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THE MAZUR PROPERTY FOR COMPACT SETS

ABDERRAZZAK SERSOURI

We give a “convex” characterization to the following smoothness
property, denoted by (CI): every compact convex set is the intersection
of balls containing it. This characterization is used to give a transfer
theorem for property (CI). As an application we prove that the family
of spaces which have an equivalent norm with property (C7) is stable
under ¢y and /, sums for 1 < p < co. We also prove that if X
has a transfinite Schauder basis, and Y has an equivalent norm with
property (CI) then the space X®,Y has an equivalent norm with
property (CI), for every tensor norm p.

Similar results are obtained for the usual Mazur property (), that
is, the family of spaces which have an equivalent norm with property
(1) is stable under ¢, and /, sums for 1 < p < oo.

Introduction. Mazur [6] was the first who considered the following
separation property, denoted by (/):

Every bounded closed convex set is the intersection of balls con-
taining it.

Later, Phelps [7] proved that property (/) is weaker than the Fréchet
differentiability of the norm, and gave a dual characterization for (/)
in the finite dimensional case.

Phelps’ theorem was extended to the infinite dimensional case in
[3], where the property (/) was dually characterized.

Here we will give another extension of Phelps’ theorem by charac-
terizing the following property, denoted by (CI):

Every compact convex set is an intersection of balls.

This property was recently introduced by Whitfield and Zizler [9].

We use this characterization to give a “transfer theorem” for prop-
erty (CI), which is analogous to the one given for property () [2].

We also prove a stability result for property (CI), which is of the
same nature as the one given by Zizler for lL.u.c. renormings [10]. Our
proof can be modified to give a similar stability result for property
1).

Some renorming results of Whitfield-Zizler [9], and Deville [2] are
particular cases of these stability results.
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Notation. Our notation is standard. A point x € X is said to be
extremal if x = 0 or x/||x|| is an extreme point of the unit ball of X.
Similar conventions will be used for w*-exposed points, w*-denting
points, and w*-strongly exposed points.

The unit ball and the unit sphere of a Banach space X will be de-
noted by B(X) and S(X) respectively. We also denote by B(z, r) [resp.
S(z,r)] the ball [resp. the sphere] centered at z and of radius r (the
underlying Banach space is understood).

For a subset C of a Banach space X we denote by cv(C) [resp.
¢v(C)] the convex [resp. closed convex] hull of C.

1. Dual characterization for property (CI). The following theorem
is analogous to the one given for property (/) [3]. Techniques used in
the proof can be found in Phelps’ paper [7].

THEOREM 1. Let X be a Banach space. The following properties are
equivalent:
(i) Every compact convex set is the intersection of balls containing
it.
(ii) The cone of extreme points of X* is dense in X* for the topology
I of uniform convergence on compact sets of X.

Proof.. (i) = (ii). Let f € S(X*), K a compact subset of B(X), and
& > 0. We want to find g € Ext(B(X*)), and A > 0, such that

Ilf—2gllx = Sgplf— gl <Le

Without loss of generality we can suppose that K is absolutely convex
and || fllx 2 1 —¢/2.

(Indeed, let x € B(X) such that f(x) > 1 — ¢/2, and let L be
the closed convex symmetric hull of K U {x}. The above mentioned
reduction is then possible since || - ||z > || - ||x.) Let u € K be such
that f(u) = 1 —¢/2, and put ¥’ = (¢/4)u, and D = K N f~1(0). By (i),
there exists z € X, r > 0, such that ' & B(z,r), and D C B(z,r).

Let w be the unique element of [S(z,r) Ncv(¥,z)]. Put x =
(w—z)/r, and let g € Ext(B(X*)) such that ||x|| = g(x) = 1. Then it
is easy to see that:

0< g(w)= Sup g< g(), so|glx>0.
B(z,r)

Let A > 0 be such that ||Ag||x = 1. Then for every k € D we have:
Ag(k) < 2g(u') = erg(u)/4 < ¢/4,
and by symmetry of D, we have ||Ag||p < ¢/4.
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Phelps’ lemma implies then:

<eg/2.

K

+Ag

<eg/2 or Hﬁ(— —Ag

i

(Phelps’ lemma is applied to the space (SpK, jk): the linear space
generated by K equipped with the gauge (or the Minkowski functional)
of K.)

But f(u)/||fllx = f(u) >1-¢/2>¢/2 (if e < 1) and Ag(u) > 0,
so we have necessarily || f/||f]lx — Agllx < &/2.

Then

K

If —Agllk S%+ ”ﬁ —flIK <e

(ii) = (i). (Our proof is simpler than the one given by Whitfield
and Zizler [9].) Let K be a compact convex subset of X not containing
0. By (ii) and the Hahn-Banach theorem there exists g € Ext(B(X*))
such that infx g > 0.

Let us first note the following easy fact:

On bounded subsets of X*, the w*-topology coincides with the topol-
ogy .7 of uniform convergence on compact sets of X.

From the extremality of g, we deduce that there exists an x € S(X),
J0 > 0, such that:

g€ S(B(X*);x,0) and diamy [S(B(X*);x,0)]<e¢,

where ¢ is defined by 3¢ = infy g.

Let us consider now the increasing family of balls (for r > 1): D, =
B(rex, (r — 1)), and let us show that K C D, for some r.

If not, let y € [N,o(K\D,)], and let g, € S(X*) be such that
gr(rex —y) = |rex — y|| > (r — 1)e. Then g,(x) il 1, and

(8- 8)(¥)=28(y) + &(rex — y) — erg,(x)
>3e+(r—1)e —erg,(x)
=2¢e+re(l — g (x)) > 2¢,

which is a contradiction to the choice of x and 4. m]

REMARK. Let us show that property (CI) is the “natural” intersec-
tion property which is associated to Gateaux-smoothness. In order to
do this, we will describe the similarities between the dual characteri-
zations of properties (/) and (CI).
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Recall first that X has property (/) if and only if the set of
w*-denting points of B(X*) is norm dense in .S(X*) [3]. And observe
that the definition of w*-denting points (resp. extreme points) is ob-
tained from the one of w*-strongly exposed points (resp. w*-exposed
points) by allowing the w*-slices not to be parallel.

2. A “Transfer Theorem” for property (CI). In this section we will
prove a “transfer theorem” which is analogous to the corresponding
one for property (/) [2]. For other “transfer theorems” see [4], [5].

In this paper all the linear operators we consider are assumed to be
bounded.

THEOREM 2. Let T: X — Y be a linear operator such that T and T*
are injective.

If Y has an equivalent norm with property (CI), then X has an
equivalent norm with property (CI).

Proof . Recall that we denote by 7 (= Jx) the topology on X* of
uniform convergence on compact sets of X.

We decompose the proof into three steps:

1. If T: X — Y is a linear operator, then 7*:Y* — X* is 9% — I
continuous.

Indeed, let ¢ > 0 and let K be a compact subset of X. Then 7T (K)
is a compact subset of Y, and:

T*({y* € Y*:sup y* <e}) C {x* € X*:Supx* < ¢&}.
T(K) K

2. X is the dual of (X*,.9).

Indeed, every x € X is w*-continuous on X*, hence .7 -continuous.
On the other hand, if £ € (X*,7)*, then £ is continuous on (B(X*), )
= (B(X™*),w*), so £ € X. (Another way to see this is to observe that
 1s coarser than the Mackey topology associated to w*.)

It is now easy to deduce the following:

Claim. If H is a subspace of X* which is w*-dense in X*, then H
is .7 -dense in X*.

3. If T: X — Y is such that T* is injective, then X has an equivalent
norm for which 7*(Ext(Y*)) C Ext(X™*).

Indeed, let || - || be the original norm of X, and C = 7*(B(Y™)).

Define on X* a convex w*-lower-semicontinuous function by:

w(x*) = ||x*||*+/ e~ !dist(x*, tC) dt,
0
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and define the new norm on X by:
B (x*) ={x"y(x*) < 1}

REMARKS. (i) To see that y is w*-lower semicontinuous (w*-1.s.c.)
it suffices to observe the easy (and well known) fact that for a w*-
compact subset K of X* the functon x* — dist(x*, K) is w*-Ls.c.

(ii) The functional y(x*) is symmetric, i.e.: ¥ (x*) = y(—x*), since
C is, and satisfies ||x*|| < w(x*) < 2||x*||; hence the set {w(x*) < 1}
is the unit ball of a dual equivalent norm on X*, which is simply the
gauge of the set {y/(x*) < 1}.

Let y; € Ext(Y*), and choose #y > 0 such that |, T*(y;)|* = 1. We
want to prove that 10T (y;) = x5 € Ext(B).-(X*)).

Let xj,x; be such that 2x5 = x} + x5, [x{|* = |x3|* = 1. Then
w(x3) = w(x}) = w(x3) = 1, and by a convexity argument, and the
fact that ¢t — dist(x*, ¢tC) is continuous for every x* € X*, we deduce
that for every ¢, we have 2dist(xj, tC) = dist(x7, tC) + dist(x3, tC).

So dist(x}, pC) = dist(x3,4C) = 0, but C is norm closed, then
xi € tpC and x; € 1, C.

By injectivity of 7, and extremality of y;, we deduce that xj is
extremal.

The theorem is now an easy consequence of the above three facts.
Indeed, give X and Y equivalent norms for which Ext(Y*) is 7 -dense
in Y*, and T*(Ext(Y*)) C Ext(X*). Then T*(Ext(Y*)) is 9 -dense in
T*(Y*) which is itself .7 -dense in X*. The conclusion follows. O

REMARKS. (i). Property (CI) is hereditary (a subspace of a space
with an equivalent (C7)-norm, has an equivalent (CI)-norm) if and
only if the above “transfer theorem™ is valid without the hypothesis
“T* injective”.

The if part is trivial.

Suppose (CI) is hereditary. Let 7: X — Y be an injective operator.
If we factorize T by its image:

x—L v
g S
Z=T(X)

the heredity of property (CI), and Theorem 2, implies that X has an
equivalent (CI)-norm if Y does.

The same remark applies to Deville’s “transfer theorem” for Prop-
erty (I): Let T: X — Y be such that 7* and T** are injective; then X
has an equivalent (/)-norm if Y does.
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(ii) It was proved in [3], that if the norm of X is locally uniformly
convex, then its dual norm on X* satisfies property (xI):
every w*-compact set is an intersection of balls.

In particular spaces /*(I") have equivalent (CI)-norms. Then, if
property (CI) is hereditary, every Banach space will have an equivalent
(CI-norm (since the spaces /!(I') have equivalent l.u.c. norms, and
every Banach space is a subspace of some /*°(I")-space).

3. Applications. In [9], Whitfield and Zizler proved that every
Banach space with a transfinite Schauder basis has an equivalent norm
with property (CI).

In [2], Deville uses his “transfer theorem” for property (I) to prove
that the James’ spaces J(7) have equivalent norms with property (7).

We give here a “unified” proof of these results which is simpler than
Whitfield-Zizler’s proof, and give a generalization of Deville’s result
on J(n) spaces.

Recall first that a family of projections (P,)p<a<y # Ordinal, is a
transfinite Schauder decomposition of the Banach space X if:

(i) Po=0, P, =1idy

(ii) PoPg = Ppin(a,p) fOr €very , f < u
(iii) ®:[0, u] x X — X:®P(e, x) = P,x is separately continuous.
Such a decomposition is said to be shrinking if

=355 |J (B - PH(X).
a<py
The following theorem should be compared with Zizler’s theorem
on Lu.c. renormings [10].

THEOREM 3. Let (Py)o<a<u be a Schauder decomposition [resp. a
shrinking Schauder decomposition] of the Banach space X. Suppose
that for every a,0 < a < u, the space X, = (Pyi1 — Py)(X) has an
equivalent norm with property (CI) [resp. with property (I)). Then the
space X has an equivalent norm with property (CI) [resp. with property

()]

“Transfer theorems” for properties (/) and (CI) permit the proof
of the theorem to be reduced to the following special case:

PROPOSITION 4. Let (X,, || |lo)acr be a family of spaces with property
(CI) [resp. with property (I)], then the space X = (@ e Xao)c, has an
equivalent norm with property (CI) [resp. with property (I)].
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Proof. Let || - || be an equivalent /attice norm on co(I") which is
C® [1]. (Lattice norms on ¢y(I') are norms satisfying the following
property: If two elements x = (X, )qer> and ¥ = (Va)aer are such that
[Xo| < |¥ol for every a € T, then ||x|| < ||¥]|. C* stands for infinitely
Fréchet-differentiable.)

Define on X an equivalent norm by:

|(Xa)aer| = (I *alle)aer -

A direct computation shows that its dual norm on X* = (P cr X3

is given by |(x3)aer|” = II(IIX513)aerll™-
Let A be such that for every (aq)qer € co(I') we have

1
~ SuP|dal < [[(da)aerl < 4 Sup|aq|-
o€l o€l

First case. Property (CI).
Step 1. We first show the following:

Claim. If x* = (x})qer € X* is such that x} € Ext(X}) for every o €
T, and (||x2||%)eer is @ w*-exposed point of /!(I), then x* € Ext(X*).

Proof'. Let (a4)qcr be an element of ¢y(I") which exposes (||x||%)aer:
1(@a)acrll = N(IXalaerll* = D aallxall = 1;
ael
then a, > 0 for every a € T.
If 2x* = x{ + x5, and |x{|* = |x3|* = 1, then

2=2) allxills < Y aallxfaolls + D dallg, |l < 2.

a€l a€el acl
80 er dall¥i ol = Saer aallglls = 1.
Since (@s)ser €xposes (|[x;[l5)aer, we have: |xi [I% = [Ix;,ll5 =

llxx|l%, for every a € I'. And by the extremality of x}, for every a, we
have x* = x{ = x3.

Step 2. We will prove that the set of extreme points described in
Step 1 is I -dense in X*.

Let e > 0,K C B(X) be a compact subset of X, x* € X*, |x*|* = 1.
Suppose K is convex and symmetric.

Put a} = ||xk||%, Ko = 74 (K), where 7, is the natural projection of
X onto X,. Then K, C AB(X,).
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For each a €T, choose % € Ext(X}), ||X]|x = 1, u}, > O, such that
lluaXs — xallk, < eaq.

Choose I'y C I', Ty finite, such that }° e, a7 < &.

For a € T, put >, = u’, and for o € I'\I'y, put 4}, = a;. Then

(42)aer € I'(T).
Choose (A%),er to be a w*-exposed point of /!(I') such that:

1A aerll” = (A2)aerll” and 3125 - A% <.

o€l

By Step 1, (A%X*)aer is an extreme point of X*, and

|(Aaxs = xaerlic < D IAaxs — X2k,

a€l
< YA = 2n AR - xR+ 4 D AR - xalln
aero aGF\Fo
<2de+A Y {12 - AL+ ALK + 1x2l5) < S4e.
aEF\FO

Second case. Property (I). Recall first that a Banach space has
property (/) if and only if the set of w*-denting points of B(X*) is
norm dense in S(X™*) [3].

Step 1. We will show the following:

Claim. If x* = (x})aer € X* is such that x> € w*-dent(X}) for
every a € I, and (||x*||%)qer is @ w*-strongly exposed point of /!1(T),
then x* € w*-dent(X™).

Proof. Put a = ||xk||%, and let (a,)q.er be such that ||(as)ecrll =
l(ax)aerll® = 2 per daay = 1; then a, > 0 for every a.
Let ¢ > 0, and choose I'y C I Iy finite such that 3 cnr, a0 < &
and infr a; =J > 0.
Choose 7; > 0, and x,, € X,, for every a € Iy, such that || x|, = 1,
and
Xo(¥a) 2 ag(1—m)
valla < az
For o € I'\I'y, pick any x, € X,, [[Xalla = 1.
Choose ¢’ < ¢, such that 1 —n; < (1-¢'/d)/(1+¢€'/d), and let , > 0
be such that

} = v — X2 < eal.

o€l

2 aab; 2> 1 - fp) }
1(63)aer|I” < 1

=Y |by—ay <¢.

o€l
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Now if y* = (¥})aer 1s such that:
Y auxa(yi) 2 1—ny and |y** = ||(1¥all5)aerll” < 1,
acl’
then
Yoadlyillaz1-n and [[(Xa(¥2))aerll* < 1.
So we have
> lay—lyallsl <€ and Y lay - xa(yi) <€
a€el o€l
For a € I', we have:
v ar—¢ _1-¢/o
> > >1-
o (IIyz;Hz) “are~1te/- M

from this we deduce ||y: — xX||X < eal + |a’ — ||yi|Ll-
Then

> lve =2l

o€l

< > {eag +lan —lvallaly + Do Ledlls + Ivalsy

aél"o aer\ro

Sdet+e+e+ D {llvilla—ail+a}<(4+4)
a€l\l,

which concludes the proof of x* € w*-dent(X™).

Step 2. We will show that the set of w*-denting points described in
Step 1 is norm dense in X*.

Let e > 0, and x* = (X}),er € X |x*|* = 1. Put a} = ||x}]||%.

For every a €I, choose X € w*-dent(.X}) such that || X}||> = 1 and
laz s — x2lls < eal.

Choose a w*-strongly exposed point (&%),er of /'(I') such that
(@ )aerll* = 1 and ) rla; — a;| < &. We can suppose a; > 0
for every .

Then X* = (aX}).cr 1s a w*-denting point of X*, |X*|* = 1, and

Do lanxs = xalls < 3 las — azl + lagxs — xalls < (4+ De.
o€l o€l
This achieves the proof of Proposition 4. O

Proof of Theorem 3. For every o,0 < a < u, denote by n, the
operator (P,,; — P,) when considered as an operator from X into
(Par1 — Po)(X) = X,
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Standard argument shows that for every x € X

(IPat1Xx = Paxll)o<a<u € co([0, £)-

Let || - ||« be an equivalent norm on X, with property (CI) [resp.

with property (I)]. We can suppose || - || < || - || on X,, for each «,
where || - || is the norm induced by X on X,.
Let

I'X—-Y= [ D Kall- ”a)] 1 Tx = (Ta(X))oga<u:

0<a<u

Then T is continuous and injective.
The operator 7*:Y* — X* is given by

T*((X2)osaci) = Y ma(x3)-

0<a<u

Then T* is injective.

Moreover, 7*(Y*) is norm dense in X* when the decomposition is
shrinking [since 7 (X}) = (P}, — Py)(X*)].

The theorem follows in case of property (CI) by our “transfer the-
orem”, and in case of property (/) by Deville’s “transfer theorem”
[2]. O

Using techniques of [8], it can be proved.

ProroSITION 5. Let X be a Banach space with a transfinite Schauder
basis, and Y a space with an equivalent norm with property (CI). Then
the space X&, Y has an equivalent norm with property (CI), for every
tensor norm p.

The idea of the proof is to show that if (P,)o<a<, is a Schauder basis
of X, then the family (P, ® Idy)o<a<, is a Schauder decomposition of
X®, 7Y, and to apply Theorem 3.

REMARK. If (X,),>1 is a sequence of Banach spaces with equivalent
(CI)-norms, then (@, X»); has an equivalent (CI)-norm. Indeed,
consider the operator T: (D, Xn)i> — (Bhei Xn)eo: T((Xn)n>1) =
(Xn/n)n>1, and apply Theorem 2.

It is not clear whether the family of spaces with equivalent (CI)-
norms is stable under (uncountable) /*-sums.
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