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RICCI CURVATURE AND VOLUME GROWTH

M. STRAKE AND G. WALSCHAP

We give an example of a complete manifold Mm of nonnegative
Ricci curvature for which the volume of distance tubes around a to-
tally geodesic submanifold Lι divided by the corresponding volume in
L x R m - / goes to infinity. Recall that in the case of nonnegative sec-
tional curvature, this quotient is nonincreasing and bounded by 1.

1. Introduction. One of the fundamental tools in the study of Ricci
curvature is the Bishop-Gromov volume inequality, which states that
in a complete manifold Mm of Ricci curvature > (m - \)κ, the map

Vθl(Dr,gκ)

is monotonically nonincreasing. Here, Br(p) is the ball of radius r
around p e M, and (Dr, gκ) is a ball of same radius in the simply
connected space of constant sectional curvature K . Under somewhat
different assumptions, this inequality still holds when p is replaced by
a compact, totally geodesic submanifold I) of M: The comparison
space now becomes (L x Dr, gκ), where for x = (XQ9X\) in the
tangent space o f L x Dr at (p,u), gκ(x, x) = c%(\u\)g(x0,

 x°] +

gκ{x\ ,x\). (Here g is the metric on L induced by the imbedding
L *-• M, and ĉ  is the solution of the equation c£ + κcκ = 0, with
^(0) = 1, 4(0) = 0.) The volume inequality now reads (cf. [4], [3],
[6]):

(*) If the radial sectional curvatures of M are > K , then

vol(LxZ>r, sic)

is a nonincreasing function of r, with #L(0) = 1 (A 2-plane
σ c Mq is said to be radial if it contains the tangent vector of
some minimal geodesic from ? to I . )

(**) If all sectional curvatures of M are > K , then <7L(Γ') = q^)
for some 0 < rf < r only if the normal bundle of L ^ M
is flat with respect to the induced connection, and Br(L) is
(locally) isometric to ( I x Dr, gκ).
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In this note, we show that (*) no longer holds in general if one only
assumes RICM > (m — 1)K (see also [1] for a related result): In fact,
the quotient #z,(r) may go to infinity as r —• oo. Moreover, even if
the radial sectional curvatures are > K—so that (*) must hold— (**)
is no longer true if one replaces KM > K by Ric^ > (m-l)κ. More
precisely, we have:

1.1. THEOREM. Let L = CP1, and M = CP2. Then

(a) The normal bundle E of L^-+ M admits a complete metric of
nonnegative Ricci curvature such that

vol(Lx/) r, g0)

goes monotonically to infinity as r —• oo.
(b) There is a complete metric on M with the following properties:

(1) L is totally geodesically imbedded in M.
(2) Ricjv/ > 3, and the radial sectional curvatures are > 1.

(3) qL(r) ̂  yo™l"r^gι) = 1 for r < β, provided ε is suffi-

ciently small.

2. Ricci curvature for connection metrics. Let L = C P 1 <-> CP2

with the standard metric of curvature 1 < K < 4. As in [5], we iden-
tify a distance tube Br(L) around L with [0, r] x S3/ ~ , where all
the Hopf fibers are collapsed to a point at {0} x S3. Consider the class
dσ2 of metrics on S3 obtained by multiplying the standard metric by
/ 2 (r) in the Hopf fiber direction, and by h2(r) on its orthogonal com-
plement. If / is an odd smooth function with /'(0) = 1, and h is
even and positive, then the metric dr2+dσ2 on (0, r]xS3 extends to
Br(L). The standard metric corresponds to f(r) = (l/2)sin2r and
h(r) = cosr. Using the same vector fields Xi, 0 < / < 3, as in [5]
(where Xo is radial, X\ is tangent to the Hopf fiber, and X2, X3 are
orthogonal to it), we obtain for ϋ y := Ric (Xi/\Xt\, Xj/\Xj\):

f" h"
(2-1) KOo = --γ-2-£,

(2-2) Rn = -±--2ij^ + 2^,

(2-3) R22 = R33 = - τ - 7 J - + w -

(2-4) Rij = 0, iφj.
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The proof is straightforward and will be omitted.

This class of metrics is actually a special case of the following con-
struction: Let (Lι, g) be a Riemannian manifold, and Rk —> E ^> L
a vector bundle with inner product ( , ) and Riemannian connec-
tion V. Fix 0 < ΓQ < oc, and consider the disk bundle Ero =
{ u G E I (u, u) < ΪQ }. If Ψ* denotes the vertical distribution de-
fined by π, and M? the horizontal distribution determined by the
connection, define

g{x, x) = h2(\u\) g{π*x, π*x) ( x G / ί l TUE),

where h is an even, smooth, positive function on (-ΓQ, ΓQ). The
fibers of Ero are endowed with a metric given in polar coordinates by

dr2 + f2(r)dσ2,

where dσ2 is the standard metric on the sphere, and / is an odd,
smooth function with /'(O) = 1. We then obtain a metric g on Ero
by declaring & and Ψ* to be mutually orthogonal. The fibers of
the bundle are totally geodesic submanifolds in this metric, and the
projection π restricted to a sphere bundle of radius r becomes a Rie-
mannian submersion with base (L, h2[r) g). One can easily compute
the Ricci curvatures by using O'Neill's formula for Riemannian sub-
mersions and the Gauss equations (cf. also [2]): If dr denotes the unit
radial vector field (dual to dr), v a unit vertical vector orthogonal to
dr, and x a unit horizontal vector, then

(2-5) Ric(0r, dr) = - / y - (fc - l ) y ,

(2-6) Ric(<9r, x) = Ric(<9r, v) = 0,

f" 1 - fa

R i φ , t ; ) = _ ^ + ( f c - 2 ) - ^ -
(2-7) /

h" ha h! Γ
? x ) = - ^ - (/ - 1 ) ^ - - (/c - 1 ) ^

(2-8)
+ Ricv(π*x, π*x) - 2 Σ(AxXi, Axxt),

(2-9)
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Here, {XJ} is an orthonormal basis of %?, A is the O'Neill tensor
of the submersion with divergence δA = Σ j = 1 DxA{Xi, •) (D is the
Levi-Civita connection of (£7Ό, <g

r)), and Ricv is the Ricci tensor of

Moreover, if V is a Yang-Mills connection, then (cf. [2], p. 243):

(2-9') R i φ , x) = 0.

In the special case when E is the normal bundle of GP1 <-• CP2,
let V denote the connection on E induced by the Levi-Civita con-
nection of the symmetric space C P 2 . Then V is Yang-Mills since
the curvature tensor i ? v is parallel. In particular, (2-9') holds, and
it is straightforward to check that (2-5)-(2-9) reduce to (2-l)-(2-4).
Notice that the A -tensor can be expressed in terms of Rv, cf. [6].

3. Proof.

Proof of 1.1 (a). The volume of a distance tube Br{L) with respect
to the class of metrics described in §2 is given by:

γo\ Br{L)= ΓvόlSt(L)dt
Jo

= C vol(L) Λ"/(0) Γhl(t)fk-l(t)dt,
Jo

where St(L) is a distance sphere around L, vol (L) := vol (L, h2(0)g),
and C is the volume of the standard sphere S^"1 c R f c . It thus suf-
fices to find functions / and h such that (2-1)—(2-3) yield Ric > 0,
and hι(r)fk-ι(r)/rk-1 = h2(r)f(r)/r -> oo as r -> oo. Let f(r) :=
r/(l + r 2 ) 1 / 2 , and h(r) := (r/ f{r))a, where a is any constant in the
interval [1/2, 1]. Notice that 0z,(r) —• oo as r —• oo if a > 1/2, and
qL(r)=l for α = l / 2 .

A straightforward calculation shows that (2-1)—(2-3) become:

- 3 ( 2 α - l ) 2α /
+ ^2 - (α

( 1 + f 2 ) 2

where ??α(r) = (3(2α - 1) + 2α(α + l)r2) /α(l + r2). Since $?α is an
increasing function on [0, oo) with limr_+oo ̂ α(^) = 2(α + 1) < 4, we
conclude that JRO,O > 0.
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-3α a Λ r2

where ψa{r) := 2 r 2 / ( l + r 2 ) 1 + t * , and 0β(r) :=
One easily checks that the maximum of ψa equals

η(a) = 2/α(l + l / α ) 1 + α < ι/(l/2) = 4/3^3,

for a > 1/2. Moreover, θα is a decreasing function if α < 1, with
0a(O) = 3α. Thus:

thereby completing the proof of 1.1 (a).

Proof of l.l(b). When h = cos, (2-l)-(2-3) become:

(i) i?O)o = 2 - ^ ,

(m)

/COS COS4

/ ' sin 4 cos2 - 2 / 2 - sin2 cos2

,

We will choose / so that f(r) = sinr for r < ε, f(r) = sin r cos r
for r > π/4, and Rij>3. Define /: := // sin. (i) and (ii) transform
into:

(i) JR0>0 = 3 - τ - 2

() l l ^ 2 | f ^
A: A: \sin cos

If ε > 0 is sufficiently small, there exists a function k such that k = 1
on [0, ε], fe = cos on [π/4, π/2], and fe" < 0. Then i?o,o, ^?i, l >
3. To show that i?2,2 > 3, observe that, since / < sin,

F = f (4 cos2 - 2 / 2 - sin2 cos2)/ cos4

> (4 cos2 - 2 sin2 - sin2 cos2)/ cos4 = f G.
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Now, the minimum value of G = (5/ cos2) - (2/ cos4) + 1 on the inter-
val [0, π/4] is G(π/4) = 3. Since R2,2-F = 2+(&'sin)/(£cos) > 1,
the result follows.

We now proceed to show that the radial sectional curvatures are
> 1: Let x G TPL, and consider a unit-speed geodesic γ originating
at p and orthogonal to L. If E denotes the parallel field along γ with
E(0) = x, then / := hE is a Jacobi field along γ, cf. [3]. Therefore,
R(E, γ)γ = -(h"/h)E, so that (R(E, y)y, E) = 1. On the other
hand, if v is orthogonal to both γ(0) and TPL, and if F denotes
the parallel field along γ with F(0) = v , then R(F, γ)γ = -(f'/f)F,
and

This last expression is > 1 and identically 1 on [0, ε]. The same is
therefore true for all radial curvatures.

Finally, observe that the comparison space in [4] or [3] has the
same volume growth as (Lx Dr, gκ). It follows that #χ,(r) = 1 for
our choices of / and h when r < ε.

4. Remarks.
4.1. In 1.1 (a), the maximal growth rate for the volume of Br{L)

obtained by our method is of order r 3 .
4.2. The maximal distance from L with respect to the metric g

from 1.1 (b) is π/(2y/ic) = π/2, where K is the infimum of the radial
sectional curvatures and the Ricci curvature. Nevertheless, (M9 g) is
not symmetric, cf. the remark on p. 322 in [3].

4.3. As the general formulas of §2 show, one can produce similar ex-
amples on other vector bundles. It is, however, essential to have some
information about the divergence of the ^4-tensor, cf. (2-9), (2-9').

REFERENCES

[1] M. Anderson, Short geodesies and gravitational instantons, J. Differential Geom.,
31 (1990), 265-275.

[2] A. Besse, Einstein manifolds, Springer Verlag, 1987.
[3] J.-H. Eschenburg, Comparison theorems and hyper surfaces, Manuscripta Math.,

59 (1987), 295-323.
[4] E. Heintze and H. Karcher, A general comparison theorem with applications to

volume estimates for submanifolds, Ann. Scient. Ec. Norm. Sup., (4)11 (1978),
451-470.

[5] J.-P. Sha and D. G. Yang, Examples of manifolds of positive Ricci curvature, J.
Differential Geom., 29 (1989), 95-103.



RICCI CURVATURE AND VOLUME GROWTH 167

[6] M. Strake and G. Walschap, Σ-flat manifolds and Riemannίan submersions,
Manuscripta Math, (to appear).

Received September 29, 1989. The first author was supported in part by the Heinrich
Hertz Foundation, the second author by a grant from the National Science Founda-
tion.

UNIVERSITY OF CALIFORNIA, LOS ANGELES

Los ANGELES, CA 90024-1555

Current address: University of Oklahoma
Norman, OK 73019






