FIXED POINTS FOR ORIENTATION PRESERVING HOMEOMORPHISMS OF THE PLANE WHICH INTERCHANGE TWO POINTS

Morton Brown

Abstract

Suppose h is an orientation preserving homeomorphism of the plane which interchanges two points p and q. If A is an arc from p to q, then h has a fixed point in one of the bounded complementary domains of $A \cup h(A)$.

1. Introduction. Brouwer's Lemma [2], one version of which is that each orientation preserving homeomorphism of the plane with a periodic point has a fixed point, has had much attention in the last few years. It has played a central role in some work of Fathi [7], Franks [8, 9], Pelikan and Slaminka [11], Slaminka [12] and the author [3, 4].

An interesting special case is when the periodic point has period two. Indeed, this case is at the heart of Fathi's argument in [7], and his proof of Brouwer's lemma requires a separate proof of this case. The purpose of this note is to show that this result follows from a particularly simple and elegant application of the notion of index of a homeomorphism along an arc. Furthermore, we get constructive information about the location of the fixed point. Our proof both simplifies and strengthens a result of Galliardo and Kottman [10].

In a final section we illustrate some techniques which can be used to locate fixed points more precisely.
2. The index. Let f, g be maps of the interval [01] into the plane such that $f(t)$ is distinct from $g(t)$ for each t in [01]. Then index (f, g) is defined to be the total winding number of the vector $g(t)-f(t)$ as t runs from 0 to 1 . For example, in Figure 1 this vector makes a total of 1 and $1 / 2$ turns in the clockwise (i.e., negative) direction, so the index is $-(1+1 / 2)$. The reader who wishes a more precise definition of index and its properties should consult [5] and [6].

If f and f^{\prime} are two maps of [01] into the plane such that $f(1)=$ $f^{\prime}(0)$ then we denote by $f * f^{\prime}$ the map of [01] into the plane which is $f(2 t)$ on $0 \leq t \leq 1 / 2$, and $f^{\prime}(2 t-1)$ on $1 / 2 \leq t \leq 1$. Clearly, if index (f, g) and index $\left(f^{\prime}, g^{\prime}\right)$ are defined then $\operatorname{index}\left(f * f^{\prime}, g * g^{\prime}\right)$ is well defined and equal to index $(f, g)+\operatorname{index}\left(f^{\prime}, g^{\prime}\right)$.

Figure 1
3. Lemma. Let h be an orientation preserving homeomorphism of the plane and let p, q be distinct points such that $h(p)=q$ and $h(q)=p$. Let f be a path from p to q whose image contains no fixed points of h. Then there exists an integer k such that

$$
\operatorname{index}(f, h f)=\operatorname{index}(h f, h h f)=1 / 2+k
$$

Proof. h interchanges p and q, so the vectors $h f(0)-f(0)=q-p$ and $h f(1)-f(1)=p-q$ point in opposite directions, i.e., index $(f, h f)=1 / 2+k$. Since h is orientation preserving, there is an isotopy $g_{s}, 0 \leq s \leq 1$, connecting the identity to h. Then index $\left(g_{s} f, g_{s} h f\right)$ varies continuously from $\operatorname{index}(f, h f)$ to index $(h f, h h f)$. On the other hand, for each s, the vectors $g_{s} h f(0)-$ $g_{s} f(0)=g_{s}(q)-g_{s}(p)$ and $g_{s} h f(1)-g_{s} f(1)=g_{s}(p)-g_{s}(q)$ point in opposite directions, so, by continuity, index $\left(g_{s} f, g_{s} h f\right)$ is constant as s varies from 0 to 1 . Hence

$$
\operatorname{index}\left(g_{1} f, g_{1} h f\right)=\operatorname{index}(h f, h h f)=1 / 2+k
$$

4. Theorem. Let h, p, q, f be as in the Lemma. Then,

$$
\operatorname{index}(f * h f, h f * h h f)
$$

is an odd integer, and h has a fixed point in a bounded complementary domain of the image of the loop $f * h f$.

Proof. By the additivity of the index, index $(f * h f, h f * h h f)=$ $\operatorname{index}(f, h f)+\operatorname{index}(h f, h h f)=2(1 / 2+k)$, which is an odd integer.

Since the image of $f * h f$ is locally connected, the set X consisting of the image of $f * h f$ and the union of its bounded complementary domains is a locally connected continuum ([13], p. 112-113). Since X does not separate the plane it is an absolute retract ([1]), and hence contractible. If h were fixed point free in each of the bounded complementary domains of the image of the loop $f * h f$, then the loop could be shrunk to a point within X, and index $(f * h f, h f * h h f)$ would be zero, a contradiction.
5. Examples. Let h, p, q, f be as in the Theorem.

Figure 2
In Figure 2 the curve f (more precisely the image of f) is a simple arc from p to q and intersects $h f$ only at the endpoints which h interchanges. Then index $(f * h f, h f * h h f)=1$, and there is a fixed point h inside the simple closed curve $f * h f$.

Figure 3
In Figure 3, f is again a simple arc and f intersects $h f$ in one other point v. The index ($f, h f$) is seen by inspection to be $-1 / 2$ or $+1 / 2$ depending on whether $h(u)=v$ or $h(w)=v$, respectively. Hence, by the Lemma, index $(f * h f, h f * h h f)=-1$ or +1 , respectively. Suppose $h(u)=v$. We wish to calculate the index of h "around" each of the domains, E, F; that is, the index of positively oriented simple closed curves lying in and surrounding the fixed point sets of h in E, F respectively. Then

$$
\begin{aligned}
\operatorname{index}(f * h f, h f * h h f)= & (\text { index of } h \text { around } F) \\
& -(\text { index of } h \text { around } E)=1 .
\end{aligned}
$$

(Note that $f * h f$ goes around E in the negative direction.) It is not difficult to construct a homeomorphism g of the plane which equals h when restricted to $K=$ image f, and such that g has index 1 around F, and 0 around E. I claim that this ensures that h has the same indicial values around E, F, respectively. The justification for the claim lies in the following Theorem.

Theorem. Let h, g be orientation preserving homeomorphisms of the plane and let K be an arc that K contains no fixed points of h, and $h=g$ on K. Let $X=K \cup h(k)=K \cup g(K)$. Then the maps

$$
\frac{x-h(x)}{\|x-h(x)\|} \text { and } \frac{x-g(x)}{\|x-g(x)\|}
$$

are homotopic maps of X into the unit circle.
Proof. By a variation of Alexanders Isotopy Theorem ([3], page 38) h is isotopic to g relative to K. Let p_{t} denote the isotopy ($p_{0}=h$, $p_{1}=g$, and for each $t, p_{t}=h$ on K). Since p_{t} has no fixed points on K it has no fixed points on $p(K)$, so the required homotopy is $\left(x-p_{t}(x)\right) /\left\|x-p_{t}(x)\right\|$.

A consequence of this result is that g and h have the same index around each complementary domain of $K \cup h(K)$.

Figure 4
In Figure 4, the calculation of the index ($f, h f$) depends again on the location of $f^{-1}(v)$. Let us suppose it is u, so that index $(f, h f)=$ $3 / 2$ and index $(f * h f, h f * h h f)=3$. Notice that $f * h f$ winds twice positively around F and once positively around E, so that
$($ index of h around $E)+2($ index of h around $F)=3$.

With a bit more work than the previous case one can construct a homeomorphism g which equals h on $K=$ image f and which has index 1 around each of E and F. Thus, by the Theorem above, the same is true for h, and h has a fixed point in each of the domains E and F.

References

[1] Beverly Brechner and Morton Brown, Mapping cylinder neighborhoods in the plane, Proc. Amer. Math. Soc., 84 (1982), 433-436.
[2] L. E. J. Brouwer, Beweiss des ebenen Translationssatzes, Math. Ann., 72 (1912), 37-54.
[3] Morton Brown, A new proof of Brouwer's lemma on translation arcs, Houston J. Math., 10 (1984), 35-41.
[4] , Homeomorphisms of two-dimensional manifolds, Houston J. Math., 11 (1985), 455-469.
[5] M. Brown and W. D. Neumann, Proof of the Poincare Birkhoff fixed point theorem, Michigan Math. J., 24 (1977), 21-31.
[6] A. Dold, Fixed point index and fixed point theorem for Euclidean neighborhood retracts, Topology, 4 (1965), 1-8.
[7] Albert Fathi, An orbit closing proof of Brouwer's lemma on translation arcs, L'Enseignement Mathematique, 33 (1987), 315-322.
[8] John Franks, Recurrence and fixed points of surface homeomorphisms, to appear, Ergodic Theory Dynamical Systems.
[9] __, A generalization of the Poincare-Birkhoff theorem, preprint.
[10] E. Galliardo and C. Kottman, Fixed points for orientation preserving homeomorphisms which interchange two points, Pacific J. Math., 59 (1975), 27-32.
[11] S. Pelikan and E. Slaminka, A bound for the fixed point index of area preserving homeomorphisms of two manifolds, Ergodic Theory and Dynamical Systems, 7 part 3 (1987), 463-479.
[12] E. Slaminka, A Brouwer translation theorem for free homeomorphisms, Trans. Amer. Math. Soc., 306, No. 1 (1988), 227-291.
[13] G. T. Whyburn, Analytic Topology, American Math. Soc. Colloquium Pub., 28 (1942).

Received June 6, 1988 and, in revised form July 29, 1988.
University of Michigan
Ann Arbor, MI 48109

