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GENERALIZED CLIFFORD-LITTLEWOOD-ECKMANN
GROUPS

TARA L. SMITH

This paper investigates the structure of "generalized Clifford-
Littlewood-Eckmann groups", which arise in a number of physical
applications. They are a direct generalization of Clifford-Littlewood-
Eckmann groups, which have many connections to quadratic forms
and classical Clifford algebras. Here we show that any such group de-
composes into a central product of factor groups of relatively small or-
der, and that the number of isomorphism types of these factor groups
is also small. The determination of the decomposition of these groups
allows an easy calculation of many of the properties of the groups as
well as of their associated generalized Clifford algebras. These appli-
cations will be carried out in subsequent papers.

Introduction. In [LS] we analyzed the structure of those 2-groups
which can be presented as G = (ε, a\, . . . , ar\ε2 = 1, a] = εkW Vι,
α, α/ = eajUf Vi < j , eat = α, β Vi>. Any group of this type can
be parametrized in terms of the values s := \{i: k(i) = 1 (mod 2)}|
and t := |{i: k(i) = 0 (mod 2)}|, and can then be designated by
G = G,,,.

Examples of such groups (or closely related algebraic structures)
have appeared in the mathematics and physics literature from the 19th
century to the present day. For example, the so-called Dirac group is
in fact Go,4, and more generally the groups Go,2« arise naturally in
quantum field theory (see, e.g., [We] and [Lo]). On the other hand,
the groups Gr>o a r e exactly those used by Eckmann [E] in his elegant
group-theoretic proof of the theorem of Hurwitz-Radon on the compo-
sition of sums of squares ([HI], [H2], [R]). Littlewood [Li] considered
the general groups GSit in studying sets of anticommuting matrices.

These groups are implicit in Clifford's work on "geometric alge-
bras" [Cl]. In fact, the group GSit appears naturally as a subgroup
of the group of units of the Clifford algebra C5>' of the quadratic
form s(-l)±t(l). These groups exhibit a "mod 8 periodicity" de-
pending on s and t which parallels the well-known periodicity of the
Clifford algebras; moreover, we can derive the Clifford algebra period-
icity from that of the groups. Also the decomposition of the Clifford
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algebras Cs^ into tensor products of low-dimensional Clifford alge-
bras has an analogue in the decomposition of the groups Gsj into
central products of such groups of small order. Explicitly, these groups
decompose into a product of quaternion and dihedral groups of order
8, cyclic groups of order 4, and Klein-4 groups. The decomposition
theory for the groups Gs,t in turn makes it relatively easy to deduce
almost all facts about these groups, their representations, and their
abelian subgroup structures.

Because of the historical connections, the groups GSjt are referred
to as Clifford-Littlewood-Eckmann groups. In this paper we undertake
the analysis of a generalized version of the groups Gsj, where we
replace "2" by " n ". Specifically, we consider those groups G which
are generated by elements ω, α, (1 < i < r) subject to the relations
af = G)*(0 and a^aj = ωajdi whenever / < j , where ω is a (fixed)
central element such that ωn = 1.

If F is any field which contains a primitive nth root of unity ωr, we
can consider the finite-dimensional F-algebra [FG] := FG/(ω - ω9).
These algebras are so-called "generalized Clifford algebras", which
seem to be of considerable interest to physicists. Indeed, collections
of papers on generalized Clifford algebras and their connections to
problems in physics have appeared in books by Ramakrishnan [Ra]
and Chisholm and Common [CC], and have also been studied by
Yamazaki [Ya], Morris [Mol, Mo2], Popovici-Gheorghe [PG], and
Caenepeel and Van Oystaeyen [CVO]. The connections to generalized
Clifford algebras provide much of the motivation for considering these
generalized groups. In [Sm3] we use the results obtained here to see
how the study of these algebras can often be simplified and clarified by
working with the groups. Other applications are considered in [Sml],
[Sm2].

This paper is devoted to achieving a decomposition theory for these
more general groups. We show that any such group decomposes (in
an explicitly determined way) into a central product of groups of
order n3 and, if r is odd, one factor of order n2. This is a di-
rect generalization of the results obtained when n = 2. However,
the methods required are considerably more technical, and greater
care must be taken to be sure things work. The decomposition de*
pends on the (easily determined) center of G if r is odd, and on
d := g.c.d.(e(l), . . . , e(r), n), the parity of n, and if n is even,
also on r (mod 8) and on the number of / such that e(i)/d is
even or odd. These last dependencies are the generalizations of the
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parametrization of the 2-groups in terms of s and t, and the
"mod 8 periodicity" observed there.

1. Building block groups. Our goal is to develop a decomposition
theory for the generalized CLE-groups, showing how they can be con-
structed in a canonical way from certain small "building block groups",
just as the CLE-groups discussed in [LS] were. The groups we are in-
vestigating here are those which can be presented as

G = (ω, αi , . . . , ar\ωn = 1, af = ωe® Vι,

(Haj = ωajdi V/ < j , ωα; = a\ω V/).

As in the n = 2 case, we have a central element ω of order n in
G, which we intuitively think of as a primitive nth root of 1, and
we may refer to the relations αzα ; = ωα/α,- Vi < j by saying the
generators " ω-commute". (Of course, this depends on the particular
presentation of G given, since the ω-commuting relations depend on
the order and choice of the generators.) We record several other useful
facts about such groups.

PROPOSITION 1.1. For a group G as above the following hold true:

(1) |G| = n ^ .

(2) Let z := α i α j 1 •• αί~1)'~1. Then Z(G) = (ω, z) if r = 1
(mod 2), and Z(G) = (ω) ifr = 0 (mod 2).

(3) Z(G) D G ' = (ω) s z/nZ if r > 2. // r = 1, ί/*έw G w

(4) Lέtf g =

g™ = ω ^ α j 1 * ! .a?
k'ω[m{m-χ)l2]Σi<} '^.

(5) // z $ Z(G), i.e. (f r = 0 (mod 2), then zat = ωα/z Vi.

Proof. (1) follows because any element can be uniquely written as
k k

j 1 a/, 0 < fc, < /ι — 1. (2) is done by calculating the "cost"
in factors of ω of commuting each generator aι across an arbitrary
element g e G. If g is written as in (4) above, e.g., (and assum-
ing k0 = 0), the cost is Σ/<i(-Λ)') + Σ 7 > ί ( ^ ) Setting each "cost"
to be 0 (mod n), we get fc, = -fcz+i (mod n), 1 < i < r — 1, and
&i = A:r (mod ft). The only way such equations can be satisfied is
if r is odd, and k\ = -fc/+i (mod n), 1 < / < r - 1. By (4) this
will be the set of elements generated by ω and z. (4) is an elemen-

k k ck ck

tary computation done by observing that (ax

ι -ar

r){ax

 ι α r

 r) =

Σ ' ) . That (ω) = G' is obvious from the
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presentation of G, and with (2) the remainder of (3) is clear. Finally,
(5) is again seen by an easy computation. D

COROLLARY 1.2. Let z be as defined above. Then z" = ω(~Σ)(~

ifr = 0orl (mod 4), and zn = GrtB-tf'W+aC*-!)/*) if r = 2 or

3 (mod 4)

Proof. By (4) above, we see that for g as given,

gn = ^ Σ W ί W Σ ^ W " 1 ) " / 2 ) ,

Now for z,ki = ( - I ) ' " 1 , and we see that Σkfkj = 1 (mod 2) if
r = 2 or 3 (mod 4), while if r = 0 or 1 (mod 4), then £ fc/fc, = 0
(mod 2). The corollary then follows. D

We should remark that if r > 2, then ω is not essential as a
generator, i.e. ω is in the Frattini subgroup Φ of G. The key to
understanding these groups lies in the fact that any such group de-
composes as a central product of groups of this type with two gener-
ators (a\, a-i) or (ω, a), with at most one factor of the latter type
occurring. This is proved in Lemma (1.4) below. To simplify nota-
tion we will write G as (ω, a\, . . . , ar), and drop the relations. Let
H = ( ω , i i , . . . , i ί ) , s o G and H are two groups in the category
whose objects are finite groups with a distinguished central element
ω of order n and whose morphisms are ω-preserving homomor-
phisms. Define GxH = GH := (GxH)/((ω, ω" 1 )) , a central product
of two such groups, which again has a distinguished central element
ω = (ω, 1) = (1, ω) of order n. (This is exactly analogous to the
n = 2 case.)

LEMMA 1.3. Let G and H be as given above, and suppose r =
0 (mod 2). Let z = aia^'-a'1. Then GH can be written in
"standard form" as (ω, zb\, . . . , zbs, a\, . . . , ar), i.e. the generators
zb\, . . . , zbs, #i, . . . , ar

 <{'co-commute".

Proof. This follows from (5) of Proposition 1.1 above. D

LEMMA 1.4. Any group G which can be presented as

aicij = ωajdi Vz < j , ω# = #/ω Vz)
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decomposes as a central product of groups of this type with two ω-
commuting generators and at most one commutative factor generated
by ω, z. This factor appears if and only if r = 1 (mod 2).

Proof We prove the lemma via an induction "by 2" on r. Certainly
it is true for r = 1, 2.

Claim. If it is true for any G with r ω-commuting generators
a\, . . . , ar, then it holds true for any H with r + 2 ω-commuting
generators b\, . . . , br+2: H is generated as well by {x~ιb\, . . . ,
x~ιbr, br+\, br+ι} where x := br+\b~+2. Let αz := x~ιbi, 1 < / < r.
It is directly seen that 0/0, = x~ιbiX~ιbj = ωx~ιbjX~ιbi =
cΰO/βi 9 I < i < j < r, and α/&r+A: = br+kai, A: = 1,2. Hence H =
(ω, a\,..., ar) (ω, 6 r+i, 6 r + 2) > and we are done by induction. D

We can now break down our problem of determining canonical de-
compositions for such groups into a series of steps:

(1) Analyze all two-generator groups.
(2) Determine how the two-generator groups combine under the

central product defined above.
(3) Find a set of products of two-generator groups which provides

a complete set of irredundant canonical forms for all such groups.
(4) Given a "standard" presentation of any such group (i.e. in terms

of a set of ω-commuting generators), determine its associated canon-
ical form.

We work on the first two steps in this section, and finish the last
two in the next. Before beginning our analysis of the two-generator
groups, we record the following useful fact.

LEMMA 1.5. Let Gx = (ω9a\9..., ar), G 2 = (ω ; , bλ,..., br),
and H = (ω", c\, ... , cs) be three of our groups in "standard form",
with distinguished central nth roots of I given by ω, ωf, ω/; respec-
tively. Suppose that θ: G\ —> G2 is an isomorphism of groups with
θ(ω) = ω'. Then the two groups GixH and G 2xH are also isomor-
phic.

Proof, ( θ , 1): Gi x H -+ G 2 x H is an isomorphism which sends
(ω, ω"""1) to (ω ; , ω " " 1 ) . Hence

G!XH:= z/^ 1 *,,**ixv and ^ ^ Q l x H

are isomorphic.
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This lemma is important, because we will be working with various
"standard forms" for the same group G, and we need to know that we
do not have to worry overly much about the choice of distinguished
central nth root of 1. We can now determine the isomorphism types
of groups for which r = 1.

PROPOSITION 1.6. Let G = (ω, a\ωn = 1, an = ωe, ωa = aω),

and let d := g. c. d.(e, n). Then G = Z/(n2/d)Z x Z/dZ.

Proof. Write e = k\d g. c. ά.(k\, n) = 1. Let k be such that kk\ =
1 (mod n). Then G = (ω, ak\ωn = 1, akn = ωd, ωak = α^ω).
Thus any such group with r = 1 can be written as G = (ω, 6|ωΛ = 1,
bn = ωd, ωb = £ω) for some divisor d of n. Then G, which is of
order n2, is generated by commuting elements b of order n2/d and
bnldω~ι of order d. In particular, we see that G = Z/(n2/d)ZxZ/dZ
as claimed. D

COROLLARY 1.7. Let v(n) denote the number of positive divisors of
n. Then there are precisely v(n) isomorphism types of our groups for
which r = 1. D

We can now proceed to analyze those groups for which r = 2. This
becomes considerably more complicated. We must first set up some
simplified notation. Let G be generated by r ω-commuting gener-
ators a\, ... , ar satisfying a? = aft. We will denote this group by
G(e\,..., er) when we are concerned with the way the nth powers of
the generators behave, and by {a\, ... , ar) or (ω, a\, ... , ar) when
we are concerned with the generators themselves.

L E M M A 1.8. G{ex, e2) = G(e2 ,ex).

Proof. Let G(e\, e2) = (ω, α, b). By choosing ω~ι as the distin-
guished nth root of 1, instead of ω, we will have {b~ι, a~1} as a
set of ω""1-commuting generators. This gives G(e\, e2) = G(e2, e\)
as desired. D

LEMMA 1.9. G(eχ, e2) = G(dι, d2) where dt := g.c.d.(^, n), / =

Proof. Let G = G(^i, e2) = (a\, ^2). Then 3cz such that
(mod n), and g. c. d.(c, , Λ) = 1, / = 1,2. Taking all exponents to be
in Z/nZ and choosing ω' = ω^^ instead of ω as the distinguished
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c ιnth root of 1, and a\ = {a\fiι and af

2 = (a2)
cιι as ω'-commuting

generators, we see that {a\)n = ωcϊXeι = ω'ci*i = ωfdι, and similarly

(α£)« = ω/d2. Thus G(*i, e2) = G(a?i, d2) as claimed. α

LEMMA 1.10. Let n be a positive even integer, and let d be a divisor
of n. Let G = G(d + λ(n/2), d) = (ω, a, b). ΓAe/i ίΛe isomorphism
type of G depends on the class of n/d (mod 4) α«rf ίAe pαπίy of λ,
and is given by the following table.

5 (mod 4)

1,3

2

2

0

λ (mod 2)

Oor 1

1

0

Oorl

isomorphism-type of G

G(rf,rf)aG(rf+j ,</) aG(Λ,rf)aG(n, f)

G(rf+},i/)aG(«,</)a G(2rf, 2d) a G(/i, Id)

G(d,d)(¥G(d+*,d))

G(dfd)*G(d + % 9d)*G(n,d)

Proof Notice first that G ^ G(d, d) or G ^ G(d + n/2, d)9

accordingly as λ = 0 (mod 2) or λ = 1 (mod 2). Moreover,
G(έ/ + n/2, rf) = (α*, 6*) = (α***"" 1 , b*) = G(/i, έ/). First suppose
that f is odd, and let G(d, d) = (a,b). Set a1 = ab'ι+nld. Then
α' and 6 are ω-commutinggenerators, and (α', b) = G(d + n/29 d).
Thus we see that in this case, the parity of λ is irrelevant. But we
could also choose as ω-commuting generators the elements a1 and
afb to give G = G(/i ,*/ + §) . Since g. c. d.(af + f, /i) = f, we see by
(1.9) that G S G ( Λ , j ) as well.

Next let us consider the case when J Ξ 2 (mod 4). Here the par-
ity of λ comes into play. First assume λ to be odd. Then G =
G(d + n/2,d) = G(n9d). Let d* = 2d, so π/rf* is odd, and
G(2d9 Id) = G(d*9d*) = G(n9d*/2) = G(/ι, rf) as well. (Here we
are making use of the preceding case.) If instead λ is even, we have
G = G(d9 d). We claim that for this case (f = 2 (mod 4)) Gi :=
G(d, d) is not isomorphic to G2 := G(n, d). For suppose there
were an isomorphism θ : Gi -• G2. Let Gi = (ω, α, b) and Gι =
(ω ;, a'9 V), and suppose θ(α) = ded*V*9 θ(b) = ω'fafsbft. Then
θ(α) and θ(ft) must generate G 2 . Now θ(a)n = θ(α Λ ) = θ(ω^) =
e[bn) = θ(b)n, so θ(α) n and Θ(b)n must both be primitive f th
roots of 1. Also, Θ(a)n = ^nea!npblnq^'pqn^n'^l2 = ωldq-pqnl2.
Similarly, Θ(6)Λ = ω

ldt'stnl2. Since J = 2 (mod 4), we can write
rt = 2rfw, where u is odd. We must have dq -pqn/2 = dq -pqdu =

(mod Λ) , where g.c.d.(m, n/rf) = 1, in order for Θ(a)n to be
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a primitive | t h root of unity. Thus we need q{\ - pu) to be a unit
in Z/(n/d)Z. In particular, if a prime π divides % , it cannot divide
1 -pu. If π φ 2, then π | | =» π|w => π f 1 -pu. If π = 2, π | ^ ,
but π f M, so if 1 - pu is to be odd, we must have p even. By
the same analysis, s must be even. But then (θ(α), θ(b)) is a sub-
group of (ωf, a'2, £'), which is a proper subgroup of G2, giving a
contradiction.

Finally we suppose | = 0 (mod 4). We know G(rf + n/2, rf) =
G(/ι, </), so we need to show G(/ι, d) = G(έ/, d). Let G(Λ , d) =
(α*, ό*). Choosing instead (a*b*k, b*) for some choice of k gives
G(Λ , rf) = G(k(d - §), d). Thus G(Λ , </) will be seen to be isomor-
phic to G(d, d) if we can find a /: such that k{d-\) = <i (mod Λ) .
Write \ = 4M, SO § = 2wd. Then Ξλ; such that fc(rf - 2ud) = ύf
(mod n) <& 3k such that fc(l - 2 M ) = 1 (mod f) ^ (1 - 2 M ) is a unit
in Z/(n/d)Z. It is a unit, because ^ = Au, so for any prime p, p | ̂  =>
p|2w, and thus p f (1 - 2M) . This gives G = G(d, rf) = G(n, rf), and
we are done. D

THEOREM 1.11. There are precisely v(n) distinct isomorphism
types of groups G(e\, ei) haying order n3. They are represented by
G(d*, d*) where d* is a divisor of n. The particular value d* for
which G(β\, ei) = G(d*, d*) is determined by d := g. c. d.(e\, eι, ή),
the class of n/d (mod 4), and the parity of e^jd1, as given in the
following table:

2 ( m o d 4 )

0 , 1 , 3

2

2

ψ (mod 2)

Oor 1

0

1

isomorphism-type of G

G(d,d) (^G(n,d))

G(2d,2d) (^G{n,d))

G(d,d)&G(n,d))

Proof We have seen (1.9) that we can write G(e\, e2) = G{d\, d2)
where d[ = g. c. d.(e, , Λ) . Now let d = g.c. d.(d\, d2) > and write rfz =
kid, i = 1,2. Then fc/ divides «, and g.c.d.(/q, ^2) = 1 Notice
that if n/d = 0 (mod 2), we must have k\k2 = e\e2/d2 (mod 2), so
for the purposes of our proof, there is no loss of generality in assuming
et = di, i = 1,2. Since g. c. d.(k\, k2) = I ,we can find integers m\
and m2 such that m\k\ + m2k2 = 1, and we may further assume
that g.c.d.(m2, ή) = 1. (Write n = ab where g.c.d.(<z, &) = 1 and
a, m 2 have exactly the same prime divisors. Then k\\n => k\\b since



GENERALIZED CLE GROUPS 165

g. c. d.(kχ, mi) = 1. Then g. c. d.(m2 + b, ή) = 1, for if a prime /?
divides n, then p divides either b or m 2 , but not both.) Fix such
πi\, m 2 . We have G = G(d?i, d2) = G(kγd, /c2d) = (G>O, <2o> ̂ o)

Now choose ω' = ω™2 , <z' = a™2 , and £' = <z™2 miZ?o as generators
for G, instead of ωo, flo > and 60. Calculating the nth powers of the
new generators (by (1.1.4)), we get G = G(kχd, d - m\n{n - l)/2).
By choosing ω" = ω', α" = a'b'(ι~kJ, and 6" = b1, we see finally
G = G(rf + (W! + l)(fci - 1)/I(/I - l)/2, rf - mi/i(/ι - l)/2).

We must now consider several cases, depending on the parities of n
and mi. First, if n is odd, then n(n-1)/2 = 0 (mod n) , and we see
that our result yields G^G(d9d). Since if G = G(d, d) = (α*, b*),
then a*b*n~ι, &* are also ω-commuting generators for G, we see
that G = G{n, d) as well. If « is even, then m2 must be odd, and
we have two possibilities to consider, depending on the parity of m i .
If mi is odd, then G = G(d,d + n/2), so G £ G(n, rf) by (1.10).
Since mifei + m2A:2 = 1, if both mi and m2 are odd, we must have
k\kι even. If mi is even, then G = G{d + {k\ + \)n/2, d). Moreover,
in this case A:2 must be odd (because m\k\ -\-m2k2 = 1), so k\ = kγki
(mod 2). Then G = G(d + n/2, d) = G(/ι, d) if &i&2 is even, and
G = G(rf, d) if &iA;2 is odd. Now by a comparison with the chart
in (1.10), we obtain the isomorphisms given in the statement of the
theorem.

We have seen that any group G{e\ ,ei) is indeed isomorphic to
some G(d, d), d a divisor of n. We must now show that no two of
these groups are isomorphic. This is most easily done by calculating
Gn = {gn\g G G} for each G = G(d, d). (We remark that by apply-
ing (1.1.4) with m = n, we can show that for a group G{e\, . . . , er)
of this type, Gn = {gn\g E G } = {gn\g e G), i.e. the nth powers in
G actually form a subgroup of G. For by using the Euclidean algo-
rithm and the fact that if ωe = gn, then ωke = (gk)n, we see that
{gn\g e G} = {ω*|fc = exkx + ... + erkr + Σi<j(-kikj)n(n - l)/2} =
(ωk'\kf = g. c. d.(*i, . . . , e r , /i(/ι - l)/2)>.) First let n be odd. Then
we see that for G = G(d 9 d)9 Gn = (ωd) = Z/(n/d)Z. Thus if
d Φ df, G(d, rf) is not isomorphic to G(rf;, d1). For the remainder
of this proof, we assume n is even. If j is odd, we see that for
G = G(d9 d) we have Gn = (ωdl2) = Z/{2n/d)Z. If § is even and
G = G(d,d), we have G" = (α/*) = Z/(n/d)Z. Thus iϊ d φ d1, the
only possibility for G(rf, d/) = G{d9

 9 d
1) is if n/rf = 1 (mod 2) and

d' = rf/2. However, in (1.10) we saw that G(d, </) is isomorphic to
G(n, rf/2) and not isomorphic to G(d/29 d/2) when n/rf is odd. D
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We are now ready to carry out the second stage of our program,
which is to understand how any two of these small groups behave un-
der the central product we denned earlier. We begin with the product
of a group of order n2 with one of order n 3 .

LEMMA 1.12. Let d = g.c.d.(/i, f2, f3, n) and G = G(/i, /2)G(/3).

(a) // f = 0, 1, or 3 (mod 4), then G^G(d, d)G(f3).

(b) If % = 2 (mod 4), there are two subcases: If % and § are

odd, but § is even, then G = G(d, d)G(f3). In all other cases, G =
G(2d, 2d)G(f3).

Proof. Let G! : = G(/i ,f2) = {ω,a,b) and G 2 : = G(/ 3 ) = (ω,c).
By (1.3) we have

(1) GiG2 = (ω, a, b,aΓxbc)

= G(fι,f2,-fι+f2 + f3 + n(n-l)/2).
Working the other way and decomposing, let H = (ω, a, b, c) =
G(f?i, e2, ei). Then

(2) H ^ (ω, a, c)(ω, ab~xc) = G(eι,e3)G(eι-e2+e3 + n(n-l)/2).

Now let kd : = g. c. d.(/i ,f2,n), qtkd : = g. c. d.(/} ,n), i = 1 , 2 , and
qd := g. c. d.(/ 3, n) , so that g. c. ά{q\, q2) = I and g. c. d.(k, q) = 1.
Then by (1.6) and (1.9) we may write

G(/i, /2)G(/3) = G{qxkd, q2kd)G(qd).

Again we must subdivide into several cases depending on congruence
classes of our integers modulo 2 and 4. First let us assume n is odd.
Then as we have seen in (1.11), G{f\, f2) = G(kd, kd), and we have

G s G(kd, kd)G(qd) s G{kd, kd, qd) by (1)

*G(kd,qd)G(qd) by (2)

^G(d,d)G(qd) by (1.11)

= G(rf(rf)G(/3) by (1.6).

For the remainder of the proof we will assume n to be even. Initially
let us also assume ^ is odd, so we may write f = yf for some odd
integer γ. In this case ^ will also be odd, so G{q\kd, q2kd) =_
G{kd,kd) by (1.11). Then

G s G(kd, kd)G{qd) s G(kd, kd, qd + f) by (1)

by (2)

by (1.11).
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(This last step holds because g. c. ά.{kd, qd + \, ή) = f, ^ = 2
(mod 4) and 2k is even.) Thus we see (using (1.6)) that G =
G(d,d)G(fi).

Next assume $ = 0 (mod 4), and write § = 2yd for some integer
γ. If ^ = 0, 1, or 3 (mod 4), or if qxq2=l (mod 2), then

G = G{kd, kd)G(qd) by (1.11)

^G(kd,qd+^)G(qd) by (2)

£ G(kd ,(q + 2γ) d)G{qd) 3 G(d, d)G{qd) by (1.11).

This last step follows from the fact that g. c. d.(kd, (q+2γ)d ,n) = d.
Thus G = G(d, d)G(fi) as claimed. If ^ = 2 (mod 4) and qxq2

is even, then

G 3 G{2kd, 2kd)G{qd) by (1.11)

3 G{2kd, qd + § )G(qd) by (1) and (2)

^G(d,d)G(f3) by (1.11) and (1.6).
Again this last step is justified because q is odd in this case (2 divides
k), and hence g. c. d.(2kd, qd + §, n) = d.

Finally we must determine what happens when j = 2 (mod 4).
Here we may write \ = γd, where γ is an odd integer. Suppose
first that either ^ = 1 (mod 2), or qxq2 = 1 (mod 2) and ^ = 2
(mod 4). In these cases we have

G^G(kd,kd)G(qd) by (1.11)

s G(iW, ?</ + §)G(tfύ?) by (1) and (2)

If A: is even, then q is odd, and g.c.d.(fcύf, (# + y)rf, ή) = 2rf, so
G s G(2rf, 2d)G(qd) by (1.11). If both A: and ^ are odd, then # + y
is even, and again by (1.11) we see that G = G(2d, 2d)G(qd). If k
is odd but q is even, then g. c. d.(kd ,(q + γ)d,n) = d and k(q + γ)
is odd, so (1.11) shows that in this case we have G = G(d, d)G(qd).
Notice that in this case q\q2 is odd by assumption (fcodd => ̂  =
2 (mod 4)), and so both f\jd and f2/d are odd, while fi/d is even.

The remaining case is when ^ = 2 (mod 4) and q\q2 = 0
(mod 2). Now #, is even •«> yj /rf is even, but g.c.d.(ήΊ, q2) = 1.
Therefore 2 divides precisely one of fι/d, f2/d, and we have

G^G{2kd,2kd)G(qd) by (1.11)

3G(2kd, (q + y)d)G{qd) by (1) and (2),

= G(2d, 2d)G(qd).
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The last isomorphism follows because either q is odd, in which
case g.c.ά.{2kd{q + y)d, ή) = Id, or q is even, in which case
g. c. d.(2kd, (q + γ)d, n) = d, but 2A: is even and again (1.11) shows
that G = G(2d, 2d)G{qd), and G(qd) £ G(/3) by (1.6). D

REMARKS 1.13. There are two easily seen isomorphisms which may
prove useful later on. First, let r be odd. Then {ω, a\, ... , ar) =
(ω, a\9 ... , 0|_i, α / +i, ... , αr)(ω, z), for any /, where z :=

1 ar as before. Second, (ω, α, b)(ω, c) = (ω, ac, Z?)(ω, c).

These results can be converted to give an analysis of the decompo-
sition of a group of order n4 into a product of a group of order # 3

and an abelian group of order n2. We do this next, as it will help in
the understanding of the general decomposition theory later on.

COROLLARY 1.14. Let G = G(e9 / , g) = (α, 6, c), and /eί d :=

g.c .d .(e, f,g,n). Set z = ab"ιc.
(l)//f = 0, 1, or 3 (mod 4), then G S G ( i , φ , z ) ,
(2) //J = 2 (mod 4), ίΛen G 2 G(</, rf)(ω, z) if at least two of

e/d, f/d, g/d are odd, and G = G(2rf, 2d)(ω, z) if at most two of
e/d, f/d, g/d are odd.

Proof. By (1.3), G(e, / , g) = G(^, /)G(^ - / + g + n(n - l)/2).
Let (J = g.c.d.(e, f,e - f+ g + n(n - l)/2, π), and apply (1.12).
Observe that if n is odd, then δ = d, while if n is even, 5 = d
when ^ = 0 (mod 2), but δ = d/2 when $ = 1 (mod 2). Then
if ^ is odd and n is odd, we have f is odd, and (1.12.a) gives
G = G(δ, δ)(ω, z) = G(d, d){ω9 z). If \ is odd and n is even, we
have J Ξ 2 (mod 4), but e/δ and //<? are even, so (1.12.b) gives
G 2 G(2£, 2(5)(ω, z) = G(rf, έ/)(ω, z). If f = 0 (mod 4), then
δ = d, and G s G(J, J)(ω, z) by (1.12.a). Thus G = G(έ/, </)(ω, z)
and we are done in this case. Finally we consider the situation when
\ = 2 (mod 4). Again δ = d. By (1.12.b) we know that G =

, 2d)(ω, z) unless /̂rf and f/d are odd and

is even, in which case g/d must be odd as well. Thus if at most
two of e/d, f/d, g/d are odd, then G = G{2d, 2d)(ω, z), while
if all are odd then G = G(d, d)(ω, z). However, if exactly one of
e/d, f/d, g/d is even, then (e - / + g + n(n - l)/2)/d is odd,
and we may write (e -f+ g + n(n - l)/2) as γ d, where y is odd.
Using the fact that (ω, a, 6) (ω, z) = (ω, az, £) (ω, z), we have that
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G(d9 d){ω, z) = G((l+γ)d, d)(ω, z), and since 1+y is even, (1.11)
shows this is isomorphic to G(2d, 2d)(ω, z). D

The analysis of the products of two groups of order n3 is similar in
flavor to what we have just done, but it is many times worse in tedious
calculations. To simplify things we begin with two charts showing
how the groups can be rearranged. The left-hand side gives the ω-
commuting generators, and the right-hand side gives the corresponding
ω-powers of the nth powers of the generators.

1.15.A

(i)

(ϋ)

(iii)

(iv)

(v)

(vi)

(a,b)(c,d)

{a, b, a~xbc, a~xbd)

{a, abc, b,a~xbd)

{a, abc, abd, b)

{ab~lc,a,b,a-lbd)

{ab~ιc, a, abd, b)

{ab c, ab d, a, b)

G(e,f,

G(e,e

G(e,

G ( < ? - .

G(e-

G(e-

+ / +

-f+g

-f+g

G(e,

+ g + n{n-

g + n(n-l

f- g + n(n —

n{n - l)/2

+ n(n-l),

+ n(n- \)l

f)G{g,h)

-\)/2,-e

)β,f,-e

l)/2, e + j

,e,f,-e

12, e, e + j

2, e - f +

+ f + h + n{n -

+ /+Λ + n(n-

' + h + n(n — 1)

+ f + h + n(n -

+ h + n(n- 1)

h + n{n- l)/2,

- l)/2)

- l)/2)

/2,/)

• l)/2)

/2,/)

1.15.B

(i)

(ϋ)

(iii)

(iv)

(v)

(vi)

{a, b, c,

{a, b){ab~ιc,

{a, c){a~ιbc~ι

{a, d){a~ιbd'x

{b, c){ab~ιc,

{b, d){ab~ιd,

{c,d){ac~ι d

d)

ab~ιd)

, ac~x d)

, a~ιcd~ι)

bc~ι d)

b-ιcd~ι)

bc~ι d)

G(e,f,g,h)

G(e,f)G(e-f+g + n{n- l)/2, e-j

G(e, g)G(-e + f - g + n(n - l)/2, e - i

G(e, h)G{-e + f - h + n(n - l)/2, -e + g

G(/, g)G(e-f + g + n(n- l ) / 2 , / - ί

G(/, h)G{e -f + h + n(n-l)/2,-f + g

G(g, h)G{e -g + h + n(n-l)/2,f-i

> + A + Λ(Λ-1)/2)

-h + n{n-\)/2)

' + h + n{n — \)/2)

— h + /Z(AZ — l)/2)

r + A + Λ ( Λ - l ) / 2 )

Note that also {a, b) = {a-1 = (b,a)^ (b~ι, a~ι), and that
(a,b)(c9d) = {c, d)(a, b). This yields a number of other varia-
tions on the isomorphisms given in the charts above. Furthermore,
we will often be interested in just the parity of the ω-powers of the
nth powers of the generators, which means we can ignore the signs
on the right-hand side above, and then there is complete symmetry
among {e, f, g, h}. With this information it is now not too difficult
to write down what happens when we take the central product of two
groups of order n3.
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LEMMA 1.16. Let Gx = G(e,e),G2 = G(/, f), where e, f are
divisors of n, and let d := g. c. d.(e, f). Set e = ad and f = βd.
Then GiG2 = G(n, n)G(d, d) unless n/d = 2 (mod 4) and aβ = 1
(mod 2), in which case GiG2 = G(n, n)G(2d, Id).

Proof. Let G := G(e, e)G{f, f). We consider all cases for n/d
(mod 4) and aβ (mod 2).

(i) Let n = 1 (mod 2). Then

GsG(e, * , / , / ) by(1.15.A.i)

3 G ( ί , M , ί ) by(1.15.B.iv)

, d)G(d, d)^G(n,d)G(d, n) by (1.11)

n,d,d) by (1.15.A.v)

s G(n, n)G(ύf, rf) by (1.15.B.i), as desired.

(ii) Let n = 0 (mod 2) and | = y, an odd integer.

, / + n/2)G(f, e + n/2) by (1.15.A.i and B.iv)

rf/2, (2)? + y) d/2)G(2βd/2, (2a + y) d/2)

= G(d, d)G(d, d) by (1.11).

Now G(d, ί/) 3 G(«/2, d) 3 G(d + n/2, n), by considering g. c. d. 's
and using the results of (1.10) and (1.11). Thus

^G(n/2,n/2,d,d) by (1.15.a.iv)
^ G(d, d)G(n, n) by (1.15.B.vi).

(iii) Let n = 0 (mod 2) and § = yd, where y is an even integer.

G 3 G(e, f + n/2)G(f, e + n/2) as in the preceding case

3 G(d, d)G(d ,d) by consideration of g. c. d.'s

s G(n/2, d)G{d + n/2, n) = G(d, d)G(n, ή) exactly as above.

Again let \ = yd, where now y is an odd integer.
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(iv) Suppose aβ = 0 (mod 2). Looking at g. c. d. 's shows

G s G(2d, 2έ/)G(rf, d) = G(έ/, d)G(-2d, n) by (1.11)

= G(ί/,n/2,ί/, n/2) by (1.15.A.ii)

£ G(έ/, n/2)G(-d + n/2, ή) by (L15.B.iii)

^G(d,d,n/2,n/2) by (1.15.A.iii)
^G(d,d)G(n,n) by (1.15.B.i).

(v) Suppose αβ = 1 (mod 2). We have jί + y
(mod 2), so

G^G(2d,2d)G(2d,2d)
= G(Λ , n)G(2rf, 2rf) as in case (ii).

Ξ α y Ξ 0

We now do the reverse of what we have just done. That is, we
will determine how one of our groups of order n5 decomposes into
a central product of two groups of order n 3. Once we have finished
this task, we will be prepared to tackle the problem of decomposing a
general group of this type by means of an induction argument. First
we make a useful observation:

REMARK 1.17. Let n be an even integer
(a) d := g.c.d.(e, f, g, n) = g.c.d.(e, f, ±e ± f ± g, n).
(b)Let δ:=g.c.d.(e,f,±e±f±g + %9n). Then δ = d or 2d

if I = 0 (mod 2) (i.e. if d\\\ while δ = { if \ = 1 (mod 2).

PROPOSITION 1.18. Let

G = G{ex ,e2,e3,e4), d = g.c.d.(*i, e2, e3, e4, n).

Let k be the number of i 's such that ^ is even. Then the isomorphism
type of G is determined by the parity of n, the class of % (mod 4),
and k if j = 2 (mod 4), and is given by the table below.

(i)

(ϋ)
(iii)

(iv)

(iv)

n (mod 2)

1

0

0

0

0

i (mod 4)

1 or 3

1 or 3

0

2

2

k

0<k<4

0<k<4

Q<k<3

Oorl

2 or 3

iso.-type of G

G(n,n)G(d,d)

G ( ι t , ι i ) G ( f , f )

G(n,n)G(d,d)

G(n9n)G(d,d)

G(n, n)G(2d, Id)
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Proof. Let

d':= g.c.d.(eι,e2,n),

c := g. c.d.(έ?i - e2 + e3 + n(n - l )/2,eι-e 2 + e4 + n{n - l)/2, ή),

kid' := g. c. d.(ei ,ή), i = 1, 2, and

,rt), ; = 3 , 4 .

For all cases we then have G = G{kx d', k2d')G{qj,c, q4c) by (1.15.A.i)
and (1.9). (i) G s G(d',d')G(c, c) by (1.11), s G(n, n)G(ί/, </)
by (1.16) since g.c.d.(<f, c) = d.

(ii) We have n/d' = 1 (mod 2), n/c = 2 (mod 4), and q$q4 = 1
(mod 2), as d | tf, c, = 3,4, but f |c. Thus G = G(d', d')G(c, c)
by (1.11) . Now g. c. d.(d', c) = d/2, and ^ Ξ 2 ( m o d 4 ) τ h e r e "
fore, by (1.16) G s G(n, n)G(d/2, d/2).

(iii) We have G{kιd',k2d') = G(2rf', 2rf') if n/<f = 2 (mod 4)
and ^ 2 Ξ 0 (mod 2), and otherwise G{k\d', k2d') = G(d', d').
Similar conditions apply for G(^c, q4c). Since %.c.d.{d'c) = d,
and j = 0 (mod 4), we cannot have both n/d' = 2 (mod 4) and
n/c = 2 (mod 4). G is therefore isomorphic to G(d', d')G(c, c)
w i t h g. c . ά.{d' , c ) = d ; G(2d', 2d')G{c, c) w i t h g . c . d . ( 2 ί / ' , c ) = d ;
or G(d', d')G(2c, 2c) with g.c.d.(ί/', 2c) = d. In all cases (1.16)
gives G = G(n, n)G(d, d).

(iv) and (v) Again we begin by analyzing the various possibilities
for the isomorphism types of G(kιd', kid') and G(q?,c, q4c). As
before G(ktd', k2d') s G(2ίf, 2d') if n/d' = 2 (mod 4) and kγk2 =
0 (mod 2), and = G(d', d') otherwise. Similarly G(q3c, q4c) =
G(2c, 2c) or G(c, c). Suppose k = 3. We may assume 2|(ei/d),
(e2/J), {e-i/d). In this case, n/d' = 1 (mod 2), n/c = 2 (mod 4),
and q3q4 is even, so G = G(d', d')G{2c, 2c). Also g.c.d.(ί/', 2c) =
2d, so G s G(n, «)G(2rf, 2ί/) by (1.16). Next let k = 2. We may
assume either 2|(ei/</), (^2/^) or 2\(e\/d), (e^/d). In the first case,
we see n/d' and n/c are both odd, and g.c.d.(d',c) = 2d,so G =
G(d', d')G(c, c) = G(n, n)G{2d, 2d) as above. In the second case,
n/d' and n/c are both = 2 (mod 4) and k\k2 and q^q4 are both
even, so although g.c.d.(<f, c) = d, G s G(2ίf, 2d')G(2c, 2c) by
(1.11), so G S G ( n , «)G(2J, 2ί/) by(1.16). Suppose now k = 1. We
may assume 2\(ex/d). In this situation, G = G(2d', 2d')G(c, c), and
g.c.d.(2rf', c) = d, giving G = G(n, n)G(d, rf) by (1.16). Finally,
if fc = 0, then n/c?' = 2 (mod 4), while n/c = 1 (mod 2), and
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g. c. d.(d' ,c) = d. Again by (1.16) we obtain G s G(d', d')G{c, c) =
G(n, n)G(d, d). D

2. The decomposition theorem for general n. We are now ready to
complete steps 3 and 4 of our program. The Decomposition Theorem
which we prove next is the major result of this paper.

T H E O R E M 2.1 {Decomposition Theorem). L e t G = ( ω , a \ , . . . , a r )
= G ( e \ , . . . , e r ) . Let d = g . c . ά . ( e \ , . . . , e r , n ) , and if r is odd, let
<? = g. c.d.(έ?i - e 1 + έ ? 3 +er + (2)(2) > n). Also let s := \{i: et/d = 1
(mod 2)}|, t := \{j: βj/d = 0 (mod 2)}|. The isomorphism type of
G is determined by r and d, and by e if r is odd, and by s and t
if n/d = 2 (mod 4). We have the following:

(I) // r = 0 (mod 2) then G £ G(n, nγ-2^2G{d, d) except in
the following two cases:

(A) n = 0 (mod 2), $ = 1 (mod 2), and r = 4 or 6 (mod 8),
HΆ*?« G a G(/i, nγ-2)l2G{dl2, d/2).

(B) n = 0 (mod 2), £ = 2 (mod 4), αnrf ί = 5 = 0 or 2 (mod 8),
wAί?Λ G = G(n, n)(r"2)/2G(2ί/, Id).

(II) // r = 1 (mod 2) ίΛen G s G(n, nγ~^l2G{d, d)G(e) ex-
cept in the following two cases:

(A) n = 0 (mod 2), § = 1 (mod 2), α«rf r = 5 (mod 8), when
G £ G(n, «)(r-3)/2G(ί//2, d/2)G(e). (G s G(«, n ) ^ 3 ) / 2

G(d/2,d/2)G(e) if r = 3 or 7 (mod 8) as we//;

(B) n = 0 (mod 2), f = 2 (mod 4), and t - s = 1,3, or
7 (mod 8), when G*G(n, nγ-VI2G(2d, 2d)G(e). (G £
G(n, n)(r-3)/2G(ί/, rf)G(e) a/so if t - s = 3 or 7 (mod 8),
since G(tf\ rf)G(e) = G{2d, 2d)G(e) in this case.)

The groups G(n, n)(Γ~2)/2G(aΌ, d0) for do a divisor of n provide a
complete irredundant set of isomorphism types for our groups when r
is even, while the groups G(n, n)(r~3)/2G(aΌ, do)G(eo) for do, eo divi-
sors of n provide such a set when r is odd, except for the redundancies
noted above.

Proof. We postpone showing uniqueness (irredundancy) until the
next proposition. As for the decomposition, all cases are done by
an induction on r. Notice that for r odd and z as defined in
(1.1.2), (ω,z)=G(e). For r even, set d' = g.c.d.(έ?i, ...er.2, n),
Δ r_! = ex - έ?2 + er-2 + er-ι, Ar = ex - e2 + <?r_2 + er.
We make the important initial observation that for r even, G =

1 2 ^ a;}2ar).
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We begin with the cases where n is odd, as they are considerably
simpler than the even cases. First let r be even. We have seen that
the theorem holds for r = 2, 4 already. Now suppose it to hold
for r - 2. By induction and the observation above, we have G =
G(n, nγ-WG{d', d')G{Δr-\ , Δ r ) . Since g. c. d.(d' J Δ M , Δ r ) « ) =
d, it is easy to see from (1.9) and (1.16) that G{d', d')G(Ar_ι, ΔΓ) =
G(/ι, ή)G{d, d),so G = G(/ι, «)(r"2)/2G(ύ?? d) as claimed. If r is
odd, then by the result for even r obtained above,

G = G{ex, e2, . . . , er.x)G{e) = G(n, Λ)(Γ"3)/2G(rf/;, </")G(e),

w h e r e d" : = g . c . d . ( e \ , ... , e r - \ , n ) . S i n c e g . c . d . ( d " , e , n ) = rf,
we see by (1.12) that G{d",d")G{e) = G(d, d)G{e), and G Ξ

)/2

For the remainder of the proof we assume n to be even. For the
moment we will also assume r to be even, as the odd cases follow
quite easily once the even ones have been proved. Again we know the
result holds for r = 2, 4. Let #/C = g. c. d.(Δ/ + fC"^1) > Ό , where
/ = r - 1, r and g. c. d.(<?r_i, qr) = 1. Then

where d\ depends on d' and the inductive case we are in.
Assume first that n/d = 1 (mod 2). Then n/d' = 1 (mod 2) as

well. Assume our result holds for r - 2 = 2 (mod 8). We go through
a four-step induction "by 2" on r:

(1) r = 4 (mod 8): G £ G(/i, «)(r~4)/2G(rf', <f)G(0r-i<?, i r C ) .
Now C21) Ξ 1 (mod 2), so n/(tf, c) = 2 (mod 4), and G =
G{n, nγ-^l2G{d', d')G{c, c). Also, g.c.d.(d',c) = rf/2, so
G(d', d')G{c, c) s G(n,n)G(d/2,d/2) by (1.16), and G =

(2) r = 6 (mod 8): G s G(n, nγ~^l2G{d''/2, d1/2)G{qr-χC, qrc).
Here /i/(ί, c) = 1 (mod 2), n/c=l (mod 2), and g. c. d.(*/'/2, c) =
ί//2. Thus (1.16) again shows G{d'/2, d'/2)G{qr-lc, qrc) £
G(Λ , «)G(ύ?/2, d/2), so G £ G(Λ , nfr-2)l2G{d/2, d/2).

(3) r = 0 (mod 8): G S G ( « , nγ~4)l2G{dΊ2, d'/2)G(gr-ιC, qrc)'.
Now n/(0/c) = n/c = 2 (mod 4), g.c.d.(rf'/2, c) = d/2. By (1.16),

G(έ/'/2, d'/2)G(c, c) £ G(n, Λ)G(</ , </), and

G £ G(«, nf~2^2G(d, d).
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(4) r = 2 (mod 8): G £ G(π, n)( r-4)/2G(d', έ/')G(ίr-ic, ire). We
have n/c = 1 (mod 2), g. c. d.(d', c) = d. Then G(d', <f)G(c, c) =
G(n,n)G(d,d) by (1.16), and G = G(/i, n)(r-2V2G(d9 d). This
completes the proof when n/d = 1 (mod 2).

Next assume n/d = 2 (mod 4). Here there are a number of sub-
cases to consider, since n/d1 = 1 (mod 4) and n/d1 = 2 (mod 4)
are both possible. However, a short reflection allows the reduction to
the case when n/d1 = 2 (mod 4). For if d2 := g. c. d.(^ 9 ... 9er9ή)9

thend = g.c.d.(d', </2) > and either n/d' = 2 (mod 4) or n/d?2 = 2
(mod 4). If n/df φ 2 (mod 4), we consider

and an analogous argument to that given below will give identical
results. Thus we may assume n/d' = 2 (mod 4). We again use
an induction on r. Let /' = \{j: βj/d = 0 (mod 2), 1 < / <
r - 2}|, s' = |{/: erfd = 1 (mod 2), 1 < 1 < r - 2} | . First we
analyze G{qr-\C, qrc).

(a) n / c = 1 ( m o d 2) if (i) r = 0 ( m o d 4) a n d e i t h e r t - s =
ί ; - y + 2 , 5 = 1 ( m o d 2) o r ^ - 5 = ^ - 5 - 2 , s = 0 ( m o d 2 ) , o r
(ii) r = 2 ( m o d 4) a n d e i t h e r t-s = t' -s' -29 s=ί ( m o d 2) o r
t-s = tf-s + 2, s = 0 (mod 2).

(b) n/c = 2 (mod 4) and qr^qr = 1 (mod 2) if (i) r = 0
(mod 4) and either t - s = t' -s* + 2, s = 0 (mod 2) or t - 5 =
ί; - s - 2 9 s = 1 (mod 2), or (ii) r = 2 (mod 4) and either
ί - 5 = ί / - 5 ' - 2 ? 5 = 0 (mod 2) or ί - 5 = ί ' - 5 + 2, 5 = 1
(mod 2).

(c) n/c = 2 (mod 4) and <?r_i#r = 0 (mod 2) if t - 5 = ί' - s1.
Then G ( ^ _ i c , ί r c ) = G{d9d)9 where n/c' = 1 (mod 2) if
we are in cases (a) or (c) above, and n/d = 2 (mod 4) if we
are in case (b). We can now apply an induction by 2 on r. Sup-
pose the result holds for r - 2. If t1 - sr = 4 or 6 (mod 8),
then G = G(n9 n)(r-ΛV2G(d'9 d')G(d9 d)9 g.c.d.(d',d) = d9

and G(d'9 d')G(d 9 d) = G(n9n)G(d9d) if in case (a) or (c),
G(n,n)G(2d, Id) if in case (b). Thus G = G(n, nγ-2^2G{d, rf)
if ί - 5 = ί' - s1 = 4 or 6 (mod 8) (case (c)), or if (case (a)):

(i) r = t + s = t-s + 2s = Q (mod 4), and if s is odd, t-s =
t1 - 5' + 2, while if 5 is even, t — s = f — s' — 2. If 5 is odd, we
see 25 = 2 (mod 4), so t - 5 = t1 - s' + 2 = 2 (mod 4), and since
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t1 -s1 = 4, 6 (mod 8), we see that in this case we must have fsf = 4
(mod 8) and t - s = 6 (mod 8). A similar argument shows that if
s is even, t - s = 4 (mod 8).

(ii) r = / + 5 = ί-5' + 2ts = 2 (mod 4), and if s is odd, t - s =
ί' - 5 ' - 2, while if ^ is even, t-s = tf -s' + 2. An argument identical
to that above shows here that if s is odd, t - s = 4 (mod 8), while
if s is even, ί - s = 6 (mod 8).

On the other hand, G = G(n, «)(r"2)/2G(2rf, Id) if we are in
case (b):

(iii) r = t + s = t~s + 2s = 0 (mod 4), and if s is odd, t - s =
t'-s'-2, while if s is even, ί-5 = ί'-4s ι '+2. This time our argument
yields ί - s = 2 (mod 8) if s is odd, while t -s = Q (mod 8) if s
is even.

(iv) r = i + 4y = i - 5 l + 2i' = 2 (mod 4), and if s is odd, t - s =
ί' - y + 2, while if s is even, ί - s = ί; - s' - 2. Here ί - s = 0
(mod 8) if 51 is odd, while t — s = 2 (mod 8) if 5 is even.

If t - 5' = 4 or ί (mod 8), then

G £ G(n, n)(r-4)/2G(2ί/;, 2df')G(c', d),

and g. c. ±{2d', c;) = 2d if in case (a) or case (c), g. c. d.(2ί/;, c) = d
if in case (b). Thus in cases (a) and (c) we have

while in case (b) we have G = G{n, n)(r~2V2G(d, d). Analyzing each
possibility as we did above, we see that in cases (a) and (c), t-s = 0 or
2 (mod 8), while in case (b), t-s = 4 or 6 (mod 8). This completes
the proof for n/d = 2 (mod 4).

Now let us assume that n/d = 0 (mod 4). We have the possibil-
ities that n/d = 1 (mod 2), 2 (mod 4), or 0 (mod 4). However,
by an argument parallel to that in the n/d = 2 (mod 4) situation,
we may assume that n/d1 = 0 (mod 4), and in fact that df/d = 1
(mod 2). Then by induction we know

G s G(π, nγ-W2G{d', d')G(cf, d),

where G(c', d) = G(#r_iC, # rc). Moreover, since d'/d = 1 (mod 2),
it is easily seen that g.c.d.(df;, d) = d. Then by (1.16), we have
G(df, d')G{d,d)¥G(n9 n)G(d, d), and G^G(n, n)(r-2)/2G(</, d),
completing the proof for the case when r is even.

We may now assume r to be odd. Since 3i such that βι/d = 1
(mod 2), by the remarks in (1.13) we may assume without loss of gen-
erality that d"/d = 1 (mod 2), where d" = g. c. d.(e\, . . . , er-\, n)
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as before. Suppose first n/d = 0 (mod 4). Then

G = G(<?!,... , er_i)G(<?) * G(n, nf-^2G{d", d")G(e)

by the even case. Since g. c. d.(d", e) = d, we see by (1.12) that
G(d", d")G(e) s G(d, d)G{e), and G = G(«, ή)^l2G{d, d)G(e).

Next suppose n/d = 1 (mod 2). Then of course n/d" = (mod 2).
We have

which is isomorphic to G(n, nγ-^l2G{d", d")G{e) if r = 1 or 3
(mod 8), and isomorphic to G(n, nγ~^l2G{d"/2, d"/2)G{e) if
r = 5 or 7 (mod 8). If r = 1 (mod 4), then d\e. If r = 3
(mod 4), then d \ e ,but f |e. In both cases g.c.d.(</", e)e{d, d/2}.
Using (1.12), we see G(cf', d")G(e) £ G(tf, </)G(e) if r = 1,3
(mod 8), while G{d"/2, d"/2)G{e) s G(d/2, d/2)G(e) if r = 5
(mod 8), but G(ίf'/2, d"/2)G{e) = G(d, d)G(e) if r = 7 (mod 8).
(Note, however, that ii d \ e, i.e. if r = 3 or 7 (mod 8), then
by (1.12) we have G(d, d)G{e) s G(d/2, d/2)G{e).) Thus G s
G(n, nγ-VI2G{d, d)G{e) if r = 1,3, or 7 (mod 8), while G 3
G(n, n)(r-3)/2G(ίiί/2, d/q)G(e) if r = 3, 5, or 7 (mod 8), but for
r = 3 or 7 (mod 8), we prefer the first form.

If n/d = 2 (mod 4), we may assume that n/d" = 2 (mod 4).
Let ί0 := 10': ej/d = 0 (mod 2), 1 < j < r - 1}|, s0 := |{/: a/d = 1
(mod 2), 1 < / < r - 1}|. Then G £ G(«, n)(r-3)/2G(ίf', cf")G(<>)
if ί0 -so = 4 or 6 (mod 8), G s G(n, n)(r-3)/2G(2rf", 2rf")G(e)
if ί0 ~ so = 0 O Γ 2 (mod 8). Also, 2d\e if 5 = 1 (mod 2), r =
3 (mod 4) or if s = 0 (mod 2), r = 1 (mod 4), while 2rf f e
if s = 1 (mod 2), r = 1 (mod 4) or if 5 = 0 (mod 2), r = 3
(mod 4). Now t - s = t0 - s0 ± 1. Working through each case we see
G(d", d")G(e) = G(d, d)G{e) for any r, but also

G{d", d")G(e) s G(2rf, 2<ί)G(c)

if 2J \ e (by (1.12)). This happens if t-s = to-so±\ =r-2s = 3
(mod 4), i.e. if t -s = 3 or 7 (mod 8). Then G(2<*", 2d")G(e) s
G(2Λ? , 2rf)G(e) for any r, but also G(2rf", 2d")G(e) s G(J, </)G(e)
if 2ί/ -f e, i.e. ί - 5 = 3 (mod 4) as before. Thus we may conclude
that G = G(Λ , «)(r-3)/2G(2ύf, 2d)G{e) if t - s = 1,3 or 7 (mod 8),
while G s G(n, nγ~^l2G{d, d)G{e) if ί - s = 3, 5, or 7 (mod 8),
but for t - s = 3 or 7 (mod 8), we again prefer the first form. D
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Once we complete the proof of (2.4), which will show uniqueness
of our "canonical forms", we will have completed the proof of the De-
composition Theorem. We summarize the final result in the following
corollary.

COROLLARY 2.2. Any group G which can be presented as

G = (ω, ax, . . . , ar\ωn = 1, a? = ω*« Vί,

afCij = ωα/α/ Vz < j , ωα/ = α, ω Vί)

can όe written in exactly one of the following canonical forms:
(i) G(n, n)(r~2V2G(d, d) for some d\n {if r is even), or

(ϋ) G ( n , / ι ) ( r - 3 ) / 2 G ( έ / , έ / ) G ( ^ ) / o r some d9e\n (if r is odd\
where

g. c. d.(ύf, e) = d ifn=l (mod 2),

g.c.d.(d9e)eH,d} z/n = 0(mod 2 ) , f = 1 (mod 2),

g. c. d.(2έ/, e) = Id ifn = 0 (mod 2), § = 2 (mod 4), ana?

g.c.d.(rf,e) = d */n = 0(mod 2), § = 0 (mod 4).

Proof. The proof of the Decomposition Theorem shows that each
group can be written in one of the forms given above. Uniqueness
will follow from the next proposition. D

The next proposition calculates the number of elements in G whose
nth powers are 1. Uniqueness of our canonical forms will follow
from this, since we will see that the value is different for each of our
canonical forms. We can first obtain a partial result on uniqueness by
making two elementary observations:

Observations 2.3. (1) If r is odd, then n2/e = expZ(G), and e
is therefore uniquely determined. (2) If G = G(n, n)/G(t/, d) or if
G = G(n, nYG{d, d)G(e) as above, then Gn := {gn: g e G} = {ωd)
if n/d = 0 (mod 2) or n = 1 (mod 2), while Gn = (ωd/2) if n/d =
1 (mod 2) and n = 0 (mod 2). Thus, at worst G(/ι, /i)'G(rf, rf) =
G(n, nYG(2d, Id), G(n, n ) ^ ^ , i ) 6 ( ^ G ( n , nyG(2d, 2d)G(e)
when n/d = 2 (mod 4). The next proposition will rule out this pos-
sibility.

PROPOSITION 2.4. For any finite group G, let In(G) = \{g e G: g"
= 1}|. 77ze cΛαrί below gives In(G) for any of our canonical groups
G.

Proof. Let Go € {G(rf, rf), G(d, d)G(e)}, and define integers
Pj(G0) = p ; , ?7(Go) = βr/ by p7- = |{^ € G(n, n)JGQ: gn = 1}|,
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G(n,n)'-ιG{d,d)

nodd

neven, § = 1(2)

1 = 2(4)

f = 0(4)

«2 irf

n2ίrf

GCn.wj'^'Girf.rfJGie)

nodd, rf|£

neven, § = 1(2), rf|έ

neven, § = 1(2), | | e , rf t <?

f = 2(4), 2</|ί

5=0(4), </|e

n1Md

Phn2ί+ld
\n2Md

ψn2i+1d

n2i+1 d

qj = \{g e G(Λ , AI)7'GO: <?" = ω r t/2}|, where ^7 is defined only if n is
even. Suppose we know pj, qj for some y . Then we can determine
Pj+ι, ^ 7 + i . The nth powers of the group G(n, n) are just {1} if n
is odd, and {1, αW2} if n is even. Thus, if n is odd, /7/+i = n2pj.
If n is even, po(G(n, n)) = (3/4)n3, ίO(G(/i, n)) = (l/4)n 3 , and so
Pj+ι = (n2/4)(3pj + qj), iy+1 = (n2/4)(3qj +pj). We can express this
recursion formula by

and therefore

l\(Pj-ι

22
l/2\

-1/2 1/2;

1/2 1/2
-1/2 1/2

V 0
0 2 2 >

1 - 1

27+1 \y -\

In particular, if we can determine /?0 > <?o for all G o e
G(d, J)G(e)}, we can determine In(G{n, n)/~1Go) by the formulae

In(G(n,n)/-I, -[T ι(po + qo)+Po-

2Po if n is odd.

if n is even,

We now determine pQ, ήΌ ? beginning with the cases when r is even
(left-hand side of the chart), as they are simpler. Let G o = G(d, d) =
(ω, a, b), By (1.1.4) we have (ω'Vfc*)*1 = ωm+U+k)d+jkn{n-i)/2? s o

Po = |{(*\;,£): ϋ + k)d + jkn(n- l)/2 = 0 (modn)}|. First let
n be odd. Then (j + fc) d = 0 (mod Λ) ̂  7 + fc = 0 (mod n/d) <&
k = -j + m(n/d), 0 < m < d - 1. Therefore there are n2 d triples
(/, j, k) which work, and po = n2 d.
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Now let n be even. Then

qo = \{(i,j,k):(j + k)d + jkn(n-l)/2 = n/2(mod n)}\.

First let n/d = 1 (mod 2). To determine po we must calculate the
number of pairs (j , k) satisfying (j + k)djk(n/2) = 0 (mod ή).
We need jk = 0 (mod 2), y + A: = 0 (mod n/d). Write A: =
—j + m(n/d). If j = 0 (mod 2), any value of m will work. If
7 = 1 (mod 2), we must have m = 1 (mod 2) in order for A: to
be even. Therefore we see p0 = n{(n/2) d + (n/2){d/2)) = (3/4)n2 d .
For 0o w e n e e d ./£ = 1 (mod 2), j + k = 0 (mod n/d). Therefore
we must have j = l (mod 2) and m = 0 (mod 2). We then see
q0 = (l/4)«2 d . Next let n/d = 2 (mod 4), so d\\. For p 0

 w e n e e <*
either j + k = 0 (mod /i/rf) and A: = 0 (mod 2) or + A: = /i/(2rf)
(mod n/d) and j'fc = 1 (mod 2). Inspecting these conditions reveals
there are (n/2) d pairs (j, A:) satisfying the first set, and no pairs
satisfying the second set, giving p0 = (l/2)n2d. For q0 we need
instead j+k = 0 (mod n/rf) and >fc = 1 (mod 2) or j'+A: = n/(2d)
(mod Λ/rf) and ;7c = 0 (mod 2). There are nd/2 pairs satisfying
the first condition, and nd pairs satisfying the second, so we have
q0 = (3/2)n2d. Finally, suppose n/rf = 0 (mod 4). The conditions
which must be satisfied by the pair (j, k) are the same as in the
n/d = 2 (mod 4) case. In this case we have nd/2 possible pairs
satisfying each set of conditions, so po = qo = n2d.

Now we consider the case when r is odd. This is considerably
more complicated. Let Go = G(d, d)G(e) = (ω, a, b)(ω, c). Then
(ωiaJbkch)n = ωm+du+k)+eh+jkn(n-i)/2 % W e m u s t determine when

d{j + k) + eh + jkn(n - l)/2 = 0 or n(n - l)/2 (mod n). First
suppose n to be odd. Then d\e, so we may write e = h'd for some
integer h1. We want (j + k+hh1) d = 0 (mod Λ) , so {j+k+hh1) = 0
(mod n/rf). Set A: = -j-hh1 + m{n/d). There are n possible values
for 7 and A, and rf possibilities for m, so p$ = w3 d. For the rest
of the proof n will be even. Suppose first n/d = 1 (mod 2). To
begin with let d\e, and write e = /z'd as above, so /z; is odd. For
Po we must have j + k + hhr = 0 (mod 2) and 'A: = 0 (mod 2).
Again setting k = -j - hh! + m(n/d), we see that if j = 0 (mod 2),
all choices for h and m will work. If j = 1 (mod 2), fc must
be even, and so we must have h φ m (mod 2), so we have nd/2
choices for h and m. This gives po = (3/4)n3d. For #o w e n e e d
j + k + hhf = 0 (mod 2) and y'A; = 1 (mod 2), which means y' = 1
(mod 2) and h = m (mod 2). This gives #o = (l/4)n3d. Now
suppose still n/d = 1 (mod 2), but d \ e. Then %\e, and we may
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write e = h"(d/2), where again h" is odd. For po we must have

(2(7 + k) + hh")(d/2) + jk(n/2) = 0 (mod n).

There are two ways this can happen: either

2(; + k) + hh" = 0 (mod 2n/d) and jk = 0 (mod 2),

or

2(7 + k) + hh" = Λ/rf (mod 2Λ/</) and 7ft: = 1 (mod 2).

Counting possibilities as before reveals that in the first case, there are
(3/S)n2d triples (7, k, h) which fit the criteria, while in the second
case, there are (l/S)n2d such triples. Then p0 = (l/2)n3d. To cal-
culate go, we see that we want either 2(7 + k) + hh11 = 0 (mod 2njd)
and jk = 1 (mod 2), or 2(7 + k) + hh" = n/d (mod 2n/d) and
jk = 0 (mod 2). Here the first case yields (l/8)n2d acceptable
triples, while the second case gives (3/8)n2d triples. This shows
00 = (l/2)n3d as well. Now let n/d = 2 (mod 4). We have 2d\e,
so write e = 2h*d. We must determine the triples (j9k9h) for
which (j + k + 2hh*) d + jk(n/2) = 0 or n/2 (mod n), to deter-
mine po and #0 respectively. Calculations similar to those done
above show p0 = {l/2)n3d and #0 = {3/2)n3d. In the final case,
where n/rf = 0 (mod 4), d\e and we write e = hf d. Here we must
determine triples (7, k, A) satisfying (7 + k + hh1) d + jk(n/2) = 0
or n/2 (mod n). Again we apply the methods used above, this time
deriving po = go = n3d. From the formula giving In(G) in terms
of po and #0 > w e c a n n o w directly obtain the values in the chart,
completing the proof. (Notice that for even n, we have calculated #7

as well as Pj, so we have actually determined more than is asserted
in the statement of the proposition.) D

COROLLARY 2.5. Any generalized Clijford-Littlewood-Eckmann
group G is isomorphic to exactly one of the canonical forms {and there-
fore we are justified in so calling them).

Proof. We have already seen (2.3) that the only possible duplications
are

G(/ι, nγ-ιG(d, d) = G(/ι, n)^ιG(2d, 2d)

or

G(n, nγ-ιG(d, d)G(e) = G{n, nγ-ιG(2d, 2d)G(e)
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when n/d = 2 (mod 4), and 2d\e. However, by examining the chart
in the proposition above, we see that

In(G(n9 nγ-ιG(d, d)) = 2-'(2' - l)n2i d,

while
In(G(n, ny~ιG(2d, 2έ/)) = 2~/(2/ + 1)Λ2' rf.

As these are not equal, the groups cannot be isomorphic. Similarly,

In(G(n, ny-ιG(d, d)G(e)) = 2-\V - l)n2Md,

but
In(G(n, n)*-ιG(d, </)G(e)) = 2~ί(2ί + l )π 2 i + 1 </.

These groups are therefore not isomorphic either. D

COROLLARY 2.6. The isomorphism type of G = G(e\,..., er) de-
pends only on the following: n, d, and r, and σ := Σ(- l ) / + 1 £/ ifr is
odd, and t-s if % = 2 (mod 4). (Inparticular, let m\ = ίΛe number
of βj such that ej = ( - i y + 1 ι , αnύf 5eί m(G) = (mi, m2, . . . , mn).
Then G depends only on m(G).).

Proof. The first part is clear from the statement of the Decom-
position Theorem. The second part follows because n is the "di-
mension" of m(G), d = g.c.d.({ί: m, φ 0}, n), r = ^ = 1 m,, σ =

Σ"=i ί^ί > ί = Σί/rfSo(2) m ί . and 5 = Σί/rf=i(2)m/ ^ s o a 1 1 t h e n e c e s "
sary invariants of G can be calculated from m(G). (Notice that for
n = 2, m\ = 5 and m-i-t) D
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