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ACCELERATION BY
SUBSEQUENCE TRANSFORMATIONS

THoMAs A. KEAGY AND WiLLIAM F. ForD

The acceleration field of subsequence matrix transformations are
studied with respect to the convergence rate of the sequence being ac-
celerated. Included is a proof that no subsequencing algorithm exists
which will determine a set of subscripts (n(i)) for which (y,;) will
be linear for every y which converges at the same rate as or faster
(slower) than a fixed sequence x.

1. Introduction. D. F. Dawson [2] has characterized the summability
field of a matrix 4 by showing A4 is convergence preserving over the
set of all sequences which converge faster than some fixed sequence
x, A is convergence preserving over the set of all sequences, or 4
only preserves the limit of a set of constant sequences. We seek an
analog to this result dealing with the acceleration field of a subsequence
transformation.

The sequence x converges to o faster than the sequence y converges
tod (x<y)if

li’?l(xn —0)/(yn—4)=0.

(In this case we also say that y converges to A slower than x con-
verges to ¢.) The matrix 4 = (a,4) accelerates the convergence of x
if Ax < x. The acceleration field of A4 is {x: Ax < x}. The sequence
X converges to o at the same rate as the sequence y converges to A
(x = y)if

0 <lim|(xp = @)/(yn = A)| <1m|(xn ~ 0)/(¥n = A)| < +o0.

In §2 below, the basic background for investigating the acceleration
field of a subsequence transformation in terms of rate of convergence
is presented. The possibility of obtaining an analog to Dawson’s result
for the acceleration field of a subsequence transformation is consid-
ered in §3. Subsequences have been used by C. Brezinski, J. P. Dela-
haye, and B. Germain-Bonne [1] to generate an acceleration algorithm
for a restricted class of sequences. In §4 it is shown that this algorithm
cannot be extended to a larger class of sequences defined in terms of
rate of convergence.
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2. Definitions and background. Most practical acceleration methods
are nonlinear [9]. Exceptions include the familiar Euler tansforma-
tion [6] and its generalizations [11] which provide examples of linear
methods useful for accelerating sequences of alternating terms [9],
and the Salzer transformation [8] and its generalizations [10] which
provide examples of linear methods useful for accelerating monotone
sequences. In this work we will concentrate on the most basic linear
acceleration method, subsequencing.

To simplify notation and ensure the existence of all quotients, we
will restrict ourselves to the set Sy of null sequences with nonzero
terms. All results have analogs in the set of convergent sequences.
Let x, y € Sy and define the intervals (—, x), (x, =), (x, ), [x, =), (-, x],
[x, ), (x, ¥], and [x, y) in the natural way using the order relation “<”
defined in §1 above. D. F. Dawson [2] has proved the following two
results.

THEOREM 2.1 (Dawson). If A is a convergence preserving for all y ~
X, then A is convergence preserving for all z < x.

THEOREM 2.2 (Dawson). If A is convergence preserving for all y ~ Xx,
then there exists z > x such that A is convergence preserving for all
Y~z

It follows that A is convergence preserving over a set of the type
(—, x). In the following section we seek analogs to these results dealing
with acceleration rather than summability.

3. Subsequences. The subsequence (x,;) of x can be represented
as a regular matrix transformation 4 times x by letting a; ,;) = 1 and
apqy = 0 otherwise. It is clear that a subsequence can never converge
slower than the original sequence. Some subsequences converge at
the same rate and some converge faster than the sequence, but in
every case lim, |x,(;)/x;| < 1. The following three results show if 4 is
restricted to be a subsequence matrix, then an analog to Theorem 2.1
does not exist, but an analog to Theorem 2.2 does.

THEOREM 3.1. If A is a subsequence transformation that accelerates
x € Sy, and y is a sequence in Sy such that x ~ y, then A accelerates

y.

Proof . The conclusion follows immediately from
YnG) _ V(i)  Xi Xn()
Vi Xn(iy Yi Xi
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THEOREM 3.2. If A is a subsequence transformation and x € S, then
there exist y,z € Sy such that y < x < z and A does not accelerate y
or z.

Proof . Let A be the subsequence transformation defined by (A4x); =
Xn(i)- Let
Y1 = Yuary = min{|x; %, [x,(1))*}
and y; = |x;|? for 1 < i < n(1). Let

Ya(ty+1 = Yn(n(ty+1y = min{|Xu1y11 % [Xngn(y41) 7}

and y; = |x;|? for n(1)+1 < i < n(n(1)+1). Similarly, find ¥, (s(1)4+1)+1
= Yn(n(n(1)+1)+1) and continue the process. It follows that y < x and

ﬁ:ﬁ|Yn(i)/Yi| >1,

hence A4 does not accelerate y.

To find x < z, begin by letting z; = z,(;y = max{|x;|"/2, |x,|'/?}
and z; = |x;|!/2 for 1 < i < n(1). Similarly, define z,(1)+1 = Zu(n(1)+1)
and continue the process. It follows that x < z and A4 fails to accelerate
z.

THEOREM 3.3. If A is a subsequence transformation and x € Sy,
then there exists y € Sy such that y < x and A accelerates y.

Proof. Let y; = |x;|? for i < n(1) and y,(;) = min{yy, |x,1)|?}. Let
yi = |x;|? for n(1) < i < n(2) and Yn(2) = min{y,, |x,,(2)|2}/2. Con-
tinue the process, defining at each stage y,) = min{yy, |x,u)|*}/k. It
follows that y < x and A accelerates y, and the proof is complete.

No analog to Theorem 3.3 exists for x < z as the following argument
demonstrates. Let 4 be a subsequence transformation with Ax =
(Xn(i))- If A is the identity map, then A fails to accelerate any sequence
x. If A4 is not the identity map, let m = min{j: n(j) > j}, and define
(t(j)) by t(1) = n(m) and t(k + 1) = n(t(k)) for k = 1,2,3,....
Let x be the sequence given by x; = 1 if i < ¢(1), and x; = 1/k if
ttk-1)<i<tk),k=234,.. If zeS,such that x < z, then
limy |kz,4)| = +oo; hence, there exist an infinite number of k such
that (kK + 1)z k1)l > [kzyk)|- Tt follows that

@llz(ku)/zz(k)l = l_i;fﬁl(k + Dzyksny/kzigl 2 1

A does not accelerate z, and the argument is complete.
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We thus have shown that the acceleration field of a subsequence
transformation cannot be any of the forms (—, x), (x, —), [x, —), (-, x],
(x,¥), [x, ¥], (x, ], or [x, y); nor can it include any of the first four of
these forms. The following argument provides further insight into the
central role of the form (x, y) in characterizing the acceleration field.

Let x € Sy, 4 be a subsequence transformation that accelerates x,
and (Ax); = xp) = y; for i = 1,2,3,.... If & = |y;/x;| for each
i, then (z;) = (\/€ix;) satisfies y < z < x. Furthermore, if z is any
sequence satisfying y < z < x, then

Zni) _ ZnG) . Xn() _ Zn() Vi

zZi  XnG)y  Zi X)) Zi
which implies 4 accelerates z. Similarly, define ;) = Xx;/x,(;) and
6; = 1/4/]x,| otherwise. The sequence (J;) satisfies limy |6;| = +oo
and 1im;(Jy(;)Xn(i)/dix;) = 0. Also d,(;)X,;) = X; for each i; hence,

A accelerates (#,) = (dnx,) and every v such that x < v < u by an
argument similar to the one above for y < z < Xx.

The acceleration field for each A is therefore the union of a collec-
tion of sets of the form (X, y). Because every proper subsequence of
w = (1/n") converges faster than w, it follows that the acceleration
field of a subsequence transformation not equal to the identity cannot
be empty. We thus have the following two results.

THEOREM 3.4. If x € Sy and A is a subsequence matrix that acceler-
ates x, then there exist y and z such that y < x < z and A accelerates
each w € (y, z).

THEOREM 3.5. If A is a subsequence matrix not equal to the identity
matrix, then there exists x € Sy such that A accelerates x.

The order of selection in Theorem 3.5 can be reversed. If x € S,
then there exists a subsequence matrix A that accelerates x.

4. Logarithmic sequences. Let x € S such that

limx,,/x, =0
nh

If 0 # 0 and o # 1, then x is said to converge linearly. If ¢ = 1,
then x is said to converge logarithmically. The set of logarithmically
convergent sequences is difficult to accelerate [3, 9]. C. Brezinski, J. P.
Delahaye, and B. Germain-Bonne [1] have established the following
result which leads to an acceleration algorithm for a proper subset of
the set of logarithmically convergent sequences.
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THEOREM 4.1 (Brezinski, Delahaye, Germain-Bonne). Let x be a
monotone logarithmically convergent element of Sy and I'(x) = {y €
So: there exists A # 0 such that lim, y,/x, = A}. There exists an
increasing sequence of positive integers (n(i)) such that for each y €
I(x), (Vn(i)) is linearly convergent.

Because acceleration methods (such as Aitken’s A2 process) exist
for linearly convergent sequences, the above theorem provides the first
stage of an algorithm for accelerating the convergence of each element
in I'(x). The following results show that this theorem cannot be ex-
tended by using a more general definition of the set I'(x) based on the
convergence rate of x. (Note these results do not depend on x being
monotone or logarithmically convergent.)

THEOREM 4.2. Let x € Sy, (n(i)) be an increasing sequence of pos-
itive integers, and T C R; then there exists y < x (y > x) such that
each t € T is a limit point of (Yn(is1)/ Vn(i))-

Proof. We prove the case for y < x. The remaining case follows
by a similar argument. Let (u#,) be a countable subset of R — {0} that
is dense in 7. Let (v,) = (uy;uy, up; uy, Uy, U3, ... ). Suppose the first
n(2k — 2) terms of y have been chosen. Let

Yn2k-1) = min{lxg(Zk)/vkl’ xr21(2k~l)’ xr21(2k)}’

Yn@2k) = Vi * Yn(2k-1)
and y; = x? for n(2k -2) < j < n(2k - 1) and n(2k - 1) < j < n(2k).
It follows that y,k)/Vnk-1) = Vi [Vn@k-1)/%nk-1)] < Xn@-1)l;
and |Y,2k)/Xn(2k)] < [Xn(2k)]- If this process is continued, then y < x
and each limit point of 7" will be a limit point of (y,(i+1)/Vn(;)), and
the proof is complete.

COROLLARY 4.3. If x € S, then there does not exist an increasing
sequence of positive integers (n(i)) such that (y,(;) is linear for each
y<x(y>x).

The following results may be established by an argument similar to
the one above.

THEOREM 4.4. Let x € Sy, (n(i)) be an increasing sequence of pos-
itive integers such that (xy;)) is linear, and T be a bounded subset of
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R, then there exists y ~ x such that each element of T is a limit point
of (Vn(i+1)/ Yni)-

COROLLARY 4.5. If x € Sy, then there does not exist an increasing
sequence of positive integers (n(i)) such that (yp;)) is linearly conver-
gent for each y ~ x.

It follows that the set of logarithmically convergent sequences that
a subsequence transformation maps into the set of linearly convergent
sequences is more restrictive than the setofall y ~ xory < x (x < y),
where x is some fixed sequence. It is thus impossible to express such
a set as a union or intersection of collections of intervals.
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