
least such e is the degree of the corresponding extension of L (apply
Remark 3.4 to 2e/') Notice that given such e and /',

/'(Δ Π 2 T ) c 2n/'(Δ') c 2n~eI2

for all n > 0. By the choice of d0, then, d0 < e. This shows that d0 is a
lower bound for the degrees of extensions of L to elements of C(P).
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Since (7) holds with d = d0, we may deduce that /(Δ') c 2~d°I2

where we denote the unique extension of / to a homomorphism Δ' -> Q2

also by /. Since Δ' is a pure subgroup of Γ and I2 is pure injective, then
/: Δ' -> 2'd°I2 extends to a homomorphism /': Γ -> 2~d°I2. The map / '
corresponds to an extension of L to an element of C(P) of degree at most
d0. But then L has an extension to an element of C(P) of degree exactly
d0. Now suppose a is not injective and that m is an integer, m > d0. It
remains only to show that L has uncountably many extensions of degree
m to elements of C(P). Let u be any multiplicative unit of the ring /2.
Pick a set B of coset representatives in Γ for a basis of Γ/2Γ (considered
as a vector space over Z/2Z) such that B contains an element γ0 £ 2Γ +
Δ' (recall that Γ/Δ' is not 2-divisible by Corollary 5.1) and such that B
contains a set of coset representatives in Δ' for a basis of Δ'/2Δ' (which
may be identified with a proper subspace of Γ/2Γ). There exists a
homomorphism fu: Γ -> 2~m/2 such that /w agrees with / o n ί n A ' and
Λ(γ) = 2~ww for all γ e 5 \ Δ ' (apply Lemma 4.4A with G = Γ). Note
Λ(ΎO) = 2'mu, so that m is minimal with /M(Γ) c 2"w/2. Also, /M extends
/ (apply 4.4A with G = Δ'). Different choices of u give rise to functions fu

which are not only distinct, but are also not equivalent (since they agree
on Δ, they can be equivalent only if they are identical). Thus the
uncountable number of choices of u gives rise to uncountably many
extensions of L of degree m to elements of C(P) (Theorem 3.3). This
completes the proof of Theorem 5.3B.

Let σ':£'->2?U{oo}be induced by Γ. Thus σ' is the restriction of
σ to E if F/E is a field extension, and σr is the unique place with σ = σ'τ
if T: F -> E U {oo} is a surjective place. We now study the property that
every chain of orderings of E inducing σ' extends uniquely to a chain of
orderings of F inducing σ and the extension is always of degree 0 (cf.
condition (2) of Theorem 5.4 below). This property turns out to be
equivalent to several conditions which might appear to be much weaker.

5.4 THEOREM. The following are equivalent.

(1) Γ/Λ is 2-divisible and has no elements of order 2.

(2) The correspondence (Sn)n>0*-* (τ(A Π S π ) ) π > 0 carries the set of

chains of orderings of F inducing σ bijectively onto the set of chains of

orderings of E inducing σ'.

(3) Each chain of orderings in C(T) has a degree zero extension to an

element of C(P), and if Γ Φ 2Γ, then for some integer n > 0, some chain

of orderings in C(T) does not have uncountably many extensions of degree n

to an element of C(P).



BEHAVIOR OF CHAINS OF ORDERINGS 295

(4) For every w > 1, the correspondence H *-> τ(H Π A) is a bijection

from the set of all orderings of F of degree n inducing σ onto the set of all

orderings of E of degree n inducing σ'.

(5) For some n > 1 the correspondence H •-> r(H Π A) is a surjection

from the set of all orderings of F of degree n inducing σ onto the set of all

orderings of E of degree n inducing σ'.

(6) Every ordinary ordering of E inducing σ' has an extension to an

ordinary ordering of F inducing σ, and some such ordering has only one such

extension.

First assume Γ = 2Γ; this is equivalent to the assumption that F has
exactly one ordering inducing σ (namely, P). Conditions (1) through (6)
are easily checked to each be equivalent to the condition that Δ = 2Δ (cf.,
Theorems 2.1 and 2.2).

Henceforth we will assume T Φ IT.
(1) => (4). Let n > 1. Since Γ/Δ is 2-divisible, Γ = Δ + 2 T . Since

Γ/Δ has no elements of order 2, Δ n 2 T = 2nΔ. Thus the natural map
Δ/2"Δ -* Γ / 2 T is a bijection. Thus intersection with Δ gives a natural
bijection, call it 0, from the set of subgroups of Γ whose factor groups are
cyclic of order 2" to the corresponding set of subgroups of Δ. The
correspondence in (4) is the composition of the maps ψP, 0, and ψ^1 (cf.,
formula (3) of §3). Hence it is the required bijection (Theorem 2.1).

(4) => (5) a n d (4) => (6). Trivial.

(5) => (1). If Γ/Δ' is not 2-divisible, then some element of C(Γ) has
extensions of arbitrarily high degree to elements of C(P) (Theorem 5.3B).
Thus there are orderings of F of level n inducing σ which induce ordinary
orderings of E, contradicting (5). It now suffices to show Δ'/Δ has no
elements of order 2. Just suppose γ e Δ' and γ 4- Δ has order 2. Then
2 γ e Δ \ 2 Δ . Thus 2γ + 2ΛΔ has order 2n in Δ/2ΛΔ. Thus Δ/2"Δ is an
internal direct sum of two subgroups, one of order 2" generated by
2γ + 2WΔ, and one of the form ΔO/2WΔ where Δo is a subgroup of Δ with
Δ/Δo cyclic of order 2n [F, Lemma (5.1)]. Thus by Theorem 2.1 there
exists an ordering Hf of level n of E inducing σ' with vE{H' Π T) = Δo

(where vE is the valuation on E associated with σ', just as in §3). By
hypothesis there exists an ordering H of F of level n inducing σ with
τ(HΠA) = H\ Thus

Δo = ΌE(H' nτ) = v(PnH)n/i

(cf., formula (3) of §3). Hence the natural map Δ/Δo -> T/v(P Π H) is
injective; it is bijective since both domain and codomain have order 2n.
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The domain is generated by 2γ + Δo and hence T/υ(P Π H) is generated
by 2γ + v(P Π if). But 2n~x(2γ) e ϋ(P n # ) , contradicting that
T/υ(P Π # ) has order 2Λ. Hence Δ'/Δ has no elements of order 2.

(6) => (1). Hom(Γ/Δ, Z/2Z) is bijective with the set of ordinary
orderings of F inducing σ which induce some particular ordinary order-
ing of E inducing σ'. (If T: F -> £ U {oo} is a place apply [Br, Appen-
dix] and if F/E is a field extension apply [Br, p. 635, last paragraph].) By
hypothesis, then, Hom(Γ/Δ, Z/2Z) is trivial and hence Γ/Δ is 2-divisi-
ble. One can show Γ/Δ has no elements of order 2 by proceeding just as
in the proof that "(5) => (1)", taking n = 1.

(1) => (2). Since Γ/Δ' is 2-divisible and Δ'/Δ has no elements of
order 2, then a is bijective and the degree of each chain of orderings in
C(P) over its image in C(Γ) is zero (Corollary 5.1). Also, every ordinary
ordering of E inducing σ' has a unique extension to an ordinary ordering
of F inducing σ (since (1) => (4)). Thus the correspondence of (2) is just
the union of the bijections a as P ranges over the ordinary orderings of F
inducing σ.

(2) ==> (3). It suffices to show a is surjective. Let L = (Tn)n>0 be a
chain of orderings in C(Γ). By hypothesis there exists a chain of orderings
(pn)n>o o f F inducing σ with τ(A Γ) Pn) = Tn for all n > 0. Thus there
exists an integer d > 0 with υE(T Π Tn) D Δ Π 2n+dT for all n > 0
(apply Theorem 5.3 with P replaced by Po). Hence L is in the image of a
(Theorem 5.3).

(3) => (1). It suffices to show Γ/Δ' is 2-divisible and Δ'/Δ has no
elements of order 2. If Γ/Δ' is not 2-divisible, then a is not injective and
every chain of orderings in C(Γ), because it has a degree zero extension to
an element of C(P), has an uncountable number of such extensions of
degree n for all n > 0 (Theorem 5.3B), contradicting (3). Hence a is
bijective and Δ'/Δ has no elements of degree 2 (Theorem 5.1C). This
completes the proof of Theorem 5.4.
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