RICCI CURVATURE AND VOLUME GROWTH

M. Strake and G. Walschap

Abstract

We give an example of a complete manifold M^{m} of nonnegative Ricci curvature for which the volume of distance tubes around a totally geodesic submanifold L^{l} divided by the corresponding volume in $L \times \mathbf{R}^{m-l}$ goes to infinity. Recall that in the case of nonnegative sectional curvature, this quotient is nonincreasing and bounded by 1 .

1. Introduction. One of the fundamental tools in the study of Ricci curvature is the Bishop-Gromov volume inequality, which states that in a complete manifold M^{m} of Ricci curvature $\geq(m-1) \kappa$, the map

$$
r \mapsto \frac{\operatorname{vol} B_{r}(p)}{\operatorname{vol}\left(D_{r}, \hat{g}_{\kappa}\right)}
$$

is monotonically nonincreasing. Here, $B_{r}(p)$ is the ball of radius r around $p \in M$, and (D_{r}, \hat{g}_{k}) is a ball of same radius in the simply connected space of constant sectional curvature κ. Under somewhat different assumptions, this inequality still holds when p is replaced by a compact, totally geodesic submanifold L^{l} of M : The comparison space now becomes $\left(L \times D_{r}, g_{\kappa}\right)$, where for $x=\left(x_{0}, x_{1}\right)$ in the tangent space of $L \times D_{r}$ at $(p, u), g_{\kappa}(x, x)=c_{\kappa}^{2}(|u|) \check{g}\left(x_{0}, x_{0}\right)+$ $\hat{g}_{\kappa}\left(x_{1}, x_{1}\right)$. (Here \check{g} is the metric on L induced by the imbedding $L \hookrightarrow M$, and c_{κ} is the solution of the equation $c_{\kappa}^{\prime \prime}+\kappa c_{\kappa}=0$, with $c_{\kappa}(0)=1, c_{\kappa}^{\prime}(0)=0$.) The volume inequality now reads (cf. [4], [3], [6]):
(*) If the radial sectional curvatures of M are $\geq \kappa$, then

$$
q_{L}(r) \stackrel{\text { def }}{=} \frac{\operatorname{vol} B_{r}(L)}{\operatorname{vol}\left(L \times D_{r}, g_{\kappa}\right)}
$$

is a nonincreasing function of r, with $q_{L}(0)=1$. (A 2-plane $\sigma \subset M_{q}$ is said to be radial if it contains the tangent vector of some minimal geodesic from q to L.)
(**) If all sectional curvatures of M are $\geq \kappa$, then $q_{L}\left(r^{\prime}\right)=q_{L}(r)$ for some $0<r^{\prime}<r$ only if the normal bundle of $L \hookrightarrow M$ is flat with respect to the induced connection, and $B_{r}(L)$ is (locally) isometric to ($L \times D_{r}, g_{\kappa}$).

In this note, we show that (*) no longer holds in general if one only assumes $\operatorname{Ric}_{M} \geq(m-1) \kappa$ (see also [1] for a related result): In fact, the quotient $q_{L}(r)$ may go to infinity as $r \rightarrow \infty$. Moreover, even if the radial sectional curvatures are $\geq \kappa$-so that ($*$) must hold-(**) is no longer true if one replaces $K_{M} \geq \kappa$ by $\operatorname{Ric}_{M} \geq(m-1) \kappa$. More precisely, we have:
1.1. Theorem. Let $L=\mathbf{C} P^{1}$, and $M=\mathbf{C} P^{2}$. Then
(a) The normal bundle E of $L \hookrightarrow M$ admits a complete metric of nonnegative Ricci curvature such that

$$
q_{L}(r) \stackrel{\text { def }}{=} \frac{\operatorname{vol} B_{r}(L)}{\operatorname{vol}\left(L \times D_{r}, g_{0}\right)}
$$

goes monotonically to infinity as $r \rightarrow \infty$.
(b) There is a complete metric on M with the following properties:
(1) L is totally geodesically imbedded in M.
(2) $\operatorname{Ric}_{M} \geq 3$, and the radial sectional curvatures are ≥ 1.
(3) $q_{L}(r) \stackrel{\text { def }}{=} \frac{\operatorname{vol} B_{r}(L)}{\operatorname{vol}\left(L \times D_{r}, g_{1}\right)} \equiv 1$ for $r \leq \varepsilon$, provided ε is suffciently small.
2. Ricci curvature for connection metrics. Let $L=\mathbf{C} P^{1} \hookrightarrow \mathbf{C} P^{2}$ with the standard metric of curvature $1 \leq K \leq 4$. As in [5], we identify a distance tube $B_{r}(L)$ around L with $[0, r] \times S^{3} / \sim$, where all the Hopf fibers are collapsed to a point at $\{0\} \times S^{3}$. Consider the class $d \sigma_{r}^{2}$ of metrics on S^{3} obtained by multiplying the standard metric by $f^{2}(r)$ in the Hopf fiber direction, and by $h^{2}(r)$ on its orthogonal complement. If f is an odd smooth function with $f^{\prime}(0)=1$, and h is even and positive, then the metric $d r^{2}+d \sigma_{r}^{2}$ on $(0, r] \times S^{3}$ extends to $B_{r}(L)$. The standard metric corresponds to $f(r)=(1 / 2) \sin 2 r$ and $h(r)=\cos r$. Using the same vector fields $X_{i}, 0 \leq i \leq 3$, as in [5] (where X_{0} is radial, X_{1} is tangent to the Hopf fiber, and X_{2}, X_{3} are orthogonal to it), we obtain for $R_{i j}:=\operatorname{Ric}\left(X_{i} /\left|X_{i}\right|, X_{j} /\left|X_{j}\right|\right)$:

$$
\begin{align*}
& R_{00}=-\frac{f^{\prime \prime}}{f}-2 \frac{h^{\prime \prime}}{h}, \tag{2-1}\\
& R_{11}=-\frac{f^{\prime \prime}}{f}-2 \frac{f^{\prime} h^{\prime}}{f h}+2 \frac{f^{2}}{h^{4}}, \tag{2-2}\\
& R_{22}=R_{33}=-\frac{h^{\prime \prime}}{h}-\frac{f^{\prime} h^{\prime}}{f h}+\frac{4 h^{2}-2 f^{2}-h^{\prime 2} h^{2}}{h^{4}}, \tag{2-3}\\
& R_{i j}=0, \quad i \neq j . \tag{2-4}
\end{align*}
$$

The proof is straightforward and will be omitted.
This class of metrics is actually a special case of the following construction: Let $\left(L^{l}, \check{g}\right)$ be a Riemannian manifold, and $\mathbf{R}^{k} \rightarrow E \xrightarrow{\pi} L$ a vector bundle with inner product \langle,$\rangle and Riemannian connec-$ tion ∇. Fix $0<r_{0} \leq \infty$, and consider the disk bundle $E^{r_{0}}=$ $\left\{u \in E \mid\langle u, u\rangle<r_{0}\right\}$. If \mathscr{V} denotes the vertical distribution defined by π, and \mathscr{H} the horizontal distribution determined by the connection, define

$$
g(x, x)=h^{2}(|u|) \check{g}\left(\pi_{*} x, \pi_{*} x\right) \quad\left(x \in \mathscr{H} \cap T_{u} E\right),
$$

where h is an even, smooth, positive function on $\left(-r_{0}, r_{0}\right)$. The fibers of $E^{r_{0}}$ are endowed with a metric given in polar coordinates by

$$
d r^{2}+f^{2}(r) d \sigma^{2}
$$

where $d \sigma^{2}$ is the standard metric on the sphere, and f is an odd, smooth function with $f^{\prime}(0)=1$. We then obtain a metric g on $E^{r_{0}}$ by declaring \mathscr{H} and \mathscr{V} to be mutually orthogonal. The fibers of the bundle are totally geodesic submanifolds in this metric, and the projection π restricted to a sphere bundle of radius r becomes a Riemannian submersion with base ($\left.L, h^{2}(r) \check{g}\right)$. One can easily compute the Ricci curvatures by using O'Neill's formula for Riemannian submersions and the Gauss equations (cf. also [2]): If ∂_{r} denotes the unit radial vector field (dual to $d r$), v a unit vertical vector orthogonal to ∂_{r}, and x a unit horizontal vector, then

$$
\begin{gather*}
\operatorname{Ric}\left(\partial_{r}, \partial_{r}\right)=-l \frac{h^{\prime \prime}}{h}-(k-1) \frac{f^{\prime \prime}}{f}, \tag{2-5}\\
\operatorname{Ric}\left(\partial_{r}, x\right)=\operatorname{Ric}\left(\partial_{r}, v\right)=0, \tag{2-6}\\
\operatorname{Ric}(v, v)=-\frac{f^{\prime \prime}}{f}+(k-2) \frac{1-f^{\prime 2}}{f^{2}}-l \frac{f^{\prime} h^{\prime}}{f h} \\
+\sum_{i=1}^{l}\left\langle A_{x_{i}} v, A_{x_{i}} v\right\rangle, \tag{2-7}\\
\operatorname{Ric}(x, x)=-\frac{h^{\prime \prime}}{h}-(l-1) \frac{h^{\prime 2}}{h^{2}}-(k-1) \frac{h^{\prime} f^{\prime}}{h f} \\
+\operatorname{Ric}^{\vee}\left(\pi_{*} x, \pi_{*} x\right)-2 \sum_{i=1}^{l}\left\langle A_{x} x_{i}, A_{x} x_{i}\right\rangle, \tag{2-8}\\
\operatorname{Ric}(v, x)=\langle(\check{\delta} A) x, v\rangle . \tag{2-9}
\end{gather*}
$$

Here, $\left\{x_{i}\right\}$ is an orthonormal basis of \mathscr{H}, A is the O'Neill tensor of the submersion with divergence $\check{\delta} A=\sum_{i=1}^{l} D_{x_{i}} A\left(x_{i}, \cdot\right) \quad(D$ is the Levi-Civita connection of $\left(E^{r_{0}}, g\right)$), and Ric^{\vee} is the Ricci tensor of $\left(L, h^{2}(r) \check{g}\right)$.

Moreover, if ∇ is a Yang-Mills connection, then (cf. [2], p. 243):

$$
\operatorname{Ric}(v, x)=0
$$

In the special case when E is the normal bundle of $\mathbf{C} P^{1} \hookrightarrow \mathbf{C} P^{2}$, let ∇ denote the connection on E induced by the Levi-Civita connection of the symmetric space $\mathbf{C} P^{2}$. Then ∇ is Yang-Mills since the curvature tensor R^{∇} is parallel. In particular, (2-9') holds, and it is straightforward to check that $(2-5)-(2-9)$ reduce to $(2-1)-(2-4)$. Notice that the A-tensor can be expressed in terms of R^{∇}, cf. [6].

3. Proof.

Proof of $1.1(\mathrm{a})$. The volume of a distance tube $B_{r}(L)$ with respect to the class of metrics described in $\S 2$ is given by:

$$
\begin{aligned}
\operatorname{vol} B_{r}(L) & =\int_{0}^{r} \operatorname{vol} S_{t}(L) d t \\
& =C \cdot \operatorname{vol}(L) \cdot h^{-l}(0) \cdot \int_{0}^{r} h^{l}(t) f^{k-1}(t) d t
\end{aligned}
$$

where $S_{t}(L)$ is a distance sphere around $L, \operatorname{vol}(L):=\operatorname{vol}\left(L, h^{2}(0) \check{g}\right)$, and C is the volume of the standard sphere $S^{k-1} \subset \mathbf{R}^{k}$. It thus suffices to find functions f and h such that (2-1)-(2-3) yield Ric ≥ 0, and $h^{l}(r) f^{k-1}(r) / r^{k-1}=h^{2}(r) f(r) / r \rightarrow \infty$ as $r \rightarrow \infty$. Let $f(r):=$ $r /\left(1+r^{2}\right)^{1 / 2}$, and $h(r):=(r / f(r))^{\alpha}$, where α is any constant in the interval $[1 / 2,1]$. Notice that $q_{L}(r) \rightarrow \infty$ as $r \rightarrow \infty$ if $\alpha>1 / 2$, and $q_{L}(r) \equiv 1$ for $\alpha=1 / 2$.

A straightforward calculation shows that (2-1)-(2-3) become:

$$
\begin{align*}
R_{0,0} & =\frac{-3(2 \alpha-1)}{\left(1+r^{2}\right)^{2}}+\frac{2 \alpha}{1+r^{2}}\left(2-(\alpha+1) \frac{r^{2}}{1+r^{2}}\right) \tag{3-1}\\
& =\frac{\alpha}{1+r^{2}}\left(4-\varphi_{\alpha}(r)\right)
\end{align*}
$$

where $\varphi_{\alpha}(r)=\left(3(2 \alpha-1)+2 \alpha(\alpha+1) r^{2}\right) / \alpha\left(1+r^{2}\right)$. Since φ_{α} is an increasing function on $[0, \infty)$ with $\lim _{r \rightarrow \infty} \varphi_{\alpha}(r)=2(\alpha+1) \leq 4$, we conclude that $R_{0,0} \geq 0$.

$$
\begin{equation*}
R_{1,1}=\frac{3-2 \alpha}{\left(1+r^{2}\right)^{2}}+2 \frac{f^{2}}{h^{4}} \geq 0 \tag{3-2}
\end{equation*}
$$

$$
\begin{align*}
R_{2,2}=R_{3,3}= & \frac{-3 \alpha}{\left(1+r^{2}\right)^{2}}+\frac{\alpha}{1+r^{2}}\left(1-\alpha \frac{r^{2}}{1+r^{2}}\right) \tag{3-3}\\
& +4\left(\frac{f(r)}{r}\right)^{2 \alpha}-2 r^{2}\left(\frac{f(r)}{r}\right)^{2+4 \alpha}-\frac{\alpha^{2} r^{2}}{\left(1+r^{2}\right)^{2}} \\
\geq & \left(1+r^{2}\right)^{-\alpha}\left(4-\left(\psi_{\alpha}(r)+\theta_{\alpha}(r)\right)\right)
\end{align*}
$$

where $\psi_{\alpha}(r):=2 r^{2} /\left(1+r^{2}\right)^{1+\alpha}$, and $\theta_{\alpha}(r):=\left(3 \alpha+\alpha^{2} r^{2}\right) /\left(1+r^{2}\right)^{2-\alpha}$.
One easily checks that the maximum of ψ_{α} equals

$$
\eta(\alpha)=2 / \alpha(1+1 / \alpha)^{1+\alpha} \leq \eta(1 / 2)=4 / 3 \sqrt{3}
$$

for $\alpha \geq 1 / 2$. Moreover, θ_{α} is a decreasing function if $\alpha \leq 1$, with $\theta_{\alpha}(0)=3 \alpha$. Thus:

$$
R_{2,2}=R_{3,3} \geq\left(1+r^{2}\right)^{-\alpha}(4-(3+4 / 3 \sqrt{3}))>0
$$

thereby completing the proof of $1.1(\mathrm{a})$.
Proof of $1.1(\mathrm{~b})$. When $h \equiv \cos ,(2-1)-(2-3)$ become:

$$
\begin{equation*}
R_{0,0}=2-\frac{f^{\prime \prime}}{f} \tag{i}
\end{equation*}
$$

$$
\begin{equation*}
R_{1,1}=-\frac{f^{\prime \prime}}{f}+2 \frac{f^{\prime} \sin }{f \cos }+2 \frac{f^{2}}{\cos ^{4}} \tag{ii}
\end{equation*}
$$

$$
\begin{equation*}
R_{2,2}=R_{3,3}=1+\frac{f^{\prime} \sin }{f \cos }+\frac{4 \cos ^{2}-2 f^{2}-\sin ^{2} \cos ^{2}}{\cos ^{4}} \tag{iii}
\end{equation*}
$$

We will choose f so that $f(r)=\sin r$ for $r \leq \varepsilon, f(r)=\sin r \cos r$ for $r \geq \pi / 4$, and $R_{i, i} \geq 3$. Define $k:=f / \sin$. (i) and (ii) transform into:

$$
\begin{align*}
& R_{0,0}=3-\frac{k^{\prime \prime}}{k}-2 \frac{k^{\prime} \cos }{k \sin } \tag{i'}\\
& R_{1,1}=3-\frac{k^{\prime \prime}}{k}-2 \frac{k^{\prime}}{k}\left(\frac{\cos }{\sin }-\frac{\sin }{\cos }\right)+2 k^{2} \frac{\sin ^{2}}{\cos ^{4}}
\end{align*}
$$

If $\varepsilon>0$ is sufficiently small, there exists a function k such that $k \equiv 1$ on $[0, \varepsilon], k \equiv \cos$ on $\left[\pi / 4, \pi / 2\right.$], and $k^{\prime \prime} \leq 0$. Then $R_{0,0}, R_{1,1} \geq$ 3. To show that $R_{2,2} \geq 3$, observe that, since $f \leq \sin$,

$$
\begin{aligned}
F & \stackrel{\text { def }}{=}\left(4 \cos ^{2}-2 f^{2}-\sin ^{2} \cos ^{2}\right) / \cos ^{4} \\
& \geq\left(4 \cos ^{2}-2 \sin ^{2}-\sin ^{2} \cos ^{2}\right) / \cos ^{4} \stackrel{\text { def }}{=} G .
\end{aligned}
$$

Now, the minimum value of $G=\left(5 / \cos ^{2}\right)-\left(2 / \cos ^{4}\right)+1$ on the interval $[0, \pi / 4]$ is $G(\pi / 4)=3$. Since $R_{2,2}-F=2+\left(k^{\prime} \sin \right) /(k \cos) \geq 1$, the result follows.

We now proceed to show that the radial sectional curvatures are ≥ 1 : Let $x \in T_{p} L$, and consider a unit-speed geodesic γ originating at p and orthogonal to L. If E denotes the parallel field along γ with $E(0)=x$, then $J:=h E$ is a Jacobi field along γ, cf. [3]. Therefore, $R(E, \dot{\gamma}) \dot{\gamma}=-\left(h^{\prime \prime} / h\right) E$, so that $\langle R(E, \dot{\gamma}) \dot{\gamma}, E\rangle \equiv 1$. On the other hand, if v is orthogonal to both $\dot{\gamma}(0)$ and $T_{p} L$, and if F denotes the parallel field along γ with $F(0)=v$, then $R(F, \dot{\gamma}) \dot{\gamma}=-\left(f^{\prime \prime} / f\right) F$, and

$$
\langle R(F, \dot{\gamma}) \dot{\gamma}, F\rangle=-f^{\prime \prime} / f=1-\left(k^{\prime \prime} / k\right)-2\left(k^{\prime} / k\right)(\cos / \sin) .
$$

This last expression is ≥ 1 and identically 1 on $[0, \varepsilon]$. The same is therefore true for all radial curvatures.

Finally, observe that the comparison space in [4] or [3] has the same volume growth as $\left(L \times D_{r}, g_{\kappa}\right)$. It follows that $q_{L}(r) \equiv 1$ for our choices of f and h when $r \leq \varepsilon$.

4. Remarks.

4.1. In 1.1(a), the maximal growth rate for the volume of $B_{r}(L)$ obtained by our method is of order r^{3}.
4.2. The maximal distance from L with respect to the metric g from $1.1(b)$ is $\pi /(2 \sqrt{\kappa})=\pi / 2$, where κ is the infimum of the radial sectional curvatures and the Ricci curvature. Nevertheless, (M, g) is not symmetric, cf. the remark on p. 322 in [3].
4.3. As the general formulas of $\S 2$ show, one can produce similar examples on other vector bundles. It is, however, essential to have some information about the divergence of the A-tensor, cf. (2-9), (2-9').

References

[1] M. Anderson, Short geodesics and gravitational instantons, J. Differential Geom., 31 (1990), 265-275.
[2] A. Besse, Einstein manifolds, Springer Verlag, 1987.
[3] J.-H. Eschenburg, Comparison theorems and hypersurfaces, Manuscripta Math., 59 (1987), 295-323.
[4] E. Heintze and H. Karcher, A general comparison theorem with applications to volume estimates for submanifolds, Ann. Scient. Ec. Norm. Sup., (4)11 (1978), 451-470.
[5] J.-P. Sha and D. G. Yang, Examples of manifolds of positive Ricci curvature, J. Differential Geom., 29 (1989), 95-103.
[6] M. Strake and G. Walschap, Σ-flat manifolds and Riemannian submersions, Manuscripta Math. (to appear).

Received September 29, 1989. The first author was supported in part by the Heinrich Hertz Foundation, the second author by a grant from the National Science Foundation.

University of California, Los Angeles
Los Angeles, CA 90024-1555
Current address: University of Oklahoma
Norman, OK 73019

