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UNIQUENESS FOR A NONLINEAR
ABSTRACT CAUCHY PROBLEM

ALAN V. LAIR

Let H be a complex Hilbert space, and let 4 be a linear, un-
bounded operator defined on a domain D in H. We show that the
Cauchy problem for differential equations and inequalities involving
the operator d"u/dt" — Au as the principal part have at most one
solution. No symmetry conditions are placed on the operator A4.

1. Introduction. Let H be a complex Hilbert space and let A be
a linear (in general, unbounded) operator defined on a domain D in
H . We consider differential inequalities in which the principal part is
given by

(1.1) Lu=d"u/dt" — Au

where n is a fixed positive integer and neither symmetry nor semi-
boundedness conditions are placed on the operator 4 although there
will be restrictions placed on the symmetric and antisymmetric parts
of A. Our purpose, in short, is to extend the uniqueness results of
Hile and Protter [S], where n =1, 2 in (1.1) and 4 dependson ¢, to
operators L in which # is arbitrary and A is independent of ¢. Fur-
thermore, we obtain the uniqueness results of [10] as a special case.
The method employed, developed originally in the study of elliptic
equations (see e.g., [12]) and later extended to parabolic equations
[8], is essentially the same as that used by Hile and Protter [S]. This
same weighted L, argument has been employed in other similar con-
texts where 4 has been a specific partial differential operator. (See

e.g., [6, 7, 8].)
Levine [10], generalizing previous results of Murray [11], proved
that the only solution of Lu = 0 with #(0) = #/(0) =-.- = u(*~D(0) =

0 1is the zero function, provided the operator A is either symmet-
ric or antisymmetric. The only other results for the operator L in
which » > 2 and A is unbounded seem to be those of Fattorini
[2, 3] and Fattorini and Radnitz [4] who study the equation Lu =0
under complete and incomplete Cauchy data. As Levine [10] points
out, equations involving L in which A4 is bounded, or n < 2 and
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A is a semibounded (especially from above) symmetric operator have
been and continue to be studied extensively. As for uniqueness results
when n < 2, the most general are those of Hile and Protter [5] who
extended results of Agmon and Nirenberg [1] and some of those of
Levine (see e.g., [9]).

In this article we consider differential inequalities of the form
(c20)

(1.2) ILu@)|?<c [w(l) +/0 w(s) ds]

where
n—

o)=Y Hum (r)H2 (uU) ) =d/u(t)/dt), w9 () = u (z))

1
Jj=0

and
(1.3) ILu() < c [u(t) + [ us ds]
where

1 (0) = (M), e+ 3 Jw o
Jj=0

and the operator M is the symmetric part of 4. For n = 2 con-
ditions (1.2) and (1.3) correspond precisely to those of [5]. Indeed,
the two principal results of this article (Theorems 1 and 2) are those
uniqueness results of [5], when n = 2, restated for arbitrary ». How-
ever, unlike [5], we require the operator 4 to be independent of ¢.
Although our results are valid for arbitrary », stronger results are
known for n = 1. (See Theorem 1 of [S5].) It is unknown whether
such a strong result can be extended to n > 1.

2. Main results. Let H be a complex Hilbert space with inner
product ( , ) and norm || ||. Let C;,([0, T]; D) be the set of u €
cm™ ([0, T]; H)n C™((0, T]; H) such that u\™ € L,((0, T); H)
and uU)(t) € D forall t € (0,T] and forall j =0,1,..., (m)
where (m) = [(m—1)/2] = greatest integer in (m—1)/2. We note that
if v, we C(0, T]; HnCY(0, T}; H) with v', w' € L;((0, T))
and (w(0), v(0)) = (w(T), v(T)) = 0, we have the integration by
parts formula

T T
2.1) /O(w(t),v’(t)) dz=—/0 (W' (1) , v (1)) d.
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We now give the requirements on the operator 4 which will be needed
later.

Condition (*). Let A be a linear, in general unbounded, opera-
tor with domain D contained in H satisfying the following: (D" =
dn/di")

(I) A= M+N where M is a symmetric operator (i.e., (Mx, y) =
(x, My) for x,y € D) and N is an antisymmetric operator (i.e.,
(Nx, )
= —(x, Ny) for x,yeD);

(IT) There exist nonnegative constants ¢y and c¢; such that

Re (Mw, Nw) > —co |(Mw , w)| — ¢ [|w|?, weD;

(III) For each u € C;([0, T]; D), the functions Mu and Nu are
in C("((0, T]; H); and for each ¢t € (0, T] and 0 < j < (n), we
have D/Mu(t) = M(D/u(t)), D'Nu(t) = N(D’u(t)). Furthermore,
the functions D Mu and D Nu are bounded on (0, T];

(IV) For every v,w € C;5([0, T]; D) for which the functions
Mv, Mw, Nv are bounded and continuous on (0, 7], the functions
Re(v'(t), Nv(t)) and Re[(w'(t), Mv(t))— (v'(t), Mw(t))] are differ-
entiable on (0, 7] and satisfy

(a) d/dtRe(v'(t), Nv(t)) = Re(v"(t), Nu(t)),

(b)

d/dtRe[(w'(t), Mv(t)) — (v'(t), Mw(1))]
= Re(w"(t), Mv(t)) — Re(v"(t), Mw(t))
forall t € (0, T].

In condition (*), we note that (I) and (II) come from [S] while
(III), for n = 1, 2, agrees with the results of [5] since in those cases
(n) = 0. In addition, (IV) allows for integration by parts in a manner
comparable to inequalities (A) and (B) of [5, p. 70].

We now state our two main results. Theorem 1 is a generalization
of results from both [5] and [10]. In particular, for n = 2 it coincides
with Theorem 3 of [5] (when their operator A4 is independent of ¢);
and for c=cy=¢; =0 (¢, cop and ¢; come from (1.2) and (II)) it
gives the uniqueness result of [10]. (See Theorem 3.1 of [10].)

THEOREM 1. Suppose u € C;([0, T]; D) satisfies (1.2). In addition,
suppose the operator A satisfies condition (*) with ¢y = 0. If u(0) =
W)= =u""10)=0, then u=0 on [0, T].

In addition to Theorem 1, we shall also show that solutions of in-
equality (1.3) having homogeneous Cauchy data must be identically



108 A. V. LAIR

zero provided, that in addition to the operators M and N satisfying
(I1)-(IV), the symmetric part M satisfies an additional constraint. In
particular, we require the operator M to satisfy one of the following
semiboundedness conditions: There exists a nonnegative constant ¢,
such that

(2.2) (Mv,v)<c o>, wveD,
or
(2.3) (Mv,v)> - |v||*, wveD.

We now have the following theorem which, when n = 2, coincides
with Theorem 4 of [5] (when their operator A4 is independent of ¢).
Thus the uniqueness results of Hile and Protter [5] for » = 2 gener-
alize nicely to arbitrary n provided the linear operator A4 is indepen-
dent
of ¢t.

THEOREM 2. Suppose u € C;([0, T1; D) and satisfies (1.3). In
addition, suppose the operator A satisfies condition (*) and either (2.2)
or (2.3). If u(0) =/(0) = --- =u""1(0) =0, then u=0 on [0, T].

As mentioned earlier, our method of proof is quite similar to that
of [5] but must be modified in important ways. Of particular note
is the unwieldiness of the weight functions used in [5] in the case
of arbitrary »n. For this reason, we have instead opted for a weight
function used previously (see e.g., [7]) which is simply a variation
on the one introduced by Lees and Protter [8] for backward-in-time
parabolic inequalities.

Prior to proving the above stated theorems, we need to establish a
series of important propositions and lemmas. Indeed, the proof of
the theorems themselves are rather anticlimactic once the preliminary
lemmas have been established.

DEFINITION. Let A(¢) = t+#n where n > 1 and define the operators
B and B* on C"((0, T]; H) as follows:
Bu(t)=27%(t) D" [i () u(r)] ,
B'u(t) = (-1)" 2 () D" [1* (t)u ()]

where k is an arbitrary positive integer. (Thus B* is the formal
adjoint of B.) Furthermore, we define the operators B, and B_ as
follows:

B, =(B+B*)/2, B_=(B-B*)/2.
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Thus B, and B_ are the symmetric and antisymmetric parts, respec-
tively, of the operator B. In the sequel (as in this definition) the
dependence of all these operators on the positive integer k is sup-
pressed for ease of notation.

ProPOSITION 1. Suppose v, w € C([0, T]; D) n C'((0, T]; H)
such that v', w' € L((0,T); H) and the functions Mv, Mw,
Nv are bounded and continuous on (0, T). Then the functions
Re(Mwv(t), w(t)) and Re(Nv(t), w(t)) are differentiable on (0, T
and
(2.4) d/dtRe(Mv (1), w(t))

=Re (Mv (1), w' (¢)) + Re (Mw (¢) , V' (1)) ,
te(0,7T];
and
(2.5) d/dtRe(Nv (t) , w(t))
=Re (Nv (1), w'(t)) —Re (Nw (1) , v' (1)) ,
te (0, T7.
Furthermore, if v(0) =v(T)=0 or w(0) =w(T) =0, then

T T
(2.6) /0 Re (M (1), w' (2)) dt = —/0 Re (Mw (1), v' (1)) dt,

T T
(2.7) /o Re (Nv (1), w' (1)) dt =/0 Re (Nw (¢) , v' (1)) dt.

Proof. We prove (2.4) and (2.6) and omit the proof of (2.5) and
(2.7) since their proofs are similar. We let r(¢f) = Re(Mwv(t), w(t))
and show that r is differentiable on (0, 7']. Notice that for 4 small
(if t =T, we take h < 0)

[r(t+h)—r(t)]/h=Re(M[v(t+h)—v(t)]/h, w(t+h))
+Re(Mv(t), [w(t+h)—w(t)]/h)
=Re([v(t+h)—v(t)]/h, Mw (t+ h))
+Re(Mv (1), [w(t+h)—w(t)]/h)
=Re(Mw (t+h),[v(t+h)—v(t)]/h)
+Re(Mv(t),[w(t+h)—w()]/h).
Letting 2 — 0, we obtain (2.4) since v and w are (strongly) differ-
entiable and the function Mw is continuous on (0, 7]. To prove
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(2.6), note that the left side of (2.4) is continuous on (0, 7] since
the right side is also continuous on (0, 7'] by virtue of the continuity
of v', w', Mv and Mw on (0, T]. Thus, for ¢ > 0, we integrate
(2.4) to get

/Td/dtRe(Mv (1), w(2) dt
? T T
=/ Re (Mv (¢) , w' (7)) dt+/ Re (Mw (2) , v’ (2)) dt

which yields
(2.8) Re (Mw (T) , w (T)) — Re (Mv (&) , w (&)
= /TRe (Mo (1), w' (1)) a’t+/TRe (Mw (1), v' (1)) dt.

Since Mv is bounded in (0, 7] and w is continuous on [0, 7'] with
w(0) = w(T) =0 (or v(0) = v(T) = 0), the left side (2.8) goes to
zeroas ¢ | 0. Also since Mv and Mw are bounded on (0, 7'] while
v', w e L{((0,T); H), we know the two terms on the right side of
(2.4) are integrable on (0, 7). Thus, letting ¢ | O in (2.8) gives

T T
0= Re/ (Mwv (1) , w' (1)) dt+Re/ (Mw (t) , V' (1)) dt.
0 0
This completes the proof.

PROPOSITION 2. Suppose z € C;([0, T]; D) and zY)(0) = zU)(T)
=0 for 0<j<n-1. Ifthe operator A satisfies condition (*) except
possibly (II), then
(2.9)

T T
Re/ (Byz (1) , Nz (1)) dz=Re/ (B_z (1), Mz (1)) dt = 0.
0 0

Proof. We prove Re fOT(B+z(t), Nz(t))dt = 0 and omit the proof
of the rest of (2.9) because of its similarity to this one. Note firstly that
the function (B, z(t), Nz(t)) is integrable on (0, T) since |(Bz(t),
Nz(@®)| £ |B+z®||INz(?)|| and B4 z(¢) is a linear combination (coef-
ficients being C* functions of ¢) of z, z’, ..., z(") all of which are
integrable (by definition of C; ([0, T]; D)) on (0, T) while ||Nz(¢)||
is bounded. Furthermore, using (III) and applying the integration by
parts formula (2.1) (n) times, we obtain (v = n—(n) and all integrals
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are taken over [0, T])
(2.10) Re / (Bz, Nz)dt =Re / A~k (DMAkz), Nz)dt
= Re / (D"[A*z], N[A~kz)) dt
= (=1)™ Re / (D*[A*z], D™ N[A~* 2]) di
If n is odd, then v = (n) + 1. Using this and (2.7) we get

2.11) (=)™ Re / (D"[/Ikz], D<">N{/1-’<z]) dt

= (-1 Re/ ([D<">[,1kz]]', (mhp=*k z] ) dt
= (—1)<">Re/([ DMA~ z]] ">[zkz} ) dt.

In the last integral in (2.11) we now integrate by parts ((n) times) to
obtain

(2.12) (=) Re / ([D<">[/1~kz]]',N[D<">{/1’<z]]> dt
= Re / (D+t [DWa*z]] , N1Ak2)) ar
= Re//lk (D"[/I‘kz], Nz) dt = —Re/(B*z, Nz)dt

where the last equality is valid for » odd. Combining (2.10), (2.11)
and (2.12), we get

Re/(Bz, Nz) di = —Re/(B*z, Nz) di

from which (2.9) follows for » odd. If n is even, then v = (n) + 2,
and we use analysis similar to that of (2.10) and (2.11) to get

(2.13) Re/ (Bz, Nz) dt

= (=)™ Re / ([D<">[/1kz]] "N [D<">[,1-’<z]]) dt

To handle (2.13), we note that by applying (IV), part (a), to v + w,
we obtain
d/dtRe [(w' (1), Nv (1)) + (v' (1), Nw (2))]
=Re (w"(¢), Nv (1)) + Re (v" (1) , Nw (¢)).
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Furthermore, if w’(0) = w'(T) = v'(0) = v'(T) = 0, we may integrate
to get

Re/ (w" (t) , Nv () dt = —Re/ (v" (2) , Nw (1)) dt.
Application of this to the right side of (2.13) using
w(t) = DR (H)z(t)] and v(f) = D[ATR(0)z(1)]
yields

Re/(Bz, Nz)dt
— —(=1)" Re / ([D<">[z—kz]]" N [D<">[,1kz]]> dr.
Now integrate the last expression by parts (n) times to get
Re / (Bz, Nz) dt = — Re / P (D” [D<”>[/1‘kz]] ,Nz) dt
— _Re / ¥ (D”[i‘kz], Nz) dt
= —-Re/(B*z, Nz)dt
and hence (2.9) follows for n even. This completes the proof.

LEMMA 1. Let j, n be positive integers such that 1 < j < n. Then

(2.14) i(—l)ii(i‘1)<7) <2jn—i>

i=0

— -2+ (1)

e Sevtte-n(, ) () =i ()

i=1

where () denotes the binomial coefficient. ((!) is understood to be

zero if a <0 or a > n. Thus the upper (lower) limit on the summa-
tions may be larger (smaller) without altering the result of the lemma.)

Proof. To prove (2.14), we let a, = (—1)"i(i—1)("}), b; = (") and
notice that the left side of (2.14) is precisely Zfi 0 aib,—; which, by
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the Cauchy product formula, is the coefficient on x2 in the product
o aix > bix']. It is easy to show

n n
Y ax'=n(n-1)x*(1-x)""? and > bix'=(1+x)".

i=1 i=1
Hence

San(?) (47

i=0
= coefficient of x%/ in the expression
nin—=1x2(1=x)""2(1+x)".

Since x2(1-x)""2(14x)" = (x242x3+x*)(1=x2)"2, an elementary
calculation produces (2.13).

To prove (2.15), we make the change of variable (i’ = j — i) to get
(after replacing i’ with i)

(2.16) SEZé(—l)”l 2i—1) <j+?— 1) (J.’il.)

j-1
— 9 (_1\/*! 1N (79 n n
=2(-1) g( 1)' (2j - 2i ”(2;'-1'-1)(1‘)'

Symmetry of the binomial coefficients involved allows us to get

a-l n n
— (_1\J+! NN
S =(-1) ,Z_;( 1)! (25 - 2i 1)(21._1._1)(1.).

Letting a; = (—1)'d;, b; =id;, ¢;=(-1)'id; and d; = (}), we note
that

(2.17) S = (1)1 (S - S,)
where
2j-1 .
Sy =Y aibyj_i_y = coefficient of x*~! in
i=0
n ) n ]
the product {Z a,-x’} {Z bix’}
i=0 i=0
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and
2j-1
Sy = Z C,’dzj_.,‘_l = coefficient of x*~! in
i=0
n n
the product [Z c,-x’} [Z dix’] )
i=0 i=0
Since
n n
ax'=(1-x)", Y bx'=nx(1+x)"",
i=0 i=0
n n
cixt=—nx(1-x)""", Zd;xi =(1+x)",
i=0 i=0
we get
S, — S, = coefficient of x>~! in the expression 2nx(1 — x%)"~ L.

However 2nx(1 — x?)"~! = —d/dx[(1 — x*)"] and hence
Sy =Sy = (=27) [coefrofxzf in (1 —xz)”] = —2j(=1)/ (;’) .

Combining this with (2.16) and (2.17) yields (2.15) and the proof is
complete.

LEMMA 2. Suppose v € C™P((0, T1; H) n C™+P~Y([0, T]; H),
v(m*P) ¢ Li((0, T); H) and v(0) = vU(T) =0 for 0 < j <
m+p—1. Let s be a positive integer. Then there exist real numbers
K;(p) depending only on p and j such that ([ ] = greatest integer
function)

(2.18) Re / = (t) (v(”’) (t) , v+ (z)) dt
0
p/2]
=Y Ki®)(s+p-2j -1/ (s~ 1)
Jj=0

x / " e (1) ”v<m+f> (t)]]2 dt
0 (]

in which the constants K;(p) satisfy the following conditions:
(i) ,
1 ifp=0,

K“”z{lﬂ ifp>1,
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(i) K;(2j)= (-1 ifj>1,
(ili) K;(2j+1)=(-1)/(2j+1)/2if j >0,
(iv) K() 0forp<2j—-1ifj=1,

V) Kilp)=K;(p-1)-K;.1(p-2) f 1<j<[(p-1)/2].
(Note: When using this lemma later in this article, only (1)-(iii) will
be needed. However, it is convenient to state and use (iv) and (V) in
the proofs of (1)-(iii). Also note that (iv) is a redundancy since it is a
statement that the right side of (2.18), if written as a sum with upper
limit greater than [p/2], has zero coefficients for j greater than [p/2].)

Proof (by induction on p). For p = 0, identity (2.18) is trivially true
with Ky(0) = 1 and likewise for p = 1 it is true with Ky(1) = 1/2.
Thus suppose the conclusion of the lemma is true for 0,1,...,p
and forall s > 1 and m > 0. For p + 1 the left side of (2.18) may
be integrated by parts to get (all integrals are taken over [0, T])

Re//l‘s(v“"), p(MmP) dy

=Re/sl’s'l(v(”’), v(’”““p))dt—Re/A‘s(v(”’“), v dt.

We now apply the induction hypothesis to both integrals on the right
side, letting F(s, p, j) =K;(p)(s+p—2j - 1)!/(s = 1)!, to get

(2.19) Re/l‘s(fu(’”), p(m+P+y gy

[p/2]
= Y sF(s+1,p, j)/A’S‘P+2j“||v(”’+/)||2dt
j=0
[(p—1)/2]
Z F(S p—l ])/l— ——p+2]+1”v(m+l+1)”2dt
j=0
[p/2]
= S sF(s+1,p, ) / SRRy 2 g
j=0
[(p+1)/2]
~ Y Fs,p-1,j-1) /z- s=p2)= 1)y (m)|2 gy,
j=1
Note that we have changed the summation index in the last expression.
Observe that the right side of (2.19) is exactly

[(p+1)/2] . ‘
S F(s,p+1,)) f APy ) 2 g
Jj=0
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provided
F(s,p+1,])
sF(s+1,p,0) if j=0,
SF(S+l,p,j)—F(S,p—1,j—l) lfISJS[I’/zL
= —F(s,p-1,[(p-1)/2] ifj=[p+1)/2]
>[p/2],
(0 ifj>[p+1)/2] 2 1.

Hence F(s,p+1,))=K;(p+1)(s+p—2j)!/(s = 1)! where

(2.20) K;(p+1)

1/2 if j=0,p=0,
K;(p) ifj=0,p>1,
=1 Kj(p)-K;.1(p-1) if1<;<[p/2],
-Kj_ (p-1) ifj=[p+1)/21>1[p/2],
[ 0 ifj>[p+1)/2]1>1.

The proofs of (i), (iv) and (v) now follow directly from (2.20). Like-
wise (ii), using (iv) and (v), and (iii), using (v) and (ii), are easily done
using induction. This completes the proof.

LEMMA 3. Suppose v € C™((0, T1; H)nC™ ([0, T]; H), v\™ €
Ly((0, T); H) and v)(0) = vU)(T) =0 for 0< j<m-—1. Let
z(t) = A (t)v(t) where A(t) = t+mn, n > 1. Then there exist con-
stants p;(k), having polynomial dependence on k with the polynomial
coefficients dependent only on j and m, such that

2.21) k /O e (t) ||z<m> (z)||2 dt

Furthermore, the degree of p;(k) (in k) is no larger than 2j + 1.
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Proof. It is easy to see that (all integrals are taken over [0, T7])

k / A2 22 de = k / 172k de

=k/1“2

>k / Amk=2 )2 gy

m
£ 2kReY (’;’l ) /l-k—z(l—k)(j)(v(m) im0y 4y,
j=1
Denoting the last summation by W, we now do the differentiation of
2~k indicated in the integrand and apply (2.18) to get

2
dt

m
Fkplm 43 ('J" ) (A~kY D y(m=1)
=1

(2.22) W= 2kRei (’7) (-1 (—]((%%—I),l—)'

j=1
X / A2 (glm) g (m=D)y dt

m 1J/2]

_ 2kZ Z D(, k. a)/A—Zk—2j+2a—2“fu(m—j+a)“2 di

j=1 a=0
where

py. k)= (") 1y LT k)

x (2k +2j — 20+ 1)1/ (2k + j + 1)1,

Letting o = j — s and changing the summation in (2.22) so that we
sum over s and j instead of a and j, we get

m 2s

W=2k>>D(,k,j- s)/A‘zk‘23‘2||v(’”‘s)||2dt.
s=1 j=s
Thus (2.21) holds with ps(k) = 2k Zfis D(j, k, j—s). Itisalso clear

that p;(k) is a polynomial in the integer k and in fact
D(j,k,j"‘S)
m\, e (nkK+i-DICk+2j-2(-5)+1)!
( ‘)( U K= U) =y @k +j+ 1)

= (’;’) (=1 Kj—s () (K7 + Ld.t)(k¥ 7 + Ld.t.) oc £ + Ld.t.
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Hence p;(k) has degree not exceeding 2s + 1. This completes the
proof.

LEMMA 4. Suppose v € C:([0, T]; D), v¥)(0) = vU)(T) = 0 for
0 < j £ n—1 and the operator A satisfies condition (*). Then,
for A(t) = t+mn, n > 1, there exists a positive number e(n,n, T),
independent of k, such that for all k sufficiently large

T
(2.23) 2 / A2k (1) | Lo (1) dt
0
n T
>0(n,n, 1)K [ 7% ) Jolrd o) ae
j=1 0

+ 4Re / "% (0 (M (1) L No (1) dr.
0

Proof. Let z(t) = A~k (¢t)v(¢) where A(t) =t+n, n > 1, and note
Lv € Ly((0,T); H) by (II) and the definition of C;([0, T]; D).
Then elementary calculations along with (2.9) yields (all integrals are
taken over the interval [0, T7])

2/1-% ILo|? dt = 2/ 1Bz — Az|? dt

= /H(B.,_z —Mz)+ (B_z - Nz)|? dt

> 4Re/((B+z —Mz),(B-z—Nz))dt

= 4Re/(B+z, B_z) dt+4Re/(Mz, Nz) dt

= / [||Bz||2 - [|B*z||2] dt+4Re//1“2k (1) (M (t) , Nv (1)) dt.
Thus it suffices to show, for k sufficiently large,

(2.24) /[||Bz||2—||B*z||2] dtzZk2f-1/,1-2f||z<"-f>||2dt
j=1

and the existence of a positive number ¢(n, n, T), independent of
k , such that

hn
(2.25) Y k¥ / A7) Z=D)|2 dt

J=1

n
>e(n,n, T)Y k¥~ / A=2K=2 =D 2 gy,

J=1
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To prove (2.24), notice that straightforward calculation produces

2
0= / [||Bz||2—HB*z||2] dt=/ g(”) G k'J) A=izn=D|l dt
2
JEC) S |

Doing the indicated multiplication in the integrands and noticing that
the square of the j = 0 term adds out, we get

0 00 ] frneerea
) (e {frooose
”JZ‘;%( ) O e Ha)

xRe/A i=i(zn=D | Zzn=0)) dt

SEE () () St

X Re/i‘i‘j(z(”‘i), z(n=0)dt.

Since we are interested in what happens for large k, we use the iden-
tities

k'/(k—i'=ki={i(i-1)/2}k'""!+ Ld.t. (lower degree terms in k)
and

k+i-D)/(k=1)=k+{i(i-1)/2}k' " + Ld.t.
n (2.26). Letting

a;j = (’l’) (?){1-(-1)’"“} and

by = {1+ 0} (1) (%)@= n+ G- 012

1
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we get

n 2
S Y G- DkY T+ Ldt
(2.27) 0 2}2(}) {](] 1) k% +1dt}

x / AU 202 d

n j—1
+ 222(61”/("” — b,k 4+ Ld.t)
j=11=0
X Re//l‘i_j(z("_i>, Z0ydt
=01 +0Q;

Now apply (2.18) to @, and let
Ci,j,a)=[2j-2a-D/(i+j-DINK(j - 1)

toget (J=[(J—1)/2])

n j—1

J
Qr=2) 3> (ajk™ = bk~ + 1d.t.)

j=1 i=0 a=0
< C(i, ], ) / jm2 20| fn=ja) |2 g

Interchanging the second and third summations yields

n J—1
(228)  Qy=2> > (ayk™ — by k'™ + 1d.t)

j=1i=0
xC(i, ], 0) / 22 2D i

n /2] j=2a

+23 3 (@ k™ = bkt + 1dit)

j=2 a=1 i=0
X C(i, ], a) / A2 =) 2 gy
= Q3+ Q4.

Making the summation variable change « = j—s in (2.28) and chang-
ing the summations over j and « into summations over s and j
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gives (N = min{n, 2s})

n N 2s—j

(229)  Q4=23 > 3 (aik™ - bkt 4 1dut)

s=1 j=s+1 i=0

« C (i, j,j—s)/l‘zsnz("‘s)llzdt.

Using (2.29) in (2.28) and in turn using (2.28) in (2.27), we get
n
@30) [ 1Bz - 1B 2IP] dr = 3 Gt [ Az ar
s=1

where

2
Cs (k) = —2(;’) {sts= k> + 1dt}
s—1 . .
+2 3 (aiki* = bk 4+ 1dL)C (i, 5, 0)
i=0
N 2s—j o N
+2 ) Y (ak™ = b+ kT L) C (G, G, - s).

j=s+1 i=0

Rearranging these terms we get

N
(2.31) Colk)=| 3 arej ;| k¥ + C(s)k® 1+ Ldt.
Jj=s+1
where
C(s)= _2<s) s(s—1)+2a,_; C(s—1,s,0)
N
+2 Z ay—j-1,;C2s—j—1,j,j—5)
Jj=s+1
N
-2 Z bZS—j,jC(zs_ja j9j_s)'
j=s+1
Since

(2.32) EN: ayj ;= ‘i <2S”_j) (;’) [1- (-1} =0,

Jj=s+1 J=s+1
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it is necessary for us to evaluate C (s). Using the definitions of g;;,
b;j and C(i, j, a) and the properties of K;(p) given in Lemma 2, it
is easy to see that

C(s)= —2s(s—1) (;’)2

+2(25 - l)fj(—1>"“(2f“"s“) (7) (2s—nf— 1>

Jj=s
N
_ _1\J-s n n
2;’;1( g <f)(2s—f>
x{(2s-j)(2s-j-D+j(-1}
=R+ Ry + R;.

The expressions R; and Rz can be combined to get (remembering
(1) =0if j>n)

Ri+Ry= ~2§:(_1)j_sj(j_ v (7) (an_j)

Jj=0

and hence (2.14) produces R, + R3 = 2s(n — 25 + 1)(}) . Changing
the summation variable in R, (j'=j—s+1) yields

R2=2(2s—1)§(-1)"”(2f“” (sfj) (s+7—1)

and thus (2.15) gives R, = 2s(2s — 1)(§) . Hence

6(5)225(”—25+1)(’S1) +2s(23~1)<'sl)

=zns(’;>22 forl1<s<n

which, along with (2.30), (2.31), and (2.32), yields (2.24) for k suffi-
ciently large.

To prove (2.25), we use induction. If n =1, then ¢(1,7,7) =1
and equality holds in (2.25). Thus suppose (2.25) holds for n = m.
For n = m + 1, the left side of inequality (2.25) may be rewritten
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using a change in the summation index as

m+1

Zk2j—1/A—Zj{|z(m+l—j)||2dt
=1
m+1

—k/,l 2|z ||2dz+2k21 1//1 2 2 10|12 dy

~k [r 2|;z<m>||2dt+Zk2f+1/,1 2=2| 7m=D)|2 d
j=1
=Y+ Y,

Using the induction hypothesis along with the estimates A=2 >
(T +n)~2 and A% > 5?2, we get

(2.33) Y22 kX (T+n)2e(m) Z k-1 //1—2k—2j“,u(m—j)“2 dt
j=1
> 0P (T ) e (m) 3K [ 373222
j=1

Choose 0 > 0 (independent of k) so that, for k£ sufficiently large
and 1 <j<m,

(2.34) n? (T +n)"2e(m)k¥*! +op; (k) > 5k¥+!

where p;(k) comes from Lemma 3. Now using (2.34) in (2.33) and
applying (2.21) to Y;, we get

SYi+ Y, > ok / A2 2 g
+Z{ (T +n)"2e (m)k¥+! + 6p; (k)}
x /1‘2"‘2/‘2“1) m-—j)HZdt

252/{2-”'1/2._21( 2j— 2||U m—j) ||2d[

j=0
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Changing the last expression so that the summation limits are 1 and
m + 1 produces (2.25) for n = m + 1. This completes the proof.

Proof of Theorem 1. Choose t; € (0, T) and we shall show that
u =0 on [0, t;] which proves the theorem. Thus choose 0 < #; <
t, < t3 < T and let { be a real-valued infinitely differentiable function
such that {(¢) = 1 for ¢t € [0, 1], {(¢) = 0 for ¢t € [t3, T] and
0<{(t) <1 for t €tr, t3]. Let v(t) = {(¢)u(t) and notice that v
satisfies the hypothesis of Lemma 4. It is easy to see that

t3 t3
2+ n)—zk/ Lo di > 2/ A2 Lol di
t,

L

T oL,
- 2/ 22 || Lo|)? di - 2/ "1 Lu|? .
0 0
Application of (2.23) and (1.2) yields, for k£ sufficiently large,

(2.35)  2(,+n)" % /ts | Lv|? dt

L
n

> om0, T) ok [ d
j=1

T
+ 4Re/ A7k (Mwv, Nv) dt
0

—2c/0t2 A2k [w(l)—i—/otw(s) ds] dt.

Since T +#n > 1 and thus (T +n)~% > (T + )", the first term on
the right side of (2.35) admits the estimate

n T
Zij—l/ l—2k—2j”U(n—j)”2 dt
: 0
J=1

T n i
> k(T + n)-Z”/O AN o2 d.
j=1
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Using this and (II) (with ¢y = 0) in (2.35) gives, for k sufficiently
large,

t3
(2.36) 2(tr+n) / ILo|? di
t2
> {e(n, n, T)k (T +m) 7" - 4}
T n
X / A% D)2 de
0 o

t t

—-2c/ A% [w(t)+/ w (s) ds] dt.
0 0

t2
> {e(n.n, T)k(T+11)"2”—4c1}/ i~ (1) dr
0

t, t

—20/ A2k [w(t)+/ o (5) ds] dt.
0 0

Since
I t t, rt
/ A‘Zk(t)/ o (s) dsdtS/ /A"Zk(s)w(s) dsdt
0 0 0 0

tZ
<t / A7 (s) o (s) ds,
0

for k sufficiently large, inequality (2.36) can be simplified to get (S =
e(n, n, k(T +n)~2" —4c; — 2¢ — 2cty)

13 tz

(2.37)  2(t+n)"* /t |Lv|* dt > B /0 Ao (1) dt
tl

> B / %0 () dt.
0

Since A72k(¢) > (¢, + n)~2* for t € [0, t], it is easy to see that
inequality (2.37) may be manipulated to produce

t3 tl
@:38) 20807+ /4y Lo drz [N
Letting k — oo in (2.38), it is clear that the left side of (2.38) ap-

proaches zero and thus the right side, which is independent of &,
must be identically zero. This completes the proof.
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LEMMA 5. Suppose the hypothesis of Lemma 4 holds and the op-
erator M satisfies either (2.2) or (2.3). Then there exists a positive
number &n, n, T), independent of k, such that

T
(2.39)3 / A7 (1) | Lv (0))? dt
0

n . T . .
>én, 1, T)j};lsz"/o A~2k=2) (z)lw—n (t)][2 dt

T
+k‘/2/ A2k () (M (2) , v (1)) dt
0
T
+4Re / 272 (8) (M (1) , Nv (£)) dr
0
for all k sufficiently large.

Proof. For n = 1 a stronger result holds and is easily proven as in
[5]. (See Lemma 1 of [5].) Thus we omit that part of the proof and
assume n > 2. As in the proof of [5; Theorem 4], we note that if
either (2.2) or (2.3) holds, then (all integrals are taken over [0, T])

(2.40) /1‘2" (Mo, v)| dt < |/,1'2k (Mv, v) a’t'
+2¢ / A2 o) dt.
Also note that
(2.41) kl/z/ﬂk (Mv, v) dt
= k2 Re/A"Zk(—Lv +o™ — Nu, v)dt

= k12 Re/A”Zk (Lv, v) dt + k2 Re/A‘Zk(v(”), v)di
=J1+ .

An elementary estimate gives

(2.42) |J1] < / A" Lo))? dt + (k/4) / A2 |v||? de.
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We use (2.18) and the identity (2k +n—2j—1)!/(2k — 1)! = (2k)"~%
+ L.d.t. to get

[n/2] .
(2.43) |Jo| = |k ;0 K;(n) ]

x/i-Zk—n+2j||v(j)l|2dt

[n/2]
<oy kn—2j+l/2/2‘—2k-n+2j“/u(j)”2 dt

J=0

n—1
< Gan_2j+1/2/A_Zk_n+zj||’l)(j)”2 dt
j=0

where the positive constant ¢ depends only on n. Now substitute

(2.42) and (2.43) into (2.41) to obtain,

(2.44) kI /z.-zk (Mv, v) dtl

< / A=\ Lo|)? dt

n—1
4 0Zk"_2j+1/2//1_21(_"+2}||U(j)||2 dt
J=0

for k sufficiently large. (We have absorbed the last term in (2.42) into
the last term in (2.44).) Substitution of (2.44) into (2.40) gives

(2.45) k'/Z/ﬁk (M, v)| di

< /A‘zk ILo]? dz+2czk‘/2//l‘2"' o2 dt

n—1
+ O.an~2j+l/2/A—Zk—n+2j”v(j)”2 dt.

j=0
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Changing the summation index in the summation in (2.45) and then
adding (2.45) to (2.23) produces

(2.46) 3 / A=K || Lo|)? dt

n
>e(n,n, T)S K- [ A2y D)2 g

J=1

— 20k / A2 o)? di

n
Y Zij—n+l/2//1—2k+n~2j”,u(n—j)”2 dt

=1
+ k1/2/z—2k (M, )| di + 4Re/z—2k (Mv, Nv) dt.

Since 2j —n+1/2 < 2j—1 for n > 2 and A"(¢t) < (T + n)" for
t € [0, T7, it is clear that the summations (2.46) may be combined to
get the summation on the right side of (2.39) for k sufficiently large
with & depending only on n, 7, n, ¢; and o; in particular, € is
independent of k. This completes the proof.

Proof of Theorem 2. (Since the proof of Theorem 2 is virtually iden-
tical to that of Theorem 1 (with the only difference being that Lemma
5 is used instead of Lemma 4), we omit its proof.)
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