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ABSTRACT RIEMANNIAN STRATIFICATIONS

GIACOMO MONTI BRAGADIN

Let A be an abstract stratification. Assume that every stratum X
is a riemannian manifold. We first give some conditions, under which
it is possible to endow A with a suitable metric extending a well
known technique of riemannian manifolds. Then stronger conditions
are introduced in order that the metric space A becomes a G-space.
An abstract stratification with all the above conditions is called an
abstract riemannian stratification. Whitney stratifications are, in a
natural way, riemannian.

Introduction. An abstract stratification is the disjoint union of a
locally finite set of smooth manifolds, the strata, glued together ac-
cording to certain rules (see [9], [13], [15], [16]).

The basic tools of differential calculus, smooth functions, vector
fields and differential forms, can be also defined for an abstract strat-
ification by means of "controlled" collections of "tools". Classical
results can be extended to abstract stratifications (e.g. de Rham's the-
orems, see [15], [8]) in this way.

On the other hand a controlled approach seems to be useless when
we take into account a riemannian structure: control conditions on
the metric of the strata are too strict (bundle-like metrics, see [11], are
not controlled in general).

The purpose of this paper is to obtain weaker conditions in order
that riemannian metrics of the strata glue together in an appropriate
manner. In §1 sufficient conditions are given for extending the fun-
damental theorem of the riemannian geometry; in §2 a definition of
compatibility among the riemannian structures of the strata is given
and connections with the structure of G-space are studied. It is shown
that the axioms of finite compactness, convexity, local prolongability
are satisfied in mild hypotheses, whereas local uniqueness and exis-
tence of geodesic coordinates must be required (the former is an open
question even in manifolds with boundary, see [1]).

0. Notation. 1. By a manifold we shall always mean a smooth
manifold; topologically it is a connected, paracompact space. For any
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manifold M let ίP°°(M) be the ring of smooth real valued functions
on M, and let TPM be the tangent space at p £ M.

If g is a riemannian metric on M, for each v £ TPM the length
||v|| = gp(y, v) is defined; if g^ are the components of g with respect
to local coordinates centered at p and vι are those of v, then

1/2

The length of a differentiate curve L parametrized by φ: [a,b]
M is the integral of its velocity vector:

\L\= ίb\\φt\\
J a

dt.

An abstract stratification is a triple (A, S?, £Γ) where

• A is a connected, locally compact topological space with a
countable base;

• S? is a locally finite partition of 4̂ into locally closed subsets,
the strata, such that if X, Y e & and X n 7 φ 0, then X c 7 ;
moreover every X € ^ is a manifold without boundary with
the induced topology;

• ZΓ = {7χ, π^, /?χ} is the family of the control data:
—Tx is an open neighbourhood of X in A,
—πx: Tx —• X is a continuous retraction,
—/>*: 7> -^ [0, +oc) is the tubular function (see [9], [13]).

We shall often denote the triple {A, <¥, <F) by A for short.
For each integer r > 0 define S?r = {X e S? \ dimX < r}, ^ r =

\Jxe^r X' Then it is easy to define, by restriction, control data <Tr

so that A^ = {Ar,<9?r,<9rr} is an abstract stratification, called the r-
skeleton of A. If A = A^ for some r £ N we shall say that A is finite
dimensional and the smallest r with this property is called dim A. We
shall always suppose that A is finite dimensional; if n = dim ̂ 4 then
Y^A = ^ ( " - 1 ) is non-empty and .4* = ^ - ΣA is dense in A; each
stratum X is endowed with a riemannian metric gx.

2. Let (X, rf) be a metric space.
We use the notation [xyz) to indicate that x, y, z are distinct points

of X and d(x, y) + d(y, z) = d(x, z) ("y lies between x and z").
The length λ(x) of a curve x(t) [a < t < b) is defined in the usual

way: for any partition δ: a = t0 < t\ < tk — b we put λ(x, δ) =
X) d(x(ti),x(ti-\)) and A(x) = supλ(x, δ); the metric ύf is intrinsic if
d[x9y) equals the infimum of the lengths of all curves from x to y.
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A segment T(y, z) is a curve from y to z of length d(y, z): it is a
shortest join of y to z and any subarc is a segment.

A geodesic is a local isometry σ: i? —• X; in particular a geodesic is
locally a segment.

The metric space (X, d) is called a G-space if

(i) the closed balls are compact;

(ii) the metric d is intrinsic;

(iii) the axioms P and U (listed below) are satisfied.

Axiom P (local prolongability): each point p of X has a neighbour-
hood ί/p such that for distinct x, y in Up there exists z e X with

Axiom U (uniqueness of the prolongation): let / = 1,2. If
holds and d(z\,x) = d(z2,x), then z\ = z2.

Condition (i) is often called finite compactness. Condition (ii) is
equivalent (for finitely compact metric spaces) with the so-called
Menger convexity: For each x, y e X (x φ y) there exists a point
z eX such that (xyz). Conditions (i), (ii) ensure that segments exist,
almost locally; if axiom P holds then each segment can be extended
to a geodesic, uniquely if axiom U holds.

The most important results on G-spaces are contained in [5], [6],
[7]. G-spaces include complete riemannian manifolds; the theory de-
veloped in [5], [6], [7] leads one to recognize which theorems pertain
to G-spaces theory and which to riemannian geometry.

1. Riemannian metrics on abstract stratifications. Let L be a curve
parametrized by φ: [a,b]—> A. If im (φ) c X for some stratum X and
L is piece-wise differentiate (p.d.) curve of the manifold X, then \L\
is defined. If there exists a stratum X such that im (φ) c Ύ and for
t G [a, b) the restriction Lt of L to [a, t] is p.d. in X, then we define

Finally if there exists a subdivision of [a, b]: a = a$ < a\ < <
an — b such that the restriction L, of L to [α/,α/+i] has a length |L/|
in the above sense, we put Σ?=Γo l^'l = \L\-

DEFINITION 1. The curve L is summable if \L\ e R; for every pair
JC, y of points of A we define ^ ( x , y) = inf{|L| | L is summable with
endpoints x, y}.

We shall prove that in suitable hypotheses dA is a metric on A which
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induces the stratification topology. For this we need the following

DEFINITION 2. Let A be an abstract stratification and a topological
manifold. The C° structure is compatible with the smooth structures
of the strata if for every coordinate system (U,φ)

(i) for each x e U9 if X is the stratum which contains x, then there
exists a neighbourhood Ux of x in X such that {Ux,φ \ Ux) is
a coordinate system of the smooth structure of X\

the C° structure is compatible with the riemannian structures of the
strata if in addition:

(ii) let {Uχβj} be an open covering of X with coordinate neighbour-
hoods given by (i); then fix a refinement {Vχ.j} and define

f dimZ dim*

Σ (gχ,ihk(Φh*k\ Σ ("ι)2

1 1

ί dimX dim*

Σ (**/)«(*)«*** I Σ (α1)2

for every compact K c A put
A" = Jiminf niχj, Mχtχ = limsup A/γfJ .

VKφQ ' 'Then we require that for every l e y and for every compact K c A

0 < mXιK, MXtK e R.

THEOREM 1. Let A be as in Definition 2. Then dA is a metric on A,
which induces the underlying topology.

Proof Let p e A and let (U, φ) be a coordinate system centered at
p. We can choose a number a > 0 such that i?α = Z>(0, α) C ^(17).
Then for every r e (0, a] we put # r = φ~ι(Br) and AT = Ka.

Now let L be any summable curve contained in K, with endpoint p.
Let q be the startpoint of L and let x: [α, b] —> Λ be a parametrization
of L. Let ||L|| be the euclidean length of φ°L.

We suppose at first that p e X and there exists a stratum Y such
thatX<Y andL-{/?}c 7.

Then we can cover L - {/?} with coordinate neighbourhoods Y# as
in the Definition 2. If {Vj} is the corresponding refinement, then there
exist curves L, such that L/ c V\ and L/ n L/+i is a point, for every /.
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If we put at = |L, |, βt = \\Li\\, An = Σ > , , Bn = Σβi we get (see
[4])

hence:

(1) 0<

The above (1) also holds in the general case. It is enough to give
the proof for the case L = L\ U L2, L\ n Li = {<?}, L2 -
L\ -{p} cZ and X < Z < Y. It follows from (1) that

. \L2\ . Ά, A . \ L X \

11^211 l l ^ i II
hence

_|LJ_ J L 1 M L 2 L
IIJ-II IIJΊ II+ 11̂ 11

All together, if

> mm(mzκ,

M = max MXK and m = min niχκ
XΓ\Kφ0 ' XV\Kφ<2 '

one has for any summable curve L contained in K

(2) o<m<H<M

For every r e (0, a], if

mr = min niχκ a n d Mr = max

one has m = ma<mr and M = Ma> Mr,so that for every summable
curve L c Kr with JC(Λ) = ^, x(Z?) = /?

(3) 0 < m\\φ(q)\\ < mr\\φ(q)\\ < \L\ < Mr\\L\\ < M\\L\\

where | |p(#)|| is the euclidean norm of φ(q).
The theorem follows from (3) with a standard argument (see [2] or

[4]).
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REMARKS. 1. The long spiral of R2 and more generally any eu-
clidean curve with infinite length, equipped with the geodesic distance,
does not satisfy Definition 2(ii).

2. In general dA does not induce o n l e y the metric gχ\ never-
theless the immersion X -» A is a local isometry if X is maximal. In
particular the geodesies of X (with respect to gχ) are the traces on X
of those of A.

2. Compatibility. In the present section we shall consider only strat-
ifications A with the following properties:

A is a topological manifold, the topological structure is compatible
with the riemannian metrics gx, X €. &.

By Theorem 1 such a stratification is a metric space (A, dA);we are
looking for condition which make this metric space a G-space. Finite
compactness is the first axiom of G-spaces. So we are led to consider
only stratifications compact in the sense of [13]I.D: each stratum X is
diίfeomorphic with the interior of a manifold with boundary Vx (see
[13], [15] or [16]), which admits a complete riemannian metric, by the
Hopf-Rinow theorem. It is easily seen that the resulting metrics on
the strata satisfy the conditions of Definition 2.

The other axioms need some compatibility conditions among the
metrics gx.

The first requirement is that

(4) λ(L) = \L\ for each summable curve L.

If (4) holds, then

dA{x, y) = inf |£JCJ>I — infλ{Lx y) for every x,yeA

so that dA is intrinsic (see [7]). It follows that (AfdA) is convex (see
[7] (1.5), also [6] (5.18)).

The second condition of compatibility is

for every p e A there exists a neighbourhood U of p
such that if {xn}, {yn} are sequences in U which con-

(5) verge respectively to some x, y e U, then the segements
T(xn, yn) converge to the segment T(x,y) in the Haus-
dorff metric (see [3] or [5]).

If (5) holds, it is sufficient to prove the axiom of local prolongability
in the following situation:

x, y belong to an open convex subset U c A, x e A*, y
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For each z e U, let tz be the first point of T{x,z) Γ\ΣA

T = {t e UΓ\ΣA\3z e A such that (xtz)}. We have to show that

We shall divide the proof in two steps.
1st step: T is closed in U Π Σ^.
Let {tn} be a sequence of points of T which converges to t* e

U n ΣA. For each n e N let be zn such that (xtnzn); because of the
finite compactness of A9 we can assume that z* = lim zn G U. Then
by (5):

T(tn, zn) converges to T(t*, z*) and T(x, zn) to T(x, z*)9 so that it
follows from T(tn,zn) c Γ(JC,ZΛ) that T{t*,z*) c Γ(JC,Z*). Hence
(xί*z*) holds and ί* e Γ as required.

2nd step. T is dense in U Π Σ^.
Otherwise there exists an open set V c UπΣ A such that no segment

with endpoint in V has a prolongation. Let α e F b e any point and
let {an} {bn} be sequences in different components of U - ΣA both
converging to a. By (5) the sequence {T(an, bn)} converges to [a],
so that there exists a sequence {vn}, with vn e T(an,bn) Γ)ΣA a n c *
lim vn = v. Then vneV for great «, a contradiction.

The question of finding sufficient conditions for the uniqueness of
the prolongation is still open, even for manifolds with boundary (see
[1]). We just observe that the following

(4') λ(L) = \L\ for every segment L

is necessary.
As a matter of fact, if L is a segment and λ{L) Φ \L\ then λ{L) < \L\.

It follows that there exist points p\, P2 € L and a curve Li with
endpoints P\,Pι such that \L\\ < \LX2\ (where Li2 is the restriction of
L). But L\2 is a segment, so the last inequality gives a contradiction.

A compact stratification A with compatibility properties (4) and
(5) and uniqueness of the prolongation is a G-space (as metric space

), see [6]).

REMARK. Let X, Y be strata of an abstract stratification A with
Y cΎ and dimX = dimA

Let gx be a riemannian metric on X, such that: for every vector
field v on Y, if v is a controlled extension of v, then for every y e 7,
taken a sequence {xn} in X converging to y, the sequence
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converges to a limit, which does not depend on the choice of {xn}.
By results of [5] it is possible to show that there exists a riemannian
metric gy on Y such that gγ(y){v, v)1/2 is equal to the limit above.
In other words a gx as above induces a riemannian metric gy for
every stratum Y c X. If the strata X c A with dimX = dim A are
equipped with a gx as above and for every Y c £) A the resulting gγ

is the same (i.e. does not depend on the choice of X such that Y c X),
the resulting collection {gz}ze^(A) satisfies (4) and (5).

DEFINITION 3. We shall call the collection {gz} of the previous
remark compatible and the abstract stratification riemannian.

PROPOSITION. Let A cRN be a Whitney stratification; equip every
stratum X with the induced riemannian metric. Then A is a rieman-
nian stratification.

COROLLARY 1. Every abstract stratification has a riemannian struc-
ture. (Use a realization, see [10] or [12].)

COROLLARY 2. (b)-regularity implies I-regularity.

Proof. The geodesic distance is dA and induces the subspace topol-
ogy (see [14]).

Proof of the Proposition. It is sufficient to show that A is connected
by arcs of finite length. To this purpose it is sufficient to show that
for every X e S"(A) and every x e X it is possible to join x with a
point on the boundary of X by a curve of finite length. This follows
in turn from the following fact (whose proof is an exercise in standard
calculus): if y is a curve of R^ such that {γ - {γ{0)> y(l)}, y(0), γ(l)}
is a Whitney stratification, then γ has finite length.
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