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ROUND QUADRATIC FORMS
UNDER ALGEBRAIC EXTENSIONS

BURKHARD ALPERS

Pfister forms over fields are those anisotropic forms that remain
round under any field extension. Here, round means that for any
represented element x Φ 0 the isometry xφ = φ holds where φ
is the form under consideration. We investigate whether a similar
characterization can be given for the round forms themselves. We
obtain several "going-up" and "going-down" theorems. Some counter-
examples are given which show that a general theorem holds neither
in the going-up nor in the going-down situation.

Introduction. Pfister forms over fields can be characterized as those
anisotropic forms that remain round under any field extension (cf. [16,
p. 153]). In this paper we investigate whether a similar characteriza-
tion can be given for round forms over fields. Since the structure of
round forms is not known in general, one cannot expect general results.
According to a theorem of Marshall [14] (see also Becker/Kόpping
[3]), every round form has a decomposition φ = I x ψ + p where ψ
is a Pfister form and p is torsion. This implies that any round form
remains round over the Pythagorean closure of the underlying field. In
this paper we shall prove the following characterization theorem for
certain types of forms or fields: A form φ over F is round iff it is
round over every proper quadratic extension K = F(y/w) where w is
represented by φ over F. As to the going-down part of this equiva-
lence the usual techniques (norm principles) allow one to prove many
results. The going-up part, however, requires detailed information on
the structure of round forms which is available only for certain classes
of fields, for example the linked fields. Counter-examples show that in
general neither implication of the equivalence is true. For extensions
of odd dimension we have the well-known theorem of Springer which
yields immediately that a form over F which is round over K > F
([K : F] e 2N + 3) is also round over F. In the other direction,
nothing is known.

We use the standard terminology as is found in [16]. The fields
occurring in this paper are commutative and of characteristic Φ 2.
K usually denotes a field, W{K) the corresponding Witt ring, and
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Wt(K) or simply Wt the torsion part of W(K). For (quadratic) forms
φ and ψ over K, φ = ψ (φ = ψ) will express isometry (equality
in the Witt ring). For the anisotropic part of φ we write φa. The
set of non-zero elements of K represented by φ is denoted by D(φ)
and we shall write SD(φ) for the semiring generated by D(φ). The
set of square classes of elements in D{φ) is denoted by D(φ). If no
misinterpretation can occur we write x for an element x eF and for
the corresponding square class xF*2 as well. If D(φ) = K* := AΓ\{0},
then φ is said to be universal. In the case 1 ED(φ) the pure subform
of φ is denoted by φ', that is φ = (1) i. φ1. The form ^ is called
round if x φ = φ holds for all x G D(φ), that is, D(φ) = G(φ) where
G($0) := {x G i£* I x^ = φ} . According to this definition, an isotropic
form is round if its anisotropic part is 0 or round and universal.

1. Going-up. There are several examples of fields where every round
form remains round over any finite field extension. This is true for al-
gebraic number fields, finite fields, and p-adic fields since these classes
are closed with respect to finite extensions and there are characteriza-
tions of round forms which are invariant under field extensions (cf.
[2]). But in general there are no such characterizations.

To begin with, we consider the situation dim φ G 2N + 1. Trivially,
the form (1) remains round over any field extension. Now, let φ be
round and anisotropic over F, and dim φ G 2N + 3. According to
[14], F must be formally real Pythagorean, and φ = (1, . . . , 1). So,
there is no proper quadratic extension F{yfw) where w eDf(φ).

We now want to prove going-up theorems for round forms with a
certain structure, in particular for round forms over linked fields. A
field K is called linked if the classes of quaternion algebras over K
form a subgroup in the Brauer group of K (cf. [9]). Equivalently,
any two 2-fold Pfister forms are linked, that is, for forms ((α, b))
and ((c, d)) we may assume a = c. In general, Pfister forms γ\ =
((a\, . . . , am)) and γ2 = ((&i, . . . , bn)) (m < n) are called linked
if there are cx, . . . , cm^ G K* such that γ{ = ((c{, . . . , cm-X, d))
a n d γ2 = ( ( c { , . . . , cm-\, dm, . . . , d n ) ) f o r s o m e d9dm,...9dn i n
K. Round forms over linked fields and over fields whose schemes
can be constructed using schemes of linked fields and of fields with
w-invariant < 4 have been characterized in [1], [2] (for the special
terminology concerning schemes see [11], [12]). For this class (denoted
by 2?) we have:

THEOREM 1.1 ([1, 2.10, 3.6]). (i) If φ is a round and anisotropic
form of dimension 2vl, (2, /) = 1, then there exists a decomposition
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φ = lχψ + Y^ίx pi with a υ-fold Pfister form ψ & Wt\{0} and i-fold
Pfister forms piEWt (i = 1, . . . , m), 2m < dim φ, such that for each
i = 1, . . . , m

D(φ) cD(ψ)nD(pi) and

(/ > 1 => D{φ) = D(ψ) = D(l x ψ) and 2pt = 0).

(ii) Moreover, if K is linked, then we may assume that there exist
an r en and aΪ9...9 ar+v G K* such that 2r+v < d im^, 2r x ψ =
((a\, ... , ar+υ)) and {{ax, . . . , α/-i))|/?/ {"simultaneous linkage").

The decomposition of a round form given in (i) is called a Pfister-
decomposition, and any form with such a decomposition is called
Pfister-decomposable. For linked fields we can get more information
on the sets D{p{). In this case we have u(K) = max{dim^ | φ e
Wt} < 8 (cf. [9]), so we have to examine round forms of the type
φ = / x ψ + px + p2 + p3. Since u(K) < 8, the form p$ is universal.
For the other torsion forms we have:

LEMMA 1.2. If K is linked, and if φ is a round and anisotropic form
over K, then there exists a Pfister-decomposition φ = / x ψ + Σ^=ϊ pi
with the following additional properties:

{\)Ifφ£Wt,then D{Pi) = K* for ι = l , 2 , 3 .
(2)Ifφ = pι + '" + pseWt (s < 3) with ps^0, then D(p{) =

Proof, (i) Assume that the form γ = (1, w, -r, -wr) is torsion
and D(γ) contains the semiring generated by w, r, and all squares Φ
0 (hence, this semiring does not contain 0). Pick an arbitrary c eK*.
By the linkage property, we have D((w, —c, —wc))nD({c, r, cr)) Φ
0 . Therefore, there are a\, ... , at G K (not all zero) such that
wa\ - c{a\ + wa\) = c(a\ + raj) + ra\ Φ 0. Hence, wa\ - ra\ =
C{OL\ + oί\ + wa\ + ra\). Since the RHS is not 0 and D(γ) is a group,
we have c e D(γ). It follows that D(γ) = K*.

(ii) Assume that D((d9 a,b, ab)) c D{{\, -d)) for some a, b, d

G K* (in particular, we have - 1 G D(( l , —d))). Pick an arbitrary
c e K*. By linkage, we have D({ad, - α / , —αc)) Γ\D({a, c6, cαό)) Φ
0 . Now one can proceed as in (i) to get D((l, —*/)) = K*.

(iii) Assume that the form (1, —d) represents any non-zero element
of the semiring generated by d and all squares. Applying (ii) with
a = b = 1, we get D((l, -</» = iϊΓ*.
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(iv) Assume first dim φ > 6. Then, D(φ) U {0} is a semiring by
[1, 2.9]. Hence, p\ is universal by (iii) (if 4 does not divide dim^
we may assume p\ = 0; otherwise px = (1, —d) where d is the de-
terminant of φ). By linkage, we may assume pi = (1, w, - r , —tur)
where w , r are sums of squares and hence w, r e D(φ). Then (i)
gives D(p2) = K*. In the remaining case we have dim φ = 4 but then
(ii) yields the desired result. D

As a simple application of the linkage property we get:

LEMMA 1.3. If ψ φ 0 and p are different linked Pfister forms,
dim ψ > dimp, and if p is universal, then D(ψ) = D((ψ + p)a).

Induction leads to:

COROLLARY 1.4. Let ψ be a Pfister form and pi be i-fold univer-
sal Pfister forms (i = 1, . . . , m) where dim ψ > dim/?m, ψ Φ pm .
If these Pfister forms are simultaneously linked, then D(ψ) =

The following lemma is a generalization of [10, 2.18].

LEMMA 1.5. Let φ be a round form over F with D(φ) = SD(φ)\{0},
and let K = F{>Jw) be a quadratic extension where w eDf(φ). If φ
is round over K, then Dχ(φ) = SDκ(φ)\{0}.

Proof We want to apply [10, 2.17] to S := SDκ(φ)\{0} . Obviously,
S < K*. Now, let x G SπF. Since Dκ{φ) is a group we may assume
that there are X\, . . . , xs e Dκ(φ) with x = Yfi=ϊ Xi. Each of the
Xi is of the type ]Γ"= 1 Cj(aij + bijy/w)2 where φ = {c\, . . . , cn). So
x G DF(φ) and hence S n i 7 = DF{φ). Now, let * G S. Again we may
assume that there are x\, . . . , xs G Dκ{φ) such that £ ^ = 1 JC, = c.
Hence, J G ΰ ^ ( ( l , l ) 5 ® ^ ) . By [16, 2.10.4], (1, \)s®φ is round over
K and over F as well. By [10, 2.11] we have N(x) e GF((ί, l)s®φ) =
DF((l, 1)* g> φ) = Z)F(^). Thus, JV(S) C Z)F(^) c Z>/τ(̂ ) DF(φ).
Applying [10, 2.17], we get S = Dκ{φ) -(SnF)= Dκ(φ) DF(φ) =_
Dκ{φ) since 9? is round over AΓ. D

COROLLARY 1.6. L^/ ψ be a Pfister form over F, I G 2N + 3,
let K = F(Λ/W) where w G DF(l x ψ). If I x ψ is round over F,
then I x ψ is round over K.
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Proof, If / x ψ is round and isotropic over F , then it is easy
to see that ψ is F-universal and the claim follows from [10, 2.15].
Otherwise apply (1.5) and [14, 1.7]. D

In the sequel we want to improve (1.6) in order to allow the torsion
part of the round form to be non-zero. We need the notions of rigid
and basic elements (cf. [5], [6]). An element x e F* is called rigid if
Z>((1, x)) = F * 2 U xF*2 . A rigid element x is called one-sided rigid
(resp. birigid) if —x is non-rigid (resp. rigid). If x is not birigid or if
x G ± F * 2 , then x is called basic. As usual, the set of basic elements
is denoted by A(F) (the definition in [5] is slightly different from that
given in [6] but this does not affect the results we need).

Let φ be an anisotropic round form over F with Pfister-decomposi-
tion φ = / x ψ + ]Γ^=1 pi. It is easy to check that we can write
φ as a product φ = (/ x a + £)f=1 <5, ) ® ((t\, . . . , tm)) with birigid
elements tj (different modulo A(F)) where ψ = a ® ((t\, . . . , tm)),
pi = Si ® ((t\, . . . , tm)), γ := (/ x a + Σ1*^ δi)a is a round form with
Pfister-decomposition / x α + ̂ ^ D{y) c A(F) and, moreover,
D{ά) C i4(F) (resp. /)((?/) c A{F)) if α (resp. δ{) is not 0. Note
that DF(pi) D A(F) and /?/ ̂  0 imply Z>((5y) = A(F).

THEOREM 1.7. Let φ be a round and anisotropic form over F with
Pfister-decomposition I x ψ + Σk

i=\ pi and let K = F(y/c) where
c e DF{φ). IfDF(φ) = SDF(φ)\{0} and DF{Pi) D A(F) for i =
1 , . . . , & , then φ is round over K.

Proof. First assume that φ is universal. Then ψ = 0 and the
Pi are universal since ψ £ Wt\{0} and D(φ) c ^(/?/). Now, by
[10, 2.15], />/ is universal over K for / = 1 , . . . , / : . Thus, 9? is a
universal round form over K (possibly = 0 in the Witt ring). There-
fore we may assume that DF{φ) = SDF(φ) (and hence DF(ψ) =
SDF(ψ)), that is, DF(φ) U {0} is a proper preordering. Let φ =

(/xα + Eί=i<*i)®«*i, .-• 5 ̂ m}) and y = (/xα + Σ/li<*i)α according
to the above remarks. Then, by [6, Prop. 5], DF(γ) = SDF(γ) and
DF(a) = SDF{a). To begin with, let K = F{y/w) where w e DF(γ).
By [16, 2.10.4], it suffices to prove that γ is round over K. By
(1.6), we have Dκ(a) = SDκ{a) φ K; hence Dκ{γ) c Dκ(a) c
y4(A )̂. Let J G {Ji, . . . , ok}, and assume SK is not isotropic. We
want to show that A(K) = Dκ{δ). By [6, Prop. 2] and [5, 2.2],
we have Dκ(δ) c A(K). We want to apply [10, 2.17] with S :=

. By [6, Th. 1], A(K) is a group. Since w G D(y) c
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[7, 5.6] implies A(K) nF* = A(F). From [6, Prop. 1] it follows that
N(A(K)) c DF{{\, -w)) c A(F) = DF(δ). Hence, [10, 2.17] yields
A(K) = Dκ(δ) (A(K) n F*) = Dκ(δ) D F ( ί ) = /)*(<$). Therefore,
AKy) C Djc(a), Dκ(δj), which means that y is round over K. Now,
assume that m > 1 and that w e DF{a) DF(((tι, . . . , ίw)))V4(F),
say (wlog) w = at\ where a e DF(a). Then, a = t\ mod ίΓ*2 and
ίi e Λ(iQ by [5, 2.3]. This gives

δi ® ( ( ί i , . . . , ί m » =j^ <J/ ® ((a, ί 2 , . . . , tm))

for / = 1, . . . , k. Therefore, <Pκ — I χ ΨK Since DF(ψ) = SDF(ψ)
the proof is complete by (1.6). D

COROLLARY 1.8. If φ is a Pfister-decomposable form over F with
DF(φ) U {0} containing an ordering of F, then φ remains round
over F(y/w) whenever w e DF(φ). In particular, if φ is a Pfister-
decomposable universal form over F, then φ is round over any qua-
dratic extension of F.

REMARKS 1.9. (1) We cannot omit the condition on DF(φ) in the
preceding theorem: Using quadratic form scheme theory (cf. [11] and
the explanations in §2), one can show that there is a non-formally real
field F such that there exist universal anisotropic forms {(a, b)) and
( 1 , -d) wi th -\ψ-dψ -aeDF{{{a, b))') a n d aψ\ ( i n q u a d r a t i c
form scheme notation: Consider F where S(F) = SXQ2) π S(F3)).
Then, φ = (d9a,b, ab) is round over F and hence over F{(t)).
But for K := F((t))(yβ) we have ?* = (!, -d, 1, -1) and t £
Dκ{{^ > —d)). Hence, φ is not round over K.

(2) Naturally, the question arises whether the "process can be con-
tinued", i.e., whether the form φ remains round over another field
extension L = K(y/c) where c e Dχ(φ), and so on. But it is clear
from the proof of (1.7) that ψx retains the properties used in the
proof. Therefore, φ remains round over any 2n -extension Kn where
Kn > > Kι > Ko = F and Kt = K^ι(y/w) with w E Dκ_χ{φ)
(we call such an extension a φ-2n-extension). This means in particular
that φ remains round over any 2n-extension within the Pythagorean
closure of F and hence over any extension within the Pythagorean
closure.
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THEOREM 1.10. If φ is a round form over a linked field F, then φ
remains round over K = F(yjw) whenever w eDF(φ).

Proof Let w e Df{φ) and K = F(>Jw). According to (1.2), there
exists a Pfister-decomposition φ = / x ψ + Y%LX ρt with either ψ Φ 0
and D(pι) = F* for / = 1, 2, 3 = m or ψ — 0 and ρm φ 0 and
/)(/>/) = F* for / < m < 3. In the first case, the />,• are universal over
K, by [10, 2.15]. Then, in case of / > 1, we have DF(φ) = ZM V) =
SDF{ψ) and the preceding theorem can be applied. In case of / = 1,
φ is round over K by (1.4). If ψ = 0, we can again apply (1.4) and
[10, 2.15], thus completing the proof. D

REMARK 1.11. Again, the proof of (1.10) depends only on the exis-
tence of a special Pfister-decomposition of the round form. It is clear
from the proof that the necessary properties are preserved under the
quadratic extensions under consideration. Therefore, the process can
be continued. Furthermore, if / = 1, then φ remains round over K
whenever K lies in the quadratic closure of F.

2. Going-down. We shall use different hypotheses depending on the
fields under consideration:

(1) φ is round over every quadratic extension F(y/w) where w €

DF{φ)\
(2) φ is round over every quadratic extension F(y/w) where w e

(DF(φ)) (the group generated by DF(φ))\
(3) φ is round over every quadratic extension F(y/w) where w e

-DF(φ).
Our proofs depend heavily on the possibility of representing form
values as norms with respect to a quadratic extension K > F and on
extending orderings. For this reason, we must look at more extensions
than originally intended (cf. (2)) or at different extensions (cf. (3)). (1)
and (2) coincide if the form under consideration is a group form (note
that from the "going-up" point of view it would be no restriction to
require that φF is a group form!). Condition (3), however, is different
and yields in general no "going-down" converse for the "going-up"
theorems proved in §2. Moreover, its "going-up" converse is wrong
in general. Nevertheless, this condition yields the best "going-down"
result. To see this, we need the following result that applies the norm
principles (stated in [10]) to the "going-down" situation.

PROPOSITION 2.1. Let φ be a form over F and 1, x e DF{φ). If
there is a z e F*\F*2 such that x e D((ί, —z)), and if φ is round
over F(y/z), then x e GF(φ).
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Proof. Since x G D((l, - z ) ) , there exists a w G ΛΓ := F{Λ/Z) such
that ΛΓ(iέ) = x. Since 1 € Z>F(P) , [10, 2.13] yields u G F Dκ{φ).
Hence, there is a A € F* with λw G /)*(?)• By [10, 2.11], λ2x =
N(λu)eGF(φ). Π

COROLLARY 2.2 (cf. [10, 3.14]). Let φ be a form over F where 1 e
DF(Ψ) $ - 1 Assume that φ fulfills condition (3). Then φ is round
over F .

REMARK 2.3. The condition 1 G Dp{φ) cannot be omitted. Con-
sider, for example, the form φ = (ε, n) over a ^-adic field where
ε is a unit ψ 1, π is a prime, and 1 = - 1 . The condition - 1 £
Df(φ) can be dropped in all cases except one. Assume that φ is
a form over F with 1,-1 G DF{φ) which fulfills condition (3).
By (2.1), we get Df(φ)\ - F* 2 c GF(φ). Now, assume there ex-
ists an a G DF(φ)\{±l}. Then, from a G <?F(P) it follows that
- 1 a G £>/r(p)\{±l} and hence - α G Gf(φ). Since GHp) ^s a

group we have - 1 eGf(φ). Thus, if #> is not round over JF , we have
Df(φ) = {±1}. If i 7 is formally real, then this means that F must
be euclidean, and the form m x (I) ± n x (-1) (m, n G N*, m Φ ή)
is really a counter-example in this case. Let F be non-formally real
and let ψ be a counterexample. We may assume dimφ > 2. Then,
Z)/r(p) = ^ * , and hence IF*// 7* 2 ! = 2. Thus, .we additionally may as-
sume dim φ G 2N + 3. But by the Diller/Dress-theorem (which is also
true in the non-formally real pythagorean case, cf. [10] (3.9)), KψK1

for any quadratic extension K > F. It follows that φ is not round
over F{yf=Λ), but 1 G DF(φ), a contradiction to condition (3). We
summarize: If F is not euclidean or the form under consideration is
anisotropic, then we can omit the condition - 1 £ DF(φ) in (2.2). So,
for universal forms we get:

COROLLARY 2.4. If φ is a universal form over F and anisotropic
in the case F is euclidean, and if condition (1) (<* (2) <& (3)) holds,
then φ is round over F.

Proposition (2.1) yields an easy proof of a part of a theorem in [10]
which concerns the going-down step on condition (1):

THEOREM 2.5 (cf. [10, 3.6]). Let φ = (a{, . . . , an) be a form over
F. If ai, . . . , an G GF(φ), and if φ is round over every extension
F(y/a) where a G DF(φ), then φ is round over F.



ROUND QUADRATIC FORMS 221

Proof. We prove by induction on / that x e DF((a\, ... , a/}) im-
plies x G Gf(φ). The case / = 1 is trivial. So, assume x = y +
where y G Df((a\, . . . , α/)) c GF(φ). We may assume x
Since xeDF((y, aι+ι)), we have xy G £ ( ( 1 , xy))n£>((l, yty+i)) C
D((l , -Λ:α/+1)), by [8, Lemma]. Since y, α / + 1 G GF(φ), we have

G DF{φ). Now, (2.1) yields xy G GτK#0 and hence x G

COROLLARY 2.6. Let ψ be a Pfister form over F and let φ = / x ψ,
/ G 2N + 1. If φ is round over every extension F(yfa) where a G
Df(φ), then φ is round over F.

We now want to show that for certain classes of forms and special
classes of fields the hypotheses of Theorem 2.5 can be weakened. For
a form φ over F there exists a decomposition φ = ψ\ ± φ2 where
ψx is 0 or has a diagonalization in which the entries are squares or
non-rigid elements and ψι is 0 or represents only rigid elements ψ
1. We call any such decomposition where dim φι is minimal an nr-
decomposition of φ . If there is an nr-decomposition of φ with ψ2 =
0, then we say that φ is nr-representable.

THEOREM 2.7. Let φ be a form over F with 1 G DF(φ) which is
round over F(y/a) whenever a eDp(φ). Then, any non-rigid element
of Dp(φ) lies in GF(φ). In particular, if φx _L (b\, . . . , b{) is an
nr-decomposition of φ with b\, . . . , b\ G GF(φ), then φ is round
over F .

Proof. Let z be a non-rigid element in DF(φ)\F2 . Then, φ has a
subform (1, c) such that z e DF((1, c)), and hence c is non-rigid.
Pick an arbitrary x G DF({\, c))\{l, c}. Now, x e DF((l, JC» Π
DF((l, c)) C DF({1, -xc)), by [8, Lemma], and xc G DF({\, c)) c
Z M P ) . Thus, by (2.1), JC G (7/r(p). Since xc G DF({1, c))\{l, c},
we have also xc G GF{φ) and hence c G GF{φ). Therefore, z G

•

COROLLARY 2.8. Let φ be a form over F with 1 G DF(φ). If
φ is nr-representable and round over every extension F(y/ά) where
aeDF(φ), then φ is also round over F.

Assume that the radical of F is not F*2 (cf. [4]). It is well known
that any element of the radical is represented by every 1-fold Pfister
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form. Thus, using (2.1), we get the desired going-down theorem with-
out any restrictions on rigidity. So, we may restrict ourselves in the
sequel to the situation where the underlying field F has a trivial rad-
ical (hence the notions of [5] and [6] coincide). We shall now have
a closer look at the nonformally real case. We call a form φ basic
if it has a diagonalization with basic entries. It is well known that
in this case the anisotropic part of φ represents only basic elements
(if any). Furthermore, using the results of [6], we easily get the fol-
lowing fact: Let φ = ψ\ J_ φiti -L •• -L φntn be a (not necessarily
anisotropic) form where the ψι are basic forms and the tj are birigid
with ti ψ tj mod A(F). Then, φ is a basic form iff ψι, . . . , φn are
hyperbolic, that is, 0 in W(F). We call φ\ the basic part of φ, if
φ is anisotropic. As a standard application of the properties of rigid
elements and their behaviour under quadratic extensions (cf. [5], [6])
we get:

PROPOSITION 2.9. Let φ = ψ\ _L φ^h J_ _L φntn be an anisotropic
form over F where the ψι are basic forms and t2, ... , tn we birigid
with ti ψ tj mod A(F) for iψ j . If t is a birigid element in F, then
{ψf^t^a is not universal. If t = bti with b e A(F), then ψ\ _L bψ2
equals the basic part of φa in W(F(\β)).

PROPOSITION 2.10. Let φ, ψ be basic forms over F, let t e

F*\A(F),and K:=F(yft).

(i) If φ = ψ over K, then φ = ψ over F.
(ii) If φ is round over K, then φ is hyperbolic or anisotropic and

round over F.

Proof, (i) φ _L -ψ is a basic form over F. From φ - ψ = 0 in
W(K) we get (φ - ψ)a = F (1 > -ή ® p for an inform p (possibly
= 0). From this we get easily φ = ψ over F.

(ii) According to (2.9), we may assume that ψK is either hyperbolic
or anisotropic. If φjζ is hyperbolic, then φ = m x (1, -1) over K
and hence also over F, by (i). If ψK is anisotropic, then so is ψp.
We have φ = xφ for x e DF(φ) (c A{F)) over K\ hence by (i)
φ = xφ over F, i.e., φ is round over F . 0

We now settle the non-formally real case where besides squares only
birigid elements are represented. According to (2.4), we can restrict
ourselves to anisotropic forms.
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LEMMA 2.11. Let F be non-formally real, and let φ be an anisotropic
form over F with 1 G D(φ). Moreover, let φ1 = γ ® (t) where γ is
a basic form and t & A(F). If φ is round over F(y/ά) whenever
a&Df(φ), then φ is round over F.

Proof. We may assume that dimy > 2 and 1 eDF(γ). Since F is
non-formally real, we have dim φ G 2N (cf. [14]) and hence dim γ >
3. Let d := dety. For a e DF(γ) we obtain φ = (1) ± ay over
F(y/at). By (2.10), (1) ± ay is round and anisotropic over F for
every aeDF(γ) since γ is anisotropic. First assume dimy G 1 +4N.
By [14, 1.1], we have DF((l) ± ay) c DF({\, ad)) Vα G ZM)0
Pick a e DF(γ). Since a e D(aγ) n D(y), we get α G D((l, rf>) n
Z>((1, ad)) c Z)/τ(<l, -*}) - Thus, α e D((l, 1)), and hence D(γ) c
Z)((l, 1)), which gives D({1) JL y) c Z)((l , 1 , 1 ) ) . Since (1) ± γ is
round over i 7 , it follows from (1) _L γ = (1, 1) _L / and J5(/) c
D((l9 1)) that 1 G / ) ( / ) . So, (1, 1, 1)is a subform of <1> JL y.
But then, by Kneser's lemma, (1) ± γ is isotropic, a contradiction.
Hence, dim γ = 1, and we are done. Now, assume dim γ e 3 + 4N.
By [14, 1.1], we have ad e DF((l, 1)) Vα G DF(γ) in particular d e
DF((l, 1)) since 1 e DF(γ). Thus, again a G DF{(\, 1)) Vα G DF(γ)
and we get a contradiction as above. This establishes the proof. D

We need a simple lemma on the structure of round forms over fields
with birigid elements proved in [2]:

LEMMA 2.12 (cf. [2, 3.3]). Let φ be a round and anisotropic form
over F. Then, φ = φx® φ2 where ψ\ is a basic round form over F
and ψ2 is a Pfisterform and where φ'2 represents only birigid elements.

LEMMA 2.13. Let F be non-formally real and let φ be an anisotropic
form over F with 1 G DF(φ) and D(φ') c F*\A(F). If φ is round
over F(y/a) whenever aeDF(φ), then φ is round over F.

Proof. According to (2.11), we may assume that there are birigid
elements x, y G DF(φ) with x ψ y mod A(F). Wlog let dim φ > 3.
Then, φ = (l)JLa®(x)±β, where a is a basic form and DF(β) Π
xA(F) = 0 . By (2.9), (1) _L a ® (x) equals the basic part of φa

over F(yfax) where a G DF(a). Hence, (1) _L a ® (x) is round over
F(y/ax) whenever a e DF(a), by (2.12) in case φ is anisotropic over
F(y/ax) or by (2.9) otherwise. From (2.11) we get a = (1). Hence,
φ = (1, xι, . . . , χn) where X/ & A(F) and xz φ Xj mod^(F) for
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/ Φ j . It suffices to prove Xχx2 e DF(φ). According to (2.2), (2.3), we
may assume 1 ^ - 1 m o d i 7 * 2 . By (2.9), φF{^x;) = ( 1 , 1, *2 , - - , **)
is anisotropic and, by [5, 2.3], x2, . . . , xn are birigid over F(y/x[).
By (2.12) and [6, Prop. 5], there exists an i e {3, ... ,n} such that
x2 = Xi m o d ^ ( ^ ) . H e n c e , x2xt e A(K) nF = {l, Xχ}A(F) (by [7,
5.6]). Thus, there is an a e A(F) such that x, = α x i ^ Again by
(2.12), we have (1, 1) = (1, a) over ^(v/ cΓ), and hence a e F2.
This completes the proof. D

In the remaining "mixed" case we were not able to prove a general
result. We restrict ourselves to fields whose quadratic form schemes
are elementary constructible starting with schemes of non-formally
real fields with w-invariant < 2 and the p-adic fields (that means the
schemes can be constructed from those of the "starting fields" building
product schemes and power schemes; cf. Kula [11], [12]). We use the
notation of [11]. The above class of fields will be denoted by Ω. For
a form φ over a product scheme S(K\) π S{K2) (K\, K2 fields) we
write (Id") instead of ((a{, bλ), . . . , (an , bn)) where (a{, . . . , an)
and (b\, . . . , bn) are forms over S{K\) and S(K2) respectively. We
call S(K{)πS(K2) a non-trivial product if neither S(KX) nor S(K2)
is equivalent to 5(C). If S(K) = S(K{) π S(K2), we identify square
classes of K with scheme elements of S{K), and forms over K with
forms over S(K) (cf. [2]). A power scheme of a scheme S is de-
noted by Sτ where T is an elementary abelian 2-group (for the exact
definition see [11]).

PROPOSITION 2.14. Let F be a non-formally real field with S(F) =
(S(K{)πS(K2))τ where S{KX)Γ\S{K2) is a non-trivial product. Let
φ and ψ be basic forms over F with άivaφ > 2 and 1 e D(φ).
If φ = ψ holds over K = F(y/a) whenever a e Df(φ), then φ = ψ
over F .

Proof. After identification we may assume

Since F is nonreal, both Kx and AΓ2 must be nonreal. According

to Kneser's lemma, there are a e DKχ{{\, ax, . . . , Λ Λ ))\{1} and δ e

Dκ2((l>bl9...,bn))\{l}. Hence, α U (f) e Dκ(φ)\{l}. We have
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φ = ψ over F{\/ά) and over F(vb) as well, and hence

(Ψ-Ψ)a=(\ ~_\)®P and ( φ - ψ ) a = ( \ Zl)®δ

over F for some F-forms p, δ. Since φ — ψ is basic, the forms
p and δ are also basic, that is, they are defined over S{K\) π S{K.2).
Thus,

^ - ^ ( i - i . * . i - i ) a n d

(\ - 1 . . . 1 - 1 \

and hence φ - ψ = 0. π
THEOREM 2.15. Let F e Ω. //* φ is a form over F with 1 G

A<z/ 9? w rowwrf ov^r F{y/a) whenever a e Dp{φ), then φ is
round over F.

Proof. According to (2.4) and (2.13), we may assume that φ is
anisotropic and of the type φ = ψ\ ± ψiti JL ± φntn where the ψι
are basic forms with 1 e Dp(ψi) for / = 1, . . . ,« , d imφχ>2 9 and
the ί/ are birigid with ίf ^ ί7- mod^4(F) for iφ j . By (2.7), 0>i is
round over F and D(^i) C Gί(^/) c D{ψi) for / = 2 , . . . , « . Let α G
DF(φ{)\F2 and K = F{y/a). If (pi)* is isotropic, then ^! contains
a subform (z, -αz) over F (z e F*) and hence -<z G DF((p\). But

then - 1 G DF(<pι) c G>(p) a n d

?

 bY ( 2 2 ) a n d ( 2 3 ) ?

 w e a r e d o n e

Therefore, we may assume that ψ\ is anisotropic over K = F(y/a)
whenever a e DF(φx). Let j e {2, . . . , n}. If (pj)^ is isotropic,
then (w 9 -wa) is a subform of ^ ; over F for some w G DF{(pj)
and we get w// G GF(φ), by (2.1). This implies ^i = ^ 7 over / .
If ( ^ )L is anisotropic for all L = F(y/b) where b e DF(φ\), then
also pi = p y over F, by (2.12) and (2.14) or trivially (in case S(F)
is equivalent to a power scheme of a scheme of a "starting field").
Thus, we have φ{ = φ2 = -- = φn over i 7 . Now it suffices to prove
titj e DF(φ) for i φ j . Wlog let / = 2, 7 = 3. Moreover, let
AT := F(y/Ϊ2). Then, 9?̂  is round and anisotropic or hyperbolic, by
(2.9). If (pK is anisotropic, we have t$ = tj mod A(K) for a j > 4,
by (2.12). As in the proof of (2.13), we now get tj = at^h f°Γ a n

^ G ̂ ( i 7 ) . We have ψ\ Lψ\ = ψ\ 1. aψ\ over A ,̂ according to (2.12).
Hence, ψ\ = aψ\ over K and, by (2.10), ψ\ = α^i over i 7 , so we
are done. In the hyperbolic case we get ψ\ = -ψ\ over A ,̂ by (2.9),
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and hence over F, by (2.10). This means - 1 e DF{φx) c GF(φ),
and again we are done. D

We now want to examine the formally real Pythagorean case.

LEMMA 2.16. Let F be fir. Pythagorean and let φ be an anisotropic
form over F with 1, x, y, xy e DF{φ) for some x,y e F\F2 with
x g yF2. If φ is round over F(y/a) whenever a G Df{φ), then φ is
round over F.

Proof. Let P be an ordering of F. Then, at least one element of
the set {x, y, xy} is in P, say x. Now, P extends to an ordering P
over F(y/x) (cf. [16, 3.1.11]). Since φ is round over F(φc) we have
sgn~#> e {0, dim φ}, by [14, 1.1]. Hence, sgnP φ e {0, dim φ} for all
orderings P of F. According to the proof of [3, Satz 16], φ = / x ψ
for a Pfister form ψ, that is, φ is round over F. D

COROLLARY 2.17. Let F be a f.r. pythagorean field and let φ bean
anisotropic form over F with 1 e Df(φ) and \DF(φ)\ > 2. If φ is
round over F(yfa) whenever a e (Df(φ)), then φ is round over F.

COROLLARY 2.18. Let F be a fir. pythagorean field and let φ be
an anisotropic form over F with 1 e DF(φ) such that φ represents
at least one non-rigid element. If φ is round over F(y/a) whenever
a E Df(φ), then φ is round over F.

LEMMA 2.19. Let F be a SAP-pythagorean field, and let φ be an
anisotropic form over F with 1 e DF(φ) and \DF(φ)\ > 2. If φ is
round over F(y/a) whenever aeDF(φ), then φ is round over F.

Proof. Wlog we m a y a s s u m e d i m ^ > 3 a n d φ = {l,a, b, . . . )
where a, b £ F2 a n d a & bF2. By [17, P r o p . 7] (or [15, T h . 3.1]),
(l,a,b,-ab) is isotropic, hence ab e DF{{\, α, b)) c DF(φ).
Now, (2.16) yields the claim. D

We now consider the case where at least one birigid element is rep-
resented by φ.

PROPOSITION 2.20. Let F be a f.r. pythagorean field and let φ =
a ± βt be an anisotropic form over F where a and β are basic,
1 G D(a), D(β), and t e F*\A(F). If \DF(φ)\ > 2 and φ is round
over F(y/c) whenever c eDF(φ), then φ is round over F.
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Proof, First assume \DF(β)\ > 1. Then, there exists a non-square
a G Df(β). Now, a ± β is round over F(\/Ί) and α ± α/? is round
over F(y/at). By (2.10), a ± β and a ± aβ are round over F .
Hence, aa ± aβ = a ± β and a ± aβ = aa ± β. From this we
get αα = α, since F is pythagorean. So a, t, at e DF(φ), and by
(2.16) we are done. Now, assume D{β) = {1} and b e DF(a)\F2.
By (2.18), we may assume that b is rigid; hence K := F{y/b) is
Pythagorean, by [13, 5.15]. If φ is isotropic over K, then it is hy-
perbolic. But this means βκ = 0 since α, β are basic and ί is
birigid over A ,̂ a contradiction. Hence, ^ is anisotropic. By (2.12),
we have aF = (1, . . . , 1, b, . . . , b) and dim a = dim β . But then
a _L βt is not round over the pythagorean field F(y/Ί). This
completes the proof. D

LEMMA 2.21. Let F be a fr. pythagorean field and let φ be an
anisotropic form over F which represents 1 and at least one birigid
element. If \DF(φ)\ > 2 and φ is round over F(y/a) whenever a E
DF(φ), then φ is round over F,

Proof According to (2.20), we may assume that φ represents birigid
elements t\, ^ with t\ ψ t2 mod A(F). Let φ = ψ\ _L φ2t2 _L JL
φntn where t4 = t2h , the ψi are basic forms, ί, ψ tj mod A(F), and
possibly φ4 — 0. We may assume that φ is anisotropic over F(y/t2)
and i^Vfe), by (2.10). According to (2.12), we get φx J_ <p2 = ψi ±
ψ4 over F(y/Ϊ2) and hence over F , by (2.10). Analogously, we get
φ\ _L φ3 = φ2 -L ̂ 4 over i 7 . Thus, ^ 2 =F <Pi since F is pythagorean.
By cancelling, we get φ\ = ψ49 and by (2.16), we are done. D

If we consider formally real fields with w-invariant 2 we easily get
the desired result. In this case, there exists a torsion Pfister form
(1, x) φ 0, so D((l, x)) = F*. Now, (2.1) yields the desired re-
sult and we do not need the additional assumption that the form
under consideration must represent more than two elements modulo
F * 2 . Even if we require this, there are counter-examples in case of
u{F)>4:

COUNTER-EXAMPLES 2.22. In the sequel we need a slight general-
ization of (1.3). It is immediate from [6, Th. 1, Prop. 1] that the
assertion of (1.3) holds also for different linked basic Pfister forms
φ φ 0, p where D(p) = A(F).
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( l ) L e t F be a field with S(F) = (S(R)πS(F3))τ where Γ = { 1 , t)

Consider the form

over F (so, DF{φ) = { ( ) ) , (J)ί , {\)t}). Using [5, 2.3], [6, Prop.
2] and the generalized version of (1.3) it is easy to check that φ is
round over F(y/a) whenever a G Dp(φ). But, according to (2.12), φ
is not round over F. This also shows that Proposition (2.20) does not
hold in general when u{F) > 4. Moreover, since F is a SAP-field,
the assertion of Lemma (2.19) is not true for every SAP-field.

(2) Let L := Q2(>/-!")> a n d let (l,a,b,ab) be the unique
anisotropic 4-dimensional form over L (cf. [16, p. 217]). Then,
DL({a,b,ab)) = L*\L*2 and, by [16, 4.1.7], for any υ e L*\^*2

there exists a w e L* such that (1, a, b, ab) = (1, υ , w , vw).
Now, let F be a field with S(F) = (S{R)πS(L))τ where T = {1, ί} .
Define

1 1 1 1 \ A (\ 1 1 1J and ^ : (
Let (*) be any element of DF{φ)\{l}. Then,

1 -1\ _ (\ 1 1 1
x 1 1

for an x e L*/L*2. Hence, φ = ψ over F(φc) whenever x e
DF(φ)\F2. Now, consider the form γ := φ _L ψt over F. Using
the same arguments as in (1) one can check that γ is round over any
quadratic extension F{y/z) where z e DF{γ), however, by (2.12), it
is not round over F. Note also that the form γ represents a group.
Hence, even if we use the stronger condition (2) (of the list at the
beginning of this section) instead of (1), we have counter-examples.

Finally, we want to examine how the going-down property can be
generalized. The appropriate generalization is to require "roundness"
over φ-2n-extensions (cf. (1.9)(2)). The usual induction proofs yield:

LEMMA 2.23. Let φ be an nr-representable {resp. anisotropic) form
over F and let 1 e DF{φ). If φ is round over any φ-2n-extension
{resp. 2n -extension) of F for a fixed n e N*, then φ is round over F.
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