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SMOOTH DECOMPOSITION OF FINITE MULTIPLICITY
MONOMIAL REPRESENTATIONS FOR A CLASS OF

COMPLETELY SOLVABLE HOMOGENEOUS SPACES.

BRADLEY N. CURREY

Given a finite multiplicity monomial representation r of
a completely solvable Lie group G, a smooth decomposition
of r is a concrete direct integral decomposition into irre-
ducibles parametrized by a manifold Σ, with the property that
compactly-supported elements of ΉJ° are mapped to smooth
sections on Σ by the intertwining operator. A natural way of
constructing such a decomposition is by means of the
distribution-theoretic Plancherel formula for r and a cross-
section Σ for coadjoint orbits. However, for irreducible repre-
sentations π/,lGΣ, the determination of appropriate distribu-
tions βι € Ή.\Γ°° is problematic. For the case where r is induced
from a "Levi" component, we overcome these problems and
give an explicit and natural construction for a smooth de-
composition. In the process we show that in this situation
the nilradical of G must be two-step.

0. Introduction.

We are interested in the decomposition of the representation r of a solvable
Type I group G induced from a unitary character of closed, connected sub-
group H. In one sense, to decompose τ means to describe the spectrum of
r, the multiplicities, and the equivalence class of the Plancherel measure, in
terms of the coadjoint orbit picture. But there is also a stronger sense of
what it means to decompose r: one would like to give a construction for
a direct integral, a unitary intertwining map, and a distribution-theoretic
Plancherel formula. The goal here is that the construction be as explicit as
possible, but at the same time natural: all objects should be naturally and
uniquely determined up to the choice of a certain Jordan-Holder basis for
the Lie algebra. The base space for the direct integral should be a smooth
manifold which naturally parametrizes an explicitly determined set of coad-
joint orbit data, and compactly supported smooth vectors for τ should be
mapped under the intertwining map to smooth functions on this manifold.
Under these circumstances we shall say that we have a smooth decomposi-
tion of r. The present paper carries out this program for a particular class
of completely solvable homogeneous spaces.
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Let G and H be as above but also completely solvable. Then G is expo-
nential, hence G is of Type I and one has the canonical bijection between
the unitary dual G and the space of coadjoint orbits [3]. For each λ G G,
let O\ denote the corresponding coadjoint orbit. Lie algebras of designated
Lie groups will be denoted by corresponding German gothic letters. Given a
unitary representation π of G acting in a Hubert space Ή, denote by H°° the
Frechet space of smooth vectors for π, and by Ή~°° the space of continuous
anti-linear functional on W°\ recall that U°° C U C Ή"°°. Elements of
H~°° will be called generalized vectors for π.

Let /Gfl* have the property that f) is subordinate to / (that is, [f), f}] C
ker (/)), let χ be the corresponding unitary character of if, and let τ = τf

be the representation of G induced from χ. Denote by \)L the space of linear
functionals that vanish on (). It was proved first by Corwin, Greenleaf,
and Grelaud for G nilpotent [6], and by Lipsman for G completely solvable
[14, 15], that the spectrum of τ consists of those λ G G for which Oχ Π
(/ + ί)-1) φ 0, and that the multiplicity πiχ of λ is given by the number of
ίf-orbits contained in O\Π (/ + ϊ)1-). Either πiχ = oo for a.e. λ, or there is
M > 0 such that for a.e. λ, raλ < M. One has the finite (indeed bounded)
multiplicity case if and only if dim(GZ) = 2dim(iϊ7) for a.e. I G / + f)1-,
whence each iϊ-orbit in Oχ is a connected component of OχΠ (/ + f)1-). Of
course the preceding references contain more information than is conveyed
here. We also remark that the spectral decomposition of r for the more
general class of exponential G was obtained by Fujiwara [10] and is similar
to the above, though some questions surrounding the finite multiplicity case
are still unresolved.

When dim(GZ) = 2dim(iZ7) holds for generic / G / + I)1-, there is a one
to one correspondence between ϋΓ-orbits in O\ and "appearances" of λ in
decomposition of r (for generic λ). The spectral decomposition formula of
[14] is

(0.1) [τ]= [ Xθd[u](θ)

Here [r] stands for the equivalence class of r, and θ is an iϊ-orbit contained
in Oχθ Π (/ + f)-1-). The equivalence class [v\ is that of pushforwards of finite
measures on f + ϊ)± equivalent to Lebesgue measure. Note that in contrast
with the usual spectral decomposition with base space G, the multiplicities
are "spread out" within the iϊ-orbit picture. Besides being elegant, the for-
mula (0.1) calls our attention to the possibility of a smooth decomposition
of r over an H-orbit cross-section, wherein different realizations for the mul-
tiple "appearances" of each λ are allowed. The derivation (and application)
of this kind of decomposition of r first appears in [5], where G is nilpotent,
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but the approach and methods there differ greatly from those of the present
work.

Here the smooth decomposition is just a consequence of an explicit
Plancherel formula. The distribution-theoretic Plancherel formula (the
Penney-Fujiwara Plancherel formula) which is analogous to (0.1) is

(0.2) (r (ω) ar, aτ) = / (πθ (ω) βθ, βθ) dv (θ).
J(f+{>*.)/H

where ag is the canonical cyclic generalized vector for r, π# is a realization of
λfl, and βθ is an (appropriately iϊ-covariant) generalized vector for πθ The
choice of v depends on choices of various Haar measures. In the case that
G is nilpotent, (0.2) was obtained by Pujiwara (in a different form) [9], and
derives from the fundamental work of Penney [19]. Groundbreaking work on
extending results of [9] to other classes of homogeneous spaces has been done
by Pujiwara and Yamagami [11] and Lipsman [16, 17, 18]. However, beyond
the nilpotent case, the technical difficulties involved in (0.2) are considerable.
One constructs the model πθ and the generalized vector βθ for generic θ by
first choosing I 6 θ and a polarization b = b (I) at I (satisfying the Pukanzsky
condition), then βθ is obtained by integrating / € (ΉπJ°° over H Π B\H
with respect to a certain appropriate measure. At issue is convergence of the
integral, as well as the fact that β$ must be appropriately ff-covariant. One
must make "good" choices for / and b (/): examples show that not all choices
will produce βθ with the required properties. What exactly are the generic 0,
and whether good choices for b (/) actually exist are questions which are not
settled in general. In any case, one would like to have a natural procedure
for determining generic θ and making these choices, in the process describing
(f + t)±) /H by a smooth orbital cross-section Σ, and the measure v as an
explicit measure on Σ. In this paper we consider a special case in which
the difficulties surrounding the construction of the ββ are nevertheless very
much present. Our main task is to overcome these difficulties and obtain an
explicit version of (0.2) by the procedure outlined above.

The class of homogeneous spaces H\G with which we are concerned is
that for which G is the semi-direct product G = NH, where N is nilpo-
tent and normal in G, and H is abelian and acts semi-simply on N with
real eigenvalues. In the context of algebraic groups H is sometimes called a
Levi component [13] (but we need not assume algebraic here). The orbital
spectrum formula for the quasi-regular representation τ0 on this class of ho-
mogeneous spaces was known before the more general results of [10, 14, 15]:
in [13] the spectrum of τ0 is computed using the Mackey machine, and it is
shown that τ0 has uniform multiplicity (either a power of 2, or -foo), which
is in turn the number of H-orbits in a generic orbital intersection OχΠ^.
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Now since H is co-normal, Jΐ-orbits in / + ίjx are just translates of iϊ-orbits
in I)-1, so that if τf has finite multiplicity for some /, then it does for all /. If
this holds we simply say that H\G is finite multiplicity, and we assume that
this is the case for the present paper. Our first main result - one which was
at first surprising to the present author - is that if H\G is finite multiplicity,
then N must be two-step (in fact, a particular type of two-step group which
includes the Heisenberg groups). It was already well-known that if H\G as
above is symmetric, then the quasi-regular representation r0 is multiplicity
free and N must be abelian. In our context we deduce that each rf has
uniform multiplicity 2ω, where u — dim (cent (TV) ~ N) /2. The reduction to
two-step nilpotent groups here parallels a similar reduction that occurs in
the situation where N is as above, but H is compact (whence G is no longer
necessarily solvable). The result there is that if (H,N) is a Gelfand pair,
then N is two-step [1].

A key to our method is a precise definition of what it means to be a
generic element of / + f)1- by means of "jump sets" of indices, and this is
the first instance known to this author where such techniques have been
used to derive canonical structural information about the group itself. For
generic / in / + f)x the so-called Vergne polarizations b(l) vary rationally
with / and have central intersection with I). On the other hand, we show
that the set of generic ff-orbits admits a natural, smooth, algebraic cross-
section Σ. Choosing I E Σ, and Vergne polarizations b(Z), we obtain our
models πθ. The main result of Section 2 is that an appropriate integral
formula for ββ converges absolutely for every π#-smooth vector; thus the
natural, smoothly varying b (/) are in fact "good" polarization choices. In
Section 3 we derive the Plancherel formula in terms of Σ. For this class
of homogeneous spaces, the choices for Haar measures are natural and the
resulting Plancherel measure on Σ is seen to be rational.

Thanks go to Professor Ronald Lipsman for many heplful conversations
from which this work benefitted greatly.

1. Algebraic structure of g.

Let g = n + f) where n is nilpotent, n D [g, g], and where I) is an abelian sub-
algebra of g such that ad (I)) consists of semisimple endomorphisms with real
eigenvalues. For each A E f), a E R, let R(A,a) = {X En: [A,X] = aX}.
For any real numbers a and 6, and for A E f), we have the usual inclu-
sion [R(A,a),R(A,b)] C R(A,a + b). We fix once and for all a basis
{Z l 5 Z 2 , . . . , Zn} for n with the properties that
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(i) span{Zi, Z 2 , . . . , Z^\ = Π; is an ideal in g, and
(ii) for each A G f), Z{ is an eigenvector for ad(A), 1 < i < n.

Let λi, λ 2,. . . , λn be the linear functional on fj such that [A, ZJ = λi (A) Z^
A £ ί),! <i < n, and for each i let Λ* be the corresponding positive character
of G: Λi (exp Z) = eXi^z\ We select a subset λh, λi2,... , λin as follows: iχ =
min{l <i<n:\iφ 0}, i2 = min{l < i < n : λi is not a multiple of λ^},
i3 = min{l < i < n : λj 0 spanfλj^λ^}} , and so on. We thus obtain a
minimal spanning set {λ^, λ i 2 , . . . , Xid} for the root system {λ l5 λ 2 , . . . , λ n }.
The minimality of our selection with respect to the ordering of the root sys-
tem (as well as to cardinality) is crucial. Set Φ = {iι < i2 < < id}- For
each k, 1 < k < w, let Ak G \) be chosen such that λir (As) = δrs, 1 < r, s < d.

L e m m a 1.1. For each fc, 1 < k < d, we have

Proof. By minimality of the selection of Φ, we have [-Afc,Πjfc_i] = (0). But

since λik (Ak) = 1, [Zik,nik^] C R(Ak,l) nnik.x = (0). D

We have fyfΊcent (g) = Π {ker Xik : 1 < k < d}; choose any basis A^+i,.. ,AU

for f)Πcent(g). This determines a Jordan-Holder sequence g = g m D gm_i D
• for g: namely

Qj = n + span {Au, Au.u... , Am_j+1} ,n<j<m,

and ĝ  = n^, 1 < j < n. The corresponding basis elements are {Zι,Z2,... ,Zm},
where Zn+1 = Au, Zn+2 = A u _ l 5 . . . , Z m = Ai.

Now that a (conveniently chosen) Jordan-Holder basis is in place, we can
employ the "layering" construction of [7]. As is well-known, each I G g*
determines a degenerate alternating bilinear form

For any subset s of g, let $ι denote the orthogonal complement of 5, and set
r ( i , 5 ) = s / Π s = the "radical" of the restriction of Bt to s. We also denote
t (Z,g) by g (/). It is well-known that for each 1,

is a subalgebra of g which is totally isotropic for f?/. Note that for any
/ G tv1, b(/ + /) = b(l). Also associated to / and to the above Jordan-
Holder sequence for g, we have the index pair a (I) = (i (I) ,j (/)) (cf. [7] or
[8]). Here
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and

j {l) = { l < j < m : fli + b(l)φ 0 i - ! +

Let p : g* —> n* denote the restriction mapping. Obviously p\^± is one-to-
one, onto, and G-equi variant. In this way we can identify f)-1- and n*. In a
similar way we identify n-1- and I)* (though in this case the identification is
not G-equivariant).

For each index pair α, the corresponding "layer" in 0* is the set Ωα =
{I : a (I) = a}. Each layer is a real algebraic subset of 0*, determined by the
polynomials which depend only on p (I). We totally order the set of all non-
empty layers as in [8, Prop. 1.2] and let Ωo denote the minimal layer, with
a° = (i°ji°) its sequence pair. Ωo is Zariski open in 0* and consists of G-
orbits having maximal dimension. Since the condition I G Ωo depends only
on p (/), we have that for / G I)*, Ωo Π (/ + f)-1) Φ 0 and hence Ωo Π (/ + fjx)
is an iϊ-invariant Zariski open subset of F + \)L. It is necessary that our
notion of "generic" iϊ-orbits require that they be contained in ΩoΠ (/ + F)"1),
but this is not sufficient.

For any Z, set ί) (ί) = fl {I) Π I), let

It is clear that for each I G Ωi, f) (/) = f}Πcent (0), that Ωx is iϊ-invariant and
consists of ϋΓ-orbit of maximal dimension, and that Ωx Π (/ + f)x) is Zariski
open in / + f)"1. Note however that Ωx is not necessarily G-invariant.

Lemma 1.2. For every I G Ω1 ? i (I) D Φ and b (I) Π f) = cent (0) Π f).

Proo/. For / G Ωi, and for ik G Φ, we have A* G 0^-1 ~ 0ifc) from which

it follows that ik G e(l). But by Lemma 1.1, Zik G r(/,0 i f c) C b(Z). Thus

ikee(l)~j(l)=i(l).

Now let A G () ^ cent (0). For some i G Φ, K (A) φ 0, hence / ([A, Z{]) φ

0. But Zi G b(/), so A g b ( ί ) . D

Set Ω = Ωo Π Ωi; the functionals in Ω will be the "generic" ones: given
&ny / G I)*, the irreducible representations which correspond to G-orbits Gί,
/ G Ω Π (/ + f)x), are sufficient to decompose rf. Containment in Ωo will
insure that the subalgebras b (I) vary smoothly with Z, while containment
in Ωx insures a nice cross-section for the if-orbits in Ω. The abelian group
cent (G) Π H is a direct factor of G contained in ΐf, and thus will have no
effect on the analysis of τf. The point of the preceding lemma is therefore
that for the remainder of this paper, we can assume that b (I) Π f) = (0) for
every I G Ω.

Now we introduce the finite multplicity assumption, and derive from
it additional algebraic information about 0. In our context here we have
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H (/ +1) = f + HI , / <E f)*, Z <E n*, so that H\G is a finite multiplicity ho-
mogeneous space simply means that for each Z E Ω, dim(GZ) = 2 dim (HI).
In the case of finite multiplicity, the above results mean the following.

Corollary 1.3. Assume that H\G is a finite multplicity homogeneous space.
Then i° = Φ ; and for every ί 6 ίl, f)(i) = g ( / ) θ l = ϊ1, where t =
span {Ziγ, Zi2,... , Z i d} is an abelian subalgebra of g.

Proof We have # (Φ) = dim(JΉ) = dim(GZ)/2 = # ( i ° ) , so t° = Φ. In

the proof of Lemma 1.2, we saw that t C b (Z) and so by definition of i°,

b (Z) = fl (0 θ 6. D

To derive more algebraic information about g, we use the pairing between

elements of i° and j°, and between their corresponding basis elements, es-

tablished in [7]. There the set j° is written as a (not necessarily increasing)

sequence {jι,J2, rjd}-, and subalgebras b* (Z), 1 < fc < d, are defined, ac-

cording to the following inductive scheme: for Z E Ω, set b0 (0 = 0, define

bk (/) = ft*-! (0 Π (ΰih Π b,_! (/))', and

j k = min{l < i < m : Qό Π bk^ (/) ̂  b

k — 1,2,... , d. (The sequence i° = Φ = {ii < ΐ2 < . . . < id} can be obtained
within this scheme also by setting

ik = min{l < j < m : Qj Π b ^ i (/) <£ t (/,

but in this context that is not necessary.) Thus

and so on. One has g = b0 (Z) D bi (Z) D b2 (Z) D . . . D bd (Z) = b (Z). In our
case here it is easily seen from what we have done that for each A:,

This gives the pairing of j k with ik, 1 < k < rf, and hence a pairing of
the basis elements Zik and Z ^ , 1 < k < d. For simplicity of notation, set
Vk = Z i f c, H^ = Zjh, 1 < Λ < d. Note that by Corollary 1.3, the Vk lie in n,
but the Wjfc may or may not lie in n. Of course if Wk 0 n, then Wk is one of
the basis elements of f). Let TZ = {1 < k < d :Wk e n}.

L e m m a 1.4. For each k,l <k < d, if k £%, then Wk — Ak.

Proof. Suppose that Wk 0 n, that is, j k > n. Since [Ar,0jfc] = (0) for
r > fc, then Ar G bfc (Z), k < r < d. On the other hand, [Afc,0ifc_i] = (0)
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and Ak 0 gι

ik. By definition of the algebras b r (/), 1 < r < d, this implies

Ak G bk.t (I) ~ b* (Z), hence Wk = Ak. D

L e m m a 1.5. For each k,l<k<d, [Wk,Vk] φ 0, [gjk-UVk] = 0, [Wk, g ^ ] =
0, and [Wk,Vr] = 0 for r φ k. Also if k G Ίl, then Xjk (Ak) = - 1 and
Xjk (Ar) =0forr>k.

Proof. We proceed by induction on A;, 1 < k < d. Suppose k = 1. Then by
definition of iλ and j l 5 [Wι,VΊ] Φ 0, and for every I €Ω,j < ji,l ([Zj, Vι\) =
0. Since Ω is dense in n*, this means [Zj, Vi] = 0,1 < j < jΊ Suppose that
1 e U. For jx <j<n, we have [Z^VΊ] G R(AuXj (Ax) + Xh (Ax)) Πfl^-i,
so that if [Z i ? Vί] 7̂  0, then λ̂  (Aλ) = - 1 . In particular Xh (Ax) = - 1 . For
r > 1,0 φ [Wi, Vi] E f i ^ π A ^ (Ar)) Πfl^-i yields λΛ (Ar) = 0. But now

[WuVr] G Λ (Ar ,λ h (Ar) + Xir (Ar)) Π β ^ . ! = R(Ar, 1) Π 0 i r _ ! = (0).

Similarly [Wu g^.i] C r (Ai, -1) Πg^. i = (0). On the other hand, if 1 & TZ,
then Wλ = Ax and \WuVr] = 0 if and only if r > 1, and [W^flή-i] = (0),
by definition of A\. This proves the lemma for the case k = 1.

Suppose that A; > 1, and that the lemma is true for each Λ, 1 < h < k.
Now by definition of j k , for each / G Ω and for each j , 1 < j < j k , we have
real numbers chj (I), 1 < h < fc, such that

^ (0 = ZJ+ Σ c^^ (0 w » e
 SΛ

 n ^-1 (0.

and again by definition of j k , I ([Zj (I), T4]) 7̂  0. But by induction, \Wh-> Vk] =
0,1 < h < Jfe, hence we have [^,T4] ^ 0, and for j < j k , l([Zά,Vk}) = 0
for all I G Ω so that [Zj,Vk] = 0 . If A; G 7£, then arguing as in the case
k = 1 we find that λifc (Ak) = - l ,λ i f c (Ar) = 0,r > A;, and [W7*,flifc-i] G
iϊ (Ajfe, — 1) Π gifc_i = (0). In particular, [Wk, Vr] = 0 for r < A;, since ir < ik,
and for r > Jb, [W*, K] e Λ (Ar, 1) Π g i r_i = (0). If A; 0 ft, then VFfc = Ak,
and in this case, [VFjk,nifc_i] = 0 and [Wkj Vr] = 0 if and only if r φ k just
because of the definition of Ak. This proves the lemma. D

L e m m a 1.6. If both k and r belong to H, then [Wk, Wr] = 0.

Proof Assume k > r, and set Z = [Wk,Wr]. It is easily seen from Lemma
1.5 that Z G b(l) (for every / G Ω), and that [Ak,Z] = -Z. Let i0 =
min {1 < i < n : Z G n j , and set

The function α/t (I) depends only on i |n i , and by Corollary 1.3 and Lemma
1.5, Ak - ak {I) Wk belong to b (/). Set

P(l) = l ([Ak - ak (I) Wk, Zk\) = -I (Z) - ak (I) I ([Wk,Z]).
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Then P is identically zero on Ω, hence on all of n*. Now if i0 < ik, then
P (I) = -/ (Z) so Z = 0, while if ί0 > i*, then we have P (ί) = -Z (Z) +
P o (/) where P o (0 depends only on /|n i o_ l 9 so again Z = 0. But i 0 = «* is
impossible, since if i0 = ifc, say Z = c\4 + Z o with c ^ 0 and Zo G n i o _!,
then we find that

P (Z) = -2cl (Vk) - ί (Zo) - I ([Wh, Zo]) /I (\Wk, Vk]) = - 2 d (Vk) + P o (/)

where P o (/) depends only on /|nio_i If this were the case then P (I) could
not be identically zero. Hence Z = 0. D

Proposition 1.7. // k E 11, then [Wk,Vk] belongs to the center of n,
[WkjZj] = 0 for all j φ ikj < n, and Xj (Ak) = 0 for all j φ ik or j k .
Moreover, for each fc, 1 < k < d, we have [Zj, Vk] = 0 for all j Φ j k , and
for any i 0 e, j 0 e, 1 < i, j < n, we have [Z^Zi] = 0. In particular, n is
two-step.

Proof Let k e Tl and set Z = [Wfc?Vfc]. For any j < n, [Zj,Wk] €
gjk-u[Zj>Vk] e gik-u and so by Lemma 1.5, [Z^Z] = [[Zά,Wk],Vk] +

[Wl f c,[Z i,VJ]=0.
Secondly we show that if k E 7£, and j Φ ik or j Λ , then λ̂  (Ak) — 0. Note

that if j G i°, or if j < î ., then we have λj (Ak) = 0 just by definition of Ak.
Suppose that j G j°, say j = j r , Zj = M^. We may assume that r G 7?-, and
by Lemma 1.4, we may assume that r > k. Now set Z = [Wri Vr]. We have
[Λfc, Z] = λj (ilfc) Z. For ί G Ω, we have Afc - ak (I) Wk G b (Z) as in Lemma
1.6, and Z G cent (n) C b (/), so

is therefore identically zero. But P (/) = λ̂  (Ak) I (Z), and since Z φ 0 we
must have λj {Ak) = 0. Next suppose that j ^ e , j > j k , and for 1 < r < d
set

Then Zj ~X)c r (/) W belongd to b (/) Now by Lemma 1.5, cr (I) = 0 unless
j r < j , hence I -> c r (/) depends only on i | n i_ i e Thus

P ( / ) = / ( [ ^ - o* (0 Ŵ fc, Z i - £ c r (/)

is identically zero, but P (/) = λ̂  (AΛ) I (Zj) + P o (/) with P o (Z) depending
only on l\nj_1, which gives λ̂  (Ak) = 0.

Now fix fc, 1 < fc < d, and j 7̂  j f c . To show that Z = [Zj, Vk] = 0, from
above results we may assume j £ e and n > j > j k . Thus fc G 7£ and so by
the above λ, ^ J = 0. But then Z eR (Ak, 1) Π n i f c^! = (0).
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Next we show that [Zj, Wk] = 0 for k G TZ and j φ ik, j < n, and here
we can assume that j & e and j > j k . Note that from the above we have
[Zj,Vk] = 0, 1 < k < d, hence Zj G b (Z), for every / G Ω. We claim that
Z = [Zj,Wk] G b (Z). Let 1 < r < d; if r φ k, then [Vr,Wk] = [Vr,Zj] = 0 by
above results and so [Vr, Z] = 0. On the other hand [Vk, Z] = [Zj, [Vk, Wk]),
and since [VJb, Wk] G cent (n) we have l([Vk,Z]) = 0. This proves the claim.
Now P{l) = l ([Ak - ak (I) Wk, Z}) is identically zero. But P (I) = -I (Z) -
ak(l) I ([Wk, Z]), and now an argument exactly like that of Lemma 1.6 gives
Z = 0.

Finally, for i 0 e,j 0 e, 1 < i,j < n, the above shows that both Z{ and Zj
belong to b (/) for every / G Ω. So / {\ZU Zj}) = 0 for every / G Ω and this
implies \Z^ Zj] = 0. This completes the proof. D

Write 11 = {ri < r 2 < < ru} and

{1,2,... , d} - n = {θi < s2 < • < 8y}

(here ~ denotes "set minus"). For the remainder of the paper we change
notation for the basis elements of f): set Ah = Arh, 1 < h < u, and write
Bk = ASk, 1 < k < v. We will use the coordinates

(ί, s) = exp (tχAι)... exp (tuAu) exp (sχBι)... exp (svBv)

for H freely, e.g., qB,G (ί, s), Aj (£, s), etc.
Let us summarize what we know about the structure of G. Set Xh =

Wrh,Yh = Vrh,l<h<u.

Theorem 1.8. Let G be the semi-direct product NH, with N nilpotent and
normal in G, and with H abelian, Ad H consisting of semi-simple transfor-
mations. If H\G is finite multiplicity, then N is two-step. Moreover, there
are elements XUX2^... , Xu-> Yi, Yi > , ̂ u in n such that
(i) [Xk, Yr] = 0 if and only if' r φk, and [Xk, Yk] is central in n, 1 < k < u,
(ii) for every r, *, [Xk,Xr] = \Yk, Yr] = 07

(iii) n = cent (n) + span {Xi, X2,... ,Xu, Y\, ^2, 5 ̂ } ; «^^
(iv) eαcΛ XΛ and 1^ is an eigenvector for Ad(/ι),/i G H.

It is clear that for each I G Ω, n/ ker (/) Π cent (n) is Heisenberg, and

p = b (/) Π n = span {Z{ : 1 < i < n, ί 0 j0} =

= cent(n) + span{Γχ, Y2> , ^ U }

is an abelian ideal in g (and of course a polarization at p (I) = Z|n).
It follows that

b (Z) = p + span {Ax + αi (Z) Xi, A2 + α2 (Z) X 2 , . . . , Au + au (I) Xu} ,
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where the ah (I) are defined as in Lemma 1.6. Each Ak commutes with
cent (n) and satisfies [Ak, Yk] — Yk, [Ak,Xk] — -Xk, and [Ak, Xr] = [Ak, Yk] =
0, r φ k. In particular B (I) is a semi-direct product of P = exp (p) with a
vector group W (I) of dimension u.

It is immediate from the above that there is a single subset Γ which is a
cross-section for all of the coset spaces B (I) \G.

Corollary 1.9. For (xux2,.^ ,xu) E K" and (si,s2, ,sv) E R", set
7 (x, s) = exp (xχXι) exp (xuXu) exp (sιBx)... exp (s^By). For any I E
Ω, the set Γ = {η{x,s) : (x,s) G f x K " } w a cross-section for B (I) \G.

Remark 1.10. As mentioned in the introduction, our class of homoge-
neous spaces H\G has also been studied in [13]. There the irreducibles
are constructed by means of the Mackey machine, and the spectrum of the
quasi-regular representation r is described by "Mackey parameters". Let G
be as in the hypothesis of Theorem 1.8, but without the assumption that
H\G is finite multiplicity. Let σ G iV, and let Hσ be the stabilizer in H of σ.
One of the main ideas of [13] is to choose / E n * , belonging to the coadjoint
orbit corresponding to σ, such that Hσ coincides with the stabilizer H (/)
of / in H [13, Theorem 3.2]; such a linear functional is said to be aligned.
Then the natural map a : Hσ —>> Sp (n/n (/)) is considered. A result of this
(though not explicitly stated there) is that H\G has uniform multiplicity 2U

if

(1.1) dim (a (Hσ)) = dim (n/n (/)) /2

holds for generic σ G iV, where u = dim (a (Hσ)).
On the other hand, suppose that H\G is finite multiplicity, and set ϊ)0 =

span {Ak : k 6 7£}, Ho = exp (ϊj0). Let / G Ωo C 5*, and let σ E N be the
irreducible representation (equivalence class) corresponding to the iV-orbit of
/ = P (0 I* i s e&sily seen that n-fb (/) = n+n* = n+b 0 , and hence Ho = ϋ ^ .
As we said above, a natural choice for / E Ωo when using the Mackey machine
is one for which / is aligned, and in this setting that means Ho = H(f),
hence / (Yk) = / (Xk) — 0,1 < k < u. Thus the aligned linear functional
which are used in [13] are not in Ω. In the present work we shall construct
the irreducibles as monomial representations by means of polarizations, and
we shall use generic ίf-orbit parameters for the concrete Plancherel formula.
For linear functional in generic iϊ-orbits we have f (Yk) φ 0. Thus for H-
orbit parameters we use linear functionals in fϊ, while for Mackey parameters
one uses linear functionals that are not in Ω.

There is a strong parallel between the present work and the theory of
Gelfand pairs (H, N) where N is nilpotent and H acts on N by automor-
phisms, but now H is a compact Lie group [1, 2]. To begin with, in [1]
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it is shown that if (H, N) is a Gelfand pair, then N is two-step. Secondly,
we can relate our situation to a result of Carcano [4] concerning Gelfand
pairs. Let σ G N\ realizing σ in a Hubert space Hσ, the Weil representation
associated with σ is a representation ωσ of Hσ acting in Ήσ that "extends"
σ. It is well-known that in the setting of the present paper, ωσ is quasi-
equivalent to the regular representation of Hσ and has uniform multiplicity,
and that (1.1) holds if and only if ωσ has finite multiplicity, in which case
that multiplicity is 2U [13, Prop. 3.4]. Thus from the work of [13] and the
present work, we can say the following, which parallels the above-mentioned
result of Carcano. If ωσ has finite multiplicity for almost every σ G N (with
respect to Plancherel measure), then H\G is finite multiplicity (and in this
case both multiplicities are 2U). Conversely, if H\G is finite multiplicity,
then from our structural results on N it is easily seen that for every σ G iV,
the multiplicity of ωσ is 2U\ where v! < u.

We conclude this section with the observation that Theorem 1.8 provides
a coordinate-free description of all nilpotent groups that can arise in the
class of homogeneous spaces we are considering. For X G n let c (X) be the
centralizer of X in n. If n is as in the Theorem 1.8, then dim (n/c (X)) < 1,
for every X G n. On the other hand if n is a nilpotent Lie algebra such that
dim(n/c(X)) < 1, for every X G n, then n is two-step (or abelian) and there
are elements XlyX2,... , X^Yi, !^ ,Yu i n n that satisfy conditions (i),
(ii), (iii) of the theorem. If n does have this form, it is clear that there is H
as in the theorem such that H\NH is finite multiplicity. Hence we have the
following.

Corollary 1.10. Let N be a connected, simply connected nilpotent Lie group
with Lie algebra n. Then the following are equivalent.
(i) There is a vector subgroup H of Aut (N) whose derived group in Aut(n)
consists of semi-simple transformations and so that ifG is the resulting semi-
direct product, then H\G is finite multiplicity.
(ii) For every X G n,dim(n/c(X)) < 1.

We remark that the above class of two-step nilpotent groups is very differ-
ent from the class of nilpotent groups known as Heisenberg-type (or H-type)
groups [12] (that occur naturally in the study of Gelfands pairs.) A two-
step nilpotent Lie algebra is H-type if dim (n/c (X)) = dim (cent (n)) holds
for every X 0 cent (n). Hence if n is H-type and satisfies (ii) above then n
is a Heisenberg Lie algebra. There seems to be no simple description of the
class of two-step N that can arise in a Gelfand pair (ΐf, N).
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2. Smooth vectors and generalized vectors.

Given a subalgebra ϊ of g, let dk be a right Haar measure on K — exp (£).
Let Ajζ be the modular function of K (the derivative of right Haar measure
with respect to a left Haar measure). In particular, one can take AG (g) =
Yli<i<n ^i (g)> For exponential solvable groups G, it is well know that there
is a positive character q on G such that q (k) = Aκ (k) / AQ {k), k £ if, and
that the space K\G carries a relatively invariant measure dj with modulus
qr1, that is, a measure dη which satisfies

( Ί ) [
K\G JK\G

for compactly-supported / on K\G. We want to make natural choices of
dk^dj for K = B (/), but before addressing that issue, we make some more
general comments. Let χ be a unitary character of K. Let C°° (G, K, χ) de-
note the space of smooth functions / on G which satisfy / (kg) = χ(k) f (<?),
and let C£° (G, K, χ) be the subspace of C°° (G, K, χ) consisting of those /
which are compactly supported mod K. The Hubert space L2 (G, ϋf, χ) is

1 Jo

the completion of Cc°° (G, # , χ) under the norm | |/ | | 2 = \jκ\G \f (τ)| 2 ̂ 7]
Let πx be the irreducible representation induced from the character χ of if,
so that 7TX acts in the space %x = L2 (G,ίΓ, χ) by the formula

Let Ή °̂ be the Prechet space of smooth vectors for πx in Ήχj and let Ή^°°
denote its antidual. It is well-known that U™ C C°° (G,K,χ) [20].

Fix / E Ω, and let B = B (I) = exp (b (/)). We have seen that B = PW,
where P — exp (p) is the polarization in n at p (Z), and P7 = exp (tυ (I)) is an
abelian group of dimension u. A basis for p is {Z3 , : 1 < j < n, j ' ^ j 0 } and
for rt) (/) is {Ak — a,k (I) Xk ' 1 < k < u}. Letting dp and dw be the Lebesgue
measures on P and VΓ resp. obtained from these coordinates, a natural
choice for right Haar measure on B is just db = dpdw. Recall that we have
the index set TZ = {1 < k < d : j k < n}. Define a positive character qβ,G on
Gby

9B,G = Π Ah (9).
ken

Then for Y e b,

qB,G (expY) = e - t Γ a d ^ b y = Δ β (expY) /Δ G (expF).

Note that this is not the only choice for qβG that we could have taken
(one can extend AB/AQ in many ways), and the choice of qs,G affects the
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relatively invariant measure dη as well as the growth properties of functions
in the resulting space Ή x . The above choice is natural and more importantly,
will result in manageable growth properties.

Recall that we have the coordinates 7 (x, s) on B\G given in the previous
section.

Lemma 2.1. Let dη be the measure on B\G defined by

ί f (7) dΊ = ( f (7 (s, s)) qB,G (7 (0, s)) dxds
JB\G JRd

where dxds denotes Lebesgue measure on Ru x R". Then dη is relatively
invariant with modulus qlj^G-

Proof. Let g € G, and define the diffeomorphism T 5 : K u x K M R u x W by
Bη (x, s)g = Bη (Tg (x, s)). Ifg E P, then normality of P gives that Tg = Id.
Let t be any real number; we compute Tg in the cases (a) g = exp (tBh) for
some /ι, 1 < h < v, (b) g = exp(ίXfc), for some fc, 1 < k < u, and (c)
g = exp(t(Ak - ak {l)Xk)), foτl<k<u.

(a) Here we have

7 (z, 5) p = exp (xiXx)... exp (a J J x

x exp ( s i^x) . . . exp ([ί + sh] Bh)... exp (^J5V)

hence Tg(x,s) = (x,sχ,... , ί + 5 Λ ) . . . jS^).

(b) In this case

7 (ar, s) g = exp (x iXi) . . . exp ([eat + xk] Xk)-> exp {xuXu) x

x exp (sxiJx)... exp {suBv)

where α = ΣrλjA, (-Br), soTp(a;,s) = (xux2,... ,eat + xk,... ,xu,s).

(c) Here g = x (t) exp (ίAfc) and exp (tAk) = gy (t) where

x(t)=exp{ak(l){e-t-l)Xk)

and
y(t)=exp{ak(l)(et-l)Xk).

We have

7(s, s) exp ( ί ^ ) = exp (tA*) x

= 57 ((rci,... , e*xk + ak(l) {eι - 1 ) , . . . , xu), s)
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hence

7 (x, s) g = 7 (α, 5) exp (ί (A* - α* (Z) Xk)) = 7 0&, s) x (<) exp (tA*) =

= 7 ( ( * i , . . . , * * + αfc (Z) e α ( s ) {e'* - 1 ) , . . . ,xu) ,5) exp(tΛ*) =

Thus

( ( , . . . , e ^ + αA (Z) (1 - e*)

To finish the proof one need only check that in each case,

QB,G (7 (Tg (x, s))) Jg (x, s) = qByG (g),

where Jg (x, s) is the Jacobian determinant of Tp (x, s). We leave this to the
reader. D

Let x = χι be the character of B defined by χt (expF) = eil{γ\Y G B.
Set Έt — π χ , % = Ή x , etc. Since J5iϊ is an open subset of G, i ϊ may be
regarded as an open subset of B\G. Using the coordinates (ί, s) for H and
the coordinates (sc, s) for B\G, we compute that the map φ : H ->RU xW
defined by

satisfies Bj (φ (ί, s)) = B (£, s).
We want to construct an appropriately covariant generalized vector for πh

that is, an element of

(ΉΓ00)9""2 = {βe HΓ°° : 7Γ, (h)β = qHιG{h)-ι'2β,ίoτ everyh G H) .

Following Fujiwara and Yamagami [11], and Lipsman [16], we define for-
mally

(c\ i\ n ( P\ I jF / U\ 1/2 Λ ~ l / 2 ^ f U\ ΛU -P r- 1JOO
\*Λ) Pi \J) — I J W QB,GQH,G Xf \ n ) ά n >J ^ H-i

JH

It is not at all obvious that (2.1) is convergent for all / G Hf. Note for
example that if / G C£° (B, G, χ), then f\H may not be compactly supported
(if TZ Φ 0, then the image of H in i?\G is not closed). Hence it is not
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immediate that (2.1) is finite even for / G C£° (G, £?,%). However we shall
prove the following.

Theorem 2.2. The integral (2.1) is absolutely convergent for every f G Ήz°°;

and βι is continuous on Ή^°.

This result is a generalization of the proof of convergence in [18], in which
it is assumed the N is abelian. We have seen that N is abelian if and only
if TZ = 0, so in what follows we assume that TZ φ 0. To prove the result we
need information about the growth properties of / on H. For simplicity of
notation we shall write / (ί, s) for f\H(t,s)- We make a couple of observations.
First, / G Hi implies that f\H is square integrable on H with respect to
the measure qBiG (t,s)dtds, or in other words, ( / | H ) (QB,GΫ^2 Ξ L2(H)I

and | (/ l^)(9B,σ) 1 / 2 | L a H < | |/ | |W |- Second, for / G Wf0, the differential
operators π (Z), Z G U (gc) (=the enveloping algebra of the complexification

β c of fl), act on / I * , and |(g f l f G ) 1 / 2 π (Z) ( / U ί f ^ ^ < Ik (Z) / | | ^ for every

Z G U(flc). We can compute π(Z) as an operator on <£>(#) (in the G-
coordinates (rr,s) ) or as an operator on H (in the iϊ-coordinates (£, s)).
In the latter coordinates the algebra π (U (flc)) is more easily described and
provides us with more useful information about Hf°.

First we set some notation that will be convenient. For J C {1,2,... , n},
set Λy (£, 5) = Yljςj Aj (£, 5). Recall we have written TZ ~{r1 < r2 < < ru}\
set ^ (ί5 5) = Ajr (̂ , 5), 1 < A; < u, and for ϋΓ C {1,2,... , n}, set qx (t, s) =
UkeK Qk (*, 5) (so that for i ί = {1,2,... , u} , g# = ς^ G ) . Denote by Co (fί)
the space of continuous functions on H that vanish at infinity. We recall (a
weak form of) a standard regularity result that if / and its partial deriva-
tives of all orders belong to L2 (if), then / € Co (H). In fact if we choose
a fixed constant-coefficient partial differential operator D on H such that
the reciprocal of its "symbol" P = D belongs to L2 (if), then we have

< \\VP\\»W

Lemma 2.3. Let f e Uf>, let J C {1,2,... ,n}, J' C {1,2,... ,n} ~ f,
and let K C {1,2,... ,«}. Seί L>κ = ΠjfeeK dtκ. Then
(a) ί/ie function

φ (t, s) = q% (t, s) Aj (0, s) Aj, (0, β) /(«, s) 6 Co (fί),

and there is V € U (gc) and a constant M, depending only on J and J',
such that WΦW^KMWπWfW^ and
(b) the function

Φ (t, s) = q^Q (t, s) Aj (0, s) Aj, (t, s) qκ (t, s) Dκf(t, s) G Co (H),



FINITE MULTIPLICITY MONOMIAL REPRESENTATIONS 445

and there is W G U (gc) and a constant M7 depending only on J, J1, and K,
such that

Proof. We begin by computing π (Z) as an operator on if, for certain Z e g.
First, consider a basis element Zj which belongs to the center of n. We
have Zj G p and by Proposition 1.7, Xj (Ak) = 0,1 < k < u, so one finds
that π(Zj) — iAj (t,s) = iλj (0,s). Next, let r = rk G K. If j = i r , then
π (Z, ) = iΛj (ί, s) = etk and Λ^ (0, s) = Λ, (0,0) = 1. Suppose that j = j r

Then [AΛ,[Xfc,yfc]] = 0,1 < Λ < u, and since [Bh,Yk] = 0,[JBfc,[Xfc,yfc]] =
λ j r (SΛ) [X,, y f c], 1 < h < v. Hence π ([X,, y j ) = %Kjr (0,5). Thus by taking
the appropriate element U of U (gc), we have π (U) — Λj (0,5) hj> (t, 5) as
an operator on H and

QlJi (*I 5 ) Λ ^ (0, *) Aj, (ί, 5 ) /(ί, 5) 6 X2 (J5Γ).

Now π (A*.) = dίfc, 1 < A; < u and π (£?*) = dSk, 1 < A; < 1/, so if i? α is any
mixed partial of order |α | , then Da G π (U (t))) and so

q% (t, s) Λj (0,5) AJI (t, s) Daf (t, 5)

belongs to L 2 ( ί ί) also. But since the function qJ^G (ί, s) Λj/ (ί, s) Λj (0, s)

involves only exponentials in t and 5, then Da (qβ% (*>5) A J (0,5) / (£,

can be written as a sum of terms of the form

l% (*> ^) A j (0,5) Aj/ (ί,

Hence all partials of φ (ί, 5) = g ^ (ί, 5) Λj (0,5) Λj/ (t, 5) / (t, 5) also be-

long to I/2 (H)j and so 0 G Co (H). Now choose Z G U(ί) c) for which the

reciprocal of the Fourier transform π (Z) belongs to L2 (H) and we have

π (Z) φ (ί, 5) = 9 ^ (t, 5) Σ|/3|<|α| π (Zβ) f (<> 5 ) w h e r e i n t h i s C a S e α i s t h e

order of π (Z). Hence

\\φ\\oo<M\\π(Z)φ\\L2{H)=M π(Zβ)f(t,8)
\β\<\*\

As for the function (b), we compute that for 1 < A; < u, π (Xk) = qk (*? 5) dtk

Now by Lemma 1.5 and Proposition 1.7, qk (£, s) = e~tkqk (0, s), 1 < k < u,

so if X/c = Γljte/c -^fc' then π (X/c) = qx (*5 5) D/c, and we have

9 }& (ί, β) Aj (0, S) Aj, (t, 8) qK (ί, 5) Dj,/ (ί, β) € L2 (if)

Now in a similar manner as before we find that

q% (t, s) Aj (0, s) Aj, (t, s) qκ (t, s) Df {t, s)
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belongs to Co (H) and the indicated estimate is obtained. D

Note that by taking K — {&}, Lemma 2.3 tells us something about the
growth of dtkf as Tk —> —oc, 1 < k < u, (in particular, if all other variables
are held constant, then dtkf(t,s) -» 0 rapidly as t —> —oo). In the next
lemma we derive information about the growth of / itself as tk —> — oo.

Lemma 2.4. Let f G Uf7 let P C {1,2,... , u}, <md /eί

C/(P) = {(t,s) G H: log (qk(t,s)) > OJor every k G P } .

Lei P = {1,2,. . . ,u} ~ P and /eί K be any subset of P,K = P ~

i ί . WViίe i f = {fci,fc2,... , ^ a } , ^ = {huh2,... ,Λ6}, and n n ί e ί G IT

as t = (tκ,tχ,tp) (with the obvious meaning). Finally write Qχ(s) =

TΛen for any J C {1,2,... ,n} ; J' C \irk ' k G P\, the function

φ (ί, 5 ) = Λj (0,5) Λj, (ί, 5) gp (ί, 5 ) " 1 / 2 / ( ( t κ , Q^ ( 5 ) , tP), 5)

bounded on U (P). Moreover, there is a finite set of positive constants
M2,... }, and elements {Wλ, W2,... } in U (gc), depending only on J,

J' and K, such that

Proof. Note that if P = 0, then t = tp and <7̂  = 9B,G> S O ' n ^ n i s c a s e w e

are done by Lemma 2.3. Assume that P φ 0. We proceed by induction on
a = #(K). If α = 0, then

1 /9

(/) (ί, S) = Λ j (0, 5) Aj. (ί, 5) g β , G (ί, 5) / (£, 5) |ίfc=log(9fc(0,S)),A:GP

so again by Lemma 2.3 we are done. Suppose that a > 0, and that the
lemma holds for all K' with # ( i f ) < α. Now for each A; = 1,2,... ,ιt,
qk{t,s) = e"ίfcgfc(0,5) so log(gΛ(0,s)) > 0 means tA < log(^(0,s)) . For
each (t, θ) G C/ (P) let E = E (ί, 5) be the subset of Rα defined by

E(t,s) = {τeRa : tfcβ < r α < log feα (0,5)), 1 < a < a}

and set Dκ = Ukeκdtk-
Replacing ί κ = ( t f c l ,^ 2 , . . . ,tka)hγτ = (τi,r2,... ,τα) \n f((tκ,Qk(s),tp),s)

and integrating i5 K / over E, repeated application of the fundamental theo-
rem of calculus gives

/ κ ϊ ((T, Q^ (S) , ίp), β) dr = ^ ( - l ) # ( κ ^ ' ) / (( ί A 7 , Q^,, ί p ) , s)
E
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where the sum is taken over all subsets K' of K. Now multiply both sides
1 lr\

of the above by Λj (0, s) Aj> (£, s) qp (ί, s) , and we get

\φ(t,s)\ =

= / Λj (0, s) Λj, (ί, s) qp (t, s)~1/2 Dκf ((T, Qk (a), tp) ,s) dr
JE +

j (0, s) Λj/ (t, s) qp (ί, s) 1 / 2 / ((<*/, QK' > *P) >5) I •

Let gKι be a term in the right hand sum with K' φ K. Then by induc-
tion, there are finitely many constants Mβ^i and elements Wβyκ> £ U (flc)
depending only on J, J', and K\ such that

sup \gκ, (t,s)\ < ΣMβ>κ' Wπ(wβ,κ')f\\ni

Therefore it remains to show that the function

/ (ί, 5) = / Λj (0,5) Λj, (t, 5) qp (ί, 5 ) - 1 / 2 Djf/ ((r, Q^ (5), ίp), s) dr
JE

is bounded on U (P) in a similar way. To see this, note that

qB,G ((T, Q :̂ (S) , ίp), 5) = qx (r, 5) ςfp (ΐ, 5) and

where Qp (s) means we have replaced t^ by log (qk (0,5)) for all A; G P. Hence

Λj (0, s) Kj, (ί, 5) q~pl/2Dκf ((r, Q^ (5), tp), 5) =

WB?G ( ( T

5 QK (5) 5 tp), 5) Λj (0,5) Λj, (t, 5) g^ (r, 5) D κ x

/ ((T, QK (S) , tp)) ] g^σ ((T, Qk (s), Qp (β)), s).

But we can apply Lemma 2.4 to the function inside the brackets above, and
in so doing obtain M > 0 and W € U (gc) such that

/ (t, *) < M ||π (W) / | |W l / q% ((r, Q^ (β), Qp (β)), β) dr =

= M | | π ( W ) / | | W | / t e ( r , β ) - 1 c i τ .

But it is easily seen that JE qκ (r, s)"1 dr < 1 on U (P), and this proves the
lemma. D
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Proof of Theorem 2.2. Let S = {1 < j < n : Λ^t, s) ^ 1 for some (t,
For each j G 5, let ε̂  be a choice of sign, ε3 = ±1. Set

£4 = {(ί, s) eH : log Aj (ί, 5) ε, > 0, for every j G 5} .

(Of course some of the Uε may be empty). H is the disjoint union of the sets

Ue, and for each ε, set P = | l < A; < ix: εirfc = + l | so that UεC.U (P).

Fix £/e 7̂  0; we need to show that fqlβ%q^G ιs integrable on Uε. We begin
by noting that from Lemma 1.5 and Proposition 1.7, we have q^G (^5) =

QH]G(^8) f°Γ e v^ ry (ί>5) € H. Recall that for each k = 1,2,... ,ιt,
Airk (t,s) = e<fc and Λ7 r (ί, 5) =qk(t,s) =e~tkqk(0,s), and recall also that
for all other j , Λj (t, 5) = Λ̂  (0, s), (t, s) G ίί . Next we observe that for each
k the sign of log (qk (0,5)) is constant on Ue, for since [Xk, Yk] G cent (n) and
Ad(t,s)([Xk,Yk]) = ^(0,5)[X^,yfc], there is some j (with Z, G cent (n))
such that Aj (t, s) = ΛJr (0,5) = ς̂  (0, s) for all (£, 5) G ίΓ. Hence the sign
of log(Λj (0,5)) is constant on Uε for each j G 5,j / iΓfc Let I = S ~
{irk : 1 < fc < u) and let / + = {j G J : logΛ^O^) > 0 o n t / J , / " = / - / + .
Then

, (0, ̂ ) 1 / 2 =

= Π Λ i ( ° ' 5 ) Π Λ, (0,5)-1 / 2 Π Λ, (0,,)1 / 2.
i€/+ i€/+ jei-

On the other hand

q%{t,s) = qp{t,s)-1/2qp{t,s)-1/2.

We partition P: let

Q = {A; G P : log (A<r J > 0 on C7ε} = {fc G P : t* > 0 on Uε)

and let Q = P ~ Q. Applying Lemma 2.4 with K = P, J = I + , and
^ ; — {*rfc : A: G Q}, we have that

Π

is bounded on Uε. We claim that the function

Φ (t,8) = qp1'2 (t,s) Π e-t* Π Aj (0, S)- 1 / 2
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is integrable on Uε. If this is so then

/ (*, *) qx

B% (t, s) qΰ%2 (ί, s) = φ (ί, s) Φ (ί,

is integrable on Uε and we are done. To prove the claim, we partition Q: set
Q+ = {keQ: log (ft (0,*)) >0},Q- = Q~q+. Set

M ) = Π ^g f c (0 , S )- 1 / 2

*,*) = Π e-tfcft(0,*)1/a

Then Φ (ί, s) = qP (ί, θ ) " 1 / 2 Φ Q + (ί, β) Φ Q - (ί, s) Φg (5) Φ + (ί, s) Φ . (5). Note
that / ~ j° consists of indices j for which Z7 G cent (n). Next we describe
the set Uε: define

Vε = {s: log(Λ, {0,s)) εj > 0 for j G I ~ j 0 }

and for s EVε, set

We(s) = {t: t fcε ir fc > 0 and {-tk + log(ςffc(0, β))) ε jrfc > 0,1 < k < u] ,

so that t/ε = {(t, s) : s € K, t G We (5)} and

/ Φ (t, 5) dίcfe = ί \ ί Φ (t, s) rftl ώ.

It is enough to show that the function s -+ JWε^ Φ (*, θ) ώ is exponentially
decreasing on Vε. To see this, note first that the function Φ + (s) Φ_ (5) is
exponentially decreasing on Vε. Now for each s G Vε,We(s) is simply a
u-dimensional cube in Mu

1 and we consider each interval which makes up
Wε (5). ΊϊkeQ, then log (qk (0, s)) < tk < 0, and

gfc (0, s) dtk = log ( f t (0,5)) ft (0, s).
O,β)),O)

If A; G Q+ then 0 < log (ft (0, s)) <tk, and
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while if k G £?~, we have 0 < tk < +00 and /(0,+oo)
 e~<fc9* (0,s)1/2dtk

qk (0,s) 1 / 2 . Finally if k G P, then ** < log (qk (0,5)) and

./(-oo,log(gfc(0,ss)))

Thus for each s G K>

Φ (t, S) dt =

= f qP (t, s)~1/2 Φ Q + (ί, a) ΦQ- (t, s) ΦQ (S) Φ + (a) Φ_ (a) dt <

x [ Π log (qh (0,.)) qk (0,
L

Proπl the definition of the index sets Q + , Q~ and Q we now see that the
function s -+ fWe(s)^ (t,s)dt is exponentially decreasing on Vε, and the
integral (2.1) is convergent.

Now to show that βι is continuous on Hf0, we apply the estimate of
Lemma 2.4, and the above analysis, to each set Uε. We have φε and Φ ε as
above, and Lemma 2.4 gives sup^ \φε (t,s)\ < J2βMβi£ \\π(Wβie) f\\Uι, for
some constants Mβj£ and elements Wβ%ε G U (gc) independent of / . Hence

ε e ε β

By definition of the topology on Ήf0, this finishes the proof. D

3. The Plancherel formula.
-1/2

Now that we have generalized vectors βx G (Ήt ° ° ) V H G ,/ G Ω, the results
of [16] show that we have a Plancherel formula. Here we shall derive it
by simple Fourier inversion. To do so we must choose some / in each H-
orbit, and we want to do this in a smooth natural way. Hence the first
task is to compute a nice cross-section for iϊ-orbits in Ω Π (/ + ϊ)±). In our
scenario here, since H (f +1) = f + HI and H acts only by "dilations", a
cross-section is easy to find. Specifically, given / G f)1-, set lj = I (Zj), and set
ε r (I) = sign (lir), 1 < i < d. We have analytic functions Qj (w, I) ,1 < j < n,
such that

r
wj) Z* : w = (wι,w2,... ,wd) G ((0, +oo))



FINITE MULTIPLICITY MONOMIAL REPRESENTATIONS 451

For each j , if j — ir € Φ, then Qj (w,l) = Sj (l)wr, and if j g Φ, say
ir < 3 < iτ+i> then Qj (w,I) = p^ (wi, w2,.. ,tur) ^? where p^ is an analytic
function of the form pj ( i^, w 2 , . . . , wr) = it;"1 . . . w/"r, α^ € R For each w,
the function Qj (w} •) is if-invariant on Ω Π f)1. A nice cross-section Σ for
Jϊ-orbits in Ω Π \)L is given by simply putting wr = 1,1 < r < d, that is
Σ = {ί G Ω Π ί) x : |Zir I = 1,1 < r < d). The cross-section in / + ί) x is / + Σ.
Fixing a choice of signs ε = (εi ,ε 2 , . . . , ε d ) , ε r = ± 1 , we have Σ =
where Σ e is the flat variety

We choose coordinates for each Σ e. The center of g has as a basis

and we set / (Ch) = ζΛ, 1 < /ι < α, and Z (Xfc) = μ*, 1 < fc < u. Then there
is a dense, open subset Dε of Rα x M1* such that

Given a function θ on / + I)1-, we shall write

/ θ (/) dl =
Jf+Έ

= Σ

Before deriving the Plancherel formula we may as well compute multiplici-
ties, which amounts to just counting the number of iϊ-orbits in each G-orbit
intersection with ί i π f j + f)1). Fix l0 = Σ C Λ Q + Σ^rK* + Σ/**-** Ξ Σ ε,
and let Z = / + Zo. Set /(̂ 4fc) = ^ , 1 < fc < tx. An ordered "co-
exponential" basis for g modg(l) is {Zei, Z e 2 , . . . , Ze2d} (where we have writ-
ten e = {ei < e2 < ... < e2<j) and consists of the Vr% the X^'s, and the
Bh's. Using the methods of [7, 8], we find that the G-orbit of / is the set of
all /' of the form

where WSh runs through (0, +oo), 1 < h < v, xk and y* run through K, 1 <
k < u, and zh runs through E, 1 < h < v. Recall that Ak commutes with
every basis element except Xk and Yk, that Xk commutes with every element
except Ak, Yk and possibly some of the B^l <h<v, and Yk commutes with
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every element except Xk and Ak. This is why Pk depends only on xk,yk, and
the wSh, 1 < h < v. In fact the function Pk (w,xk,yk,l') can be computed as

Pk (w, Xk, Vk, I') =θίk + {σk (w) xkyk - εrkμk) jV ([Xk, Yk]),

where σk (w) is a positive analytic function in the positive variables wSl,wS2,
... ,wSu. (The function Pjr above involves only the variables wSl,wS2,... ,wSu

and wrk, and σk{wSl,wS2,... ,wsv) = pjrk (wSl, w 5 2 , . . . , w,,,,™,.*)"1 Lrfc=i)
Thus

G/ Π (/ + f)x) = / + {/' G p (G/) : Ph {w,xk,yk,l') =ak,l<k<u} =

= f + {I' ^ P (G/) : σfc (ιy) ̂ y^ = εrkμk, 1 < k < u} .

Now # ({Gl Π (/ + f)-1)) /fΓ) = # ((G/ Π (^J Π (/ + Σ))). If V belongs to
this intersection, we must put each wSh = 1,1 < h < ιsy and so every
coordinate of /' is fixed except the Xk and Yk coordinates, where we are
allowed V (Yk) = εrk {lf) = ±1,1 < k < u while /' (Xk) = μ'k is determined
by

£rk (l')μ'k = εrkμk,l <k<u.

Hence the intersection GlΓ)(f + t)±)Γ\(f + Σ) consists of 2U elements corre-
sponding to the possible choices of signs for εri (/'), εΓ2 (Γ), ... ,εΓ u (/'), and
we have proved the following.

Proposition 3.1. For any / G f)*, the representation τf is uniform multi-
plicity 2U, where u = dim (cent (N) ~ N) /2.

We turn now to the Plancherel formula and the intertwining operator. Let
/ G I)*, T — Tf the representation induces by %/, and let ar be the canonical
cyclic generalized vector for r, that is, α r (φ) = φ(e),φ G W™. Then for any
test function ω G 2? (G), r (ω) α r belongs to %£°, in fact to Cc°° (G, H,χf),
and is given by the formula (cf. [16])

r (ω) α τ (g) = ωHJ (g) =

= Δ^1 (9) q~H%2 (g) ί ω (g-'h-1) Δ^1 (h) q~H%2 (h) χf (/i)"1 dh.
JH

One also has

(T (ω) α τ , ατ> = ω H l / (e) = / ω (h'1) Δ5 1 (h) qjg (h) χf (/i)'1 dh.
JH

Let I e f + \)±, and let TΓJ and /?/ be as in Section 2. Then πt (ω) βι G Ή,00 is
given by

π, (α;) A (<?) = / ω j f i / (bg) Xι (b)'1 q^%2 (bg) q% (bg) AB (b) db
JB
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and

(π, (ω) / % , / % > = / / ωHJ (bh) x, ( 6 ) " 1 q~%2 (b) x
JH JB

xqι£a{b)ΔB{b)χf[h)-χ dbdh

= ί ί ωHJ (h-'bh) Xι (by1 q-B%
2 (b) x

JH JB

xq%{b)ΔB{b)dbdh

(cf. [16] or [17] for the computations). For any φ G Cc (G,H,χ) (where χ

is any unitary character of £Γ), we set

Iι (Φ) = / I Φ (h-'bh) χ f (by1 q~B%
2 (b) q% (b) AB (b) dbdh

JH JB

so that // (ωHJ) = (πz (α;) A, A) when / G / + I)"1.

T h e o r e m 3.2. Let χ be any unitary character of H, and let φ G Cc (G, H, χ).

Then the integral / / + Σ ^ (Φ) \R(l)\dl is independent of the choice of f G f)*

and we have

φ(e)= f It(φ)\R(l)\dl
Jf+Σ

where R(I) = ((2π)nl([X1,Y1])l([X2,Y2])...l([Xu,Yu]))~1. In particular

(τ(ω)aτ,aτ) = / (π, (ω) A, A) 1 (̂01 Λ.

Froo/. Let / 6 1)* and / € / + Σ , writing/ =
/ + Σ ε as above. We use the following coordinates on B (I): an element

b = J J exp (chCh) J J exp (zhVSh) JJ exp (ykYk) x

x JJ e x P (wk (Λk ~ α*(0) x *)

is identified with (c,z,y,w) € Rα x K." x K" x Ru. Recalling the formula
for α* (/) we have α* (Z) = εΓfc//([Xfc, Y/t]) in this case, and so |-R(0l =

( 2 π ) " n Π | α * ( 0 l We denote Πe«* bye\Y[eSh by es, (eSίz1,e
s*z2,... ,es"Zι/)

by esz, etc. We compute explicitly that

QB%2 (b) qί% (b) AB (b) =
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We have

h (Φ) = JJH JJjjB Φ (c, e-z, e-ty, Ad"1 (ί, s) w) e*E^(MQMI-**)]

x e - * [ Σ *>'** + Σ ***>» + Σ c*<*]e^/2 dcdzdydwdsdt

= / £ / / / / β ^ (c, *, y, Ad"1 (ί,,)«,) e 4 Σ - ( - θ M — ) ]

x e-*[Σ«'»e'*e'*+Σ* 'β fcβ .+Σβ»ft]e*e e10/a dcdzdydwdsdt.

It is easy to check that for t, s, c, z, and y fixed, the function

w-ϊφ(c, z, y, Ad"1 (ί, 5) u>) e*"72

is rapidly decreasing. By the change of variables μk —ϊ α^ (/) (μ/. + α*), 1 <
k < u, and Fourier inversion in the variables w, μ, we get

(2π)n~u ί h{φ)\R{l)\dl

f f f [ Φ(c'z'V'°)
« JR1^ JRW JR1' JR a

Σ]eVdcdzdydsdtdζ.

Note that the above is independent of the choice of / E I)*. Set i/Λ = eifc, 1 <
k < u,ph = eS H,l < Λ < v, and set / = (0, +00). Note that a + v + u — n — u.
A simple computation gives

/ Iι(φ)\R(l)\dl = (2π)u-nΣ/ί [ i f f ί Φ(c,z,y,0)
J/+Σ g JR° JR" ^R" JR J/" 7/«

x e-i[Σ»* ' * e ' *+Σ J * '* e ι.+Σc*fc] dvdpdcdzdydζ

= (2π)u-n / ί ί ί f f Φ(c,z,y,0)
JR» JR" JR" JR» JR" JR«

x e-<[Σ»*τ*+Σ*^+Σc*C»] djdξdcdzdydζ

= φ(c).

D

Define Γ : Cc (G, fΓ, χ,) -> / / + Σ % |Λ (01Λ by

T(ωHJ) = {irι(ω)βι(g)}lef+Σ.

By [16, Prop 3.2], T extends to an intertwining operator

L2(G,H,χf)-4 ί nt\R(l)\dl.
Jf+Σ



FINITE MULTIPLICITY MONOMIAL REPRESENTATIONS 455

Explicitly,

= jjjjB Φ ((c, z, y, w,) g) e'KjB
x e -4Σ^*+Σ*^+Σ c *<*] e ™/ 2 dcdzdydw

Identifying Hi with L2 (Eu x R") via the mapping 7 (a, 5), Z G / + Σ, it is
clear that for any Φ G L2 (Ru x Iff'), the function

is C°°, so {TΓJ (ω) /% (g)}Z € / + Σ is a smooth section of {Ή

4. Examples.

We provide two examples. The first will be the basic split oscillator group,
wherein most of the essential difficulties of the subject are already exhibited.
In the second example we let R act semi-simply on the split oscillator so as
to be non-trivial on the center, in order to show the differences created by
a non-trivial action of H on the center of the nilradical. By the results
of Section 1, in some sense the general case just amounts to taking higher
dimensional analogues of these examples (or of the ax + b group), where the
commutator [n, n] is allowed to be arbitrarily large, and where the portion of
H acting non-trivially on cent (n) can act on n in a fairly arbitrary manner.
In an attempt to make the techniques of Section 2 more transparent, we
have related results of that section to computations in these examples.

1.0 = span {A, X, F, Z} with non-vanishing brackets [A, X] = —X, [A, Y] =
Y,[X,y] = Z. Here f) = ΪL4,n = span{JΓ, Y,Z}. G is the semi-direct
product of the 3-dimensional Heisenberg group with R, and is diίfeomorphic
with E4 by identifying (z,y,α;,t) with exp (zZ) exp (yY) exp(a;X)exp(ί.A).
The multiplication is

(z, y, x, t) {z\ y\ x\ t') = (z + zf + e'xy1, y + eιy\ x + e"V, t + t1).

The Jordan-Holder sequence is given by βi = KZ, g2 = span{Z, Y}, g3 =
span{Z, Y,X}, g4 = g. For I G fl*, write I — (λ,7,μ,α), where λ =
Z ( Z ) , 7 = l(Y),μ - l(X),a = I (A). Ω o = {I G 0* : λ φ 0 } a n d ^ =
{I G g* : 7 Φ 0}. Fix I G Ω = Ωo Π ΩΓ, then b (I) = span{Aj, Y,Z} where
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Aι = A - a (I)X,a(l) = 7/λ. We have

B (I) = {exp (zZ) exp (yY) exp (wAt)

Haar measure on G is dg — dzdydxdt, on B is db = dzdydt, and on
ii,d/i = dt. G is unimodular but AB (z,y,a(l) (e~w - 1) ,w) = e~w and
9B,G (2,y,£,£) = e*. Let / G Wz°°, and write / (t) for / | # . Then the general-
ized vector βι is defined formally by

(4.1) βt(f)= ί f(t)e^dt.
JH

How do we see that this integral converges absolutely and defines a gener-
alized vector? Using ϋf-coordinates, we compute that π(A)f(t) = / '( ί),

π (Y) f (t) = ίe*/ (t), and π (X) / (t) = e"*/1 (*)- Set

Since all derivatives of φλ are square integrable on H, then 0χ (ί) G Co (H)
and we have H îH^ < Mι\\π(V)f\\nι (as in Lemma 2.3, part (a)). In
particular / (t) e*/2 = φx (t) e~ι is absolutely integrable over 0 < t < +cx>.
Let φ2 (t) = e"*/2/' (t) = gB)G (t) π (X) /' (ί); then all derivatives of ^ 2 are
square integrable on H so φ2 G Co (ίί) and Halloo < M2 | |π (W) f\\Uι (this
is Lemma 2.3, part (b)). Hence as t —> —00,/' —>> 0 faster than eί//2, and
we apply the fundamental theorem of calculus to see that / is bounded on
-00 < t < 0, and that sup{|/(t)| : -00 < t < 0} < 2M2 \\τr(W)f\\nι+\f(0)\.
(This is a special case of Lemma 2.4.) Now as in the proof of Theorem 2.2,
it follows that (4.1) converges absolutely and

< sup {1^(4)1 : 0 < t < +00} / e'tdt
^(0,+oo)

+ sup{|/(ί)| : -00 < t < 0} / et/2dt
^(-00,0)

< Mx \\ κ{V)f\\Hι + 4M2 \\π(W)f\\Hι + 2

The cross-section for if-orbits in ̂  Π Ω is

Σ = {(λ,ε,μ,0):λGM~{0},μGlR,ε = ± l } = | J Σ e

ε=±l
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and Theorem 3.2 says that the Plancherel measure is given on Σ ε by
(2π)~3 \~ιd\dμ. The matrix elements for πhl £ Σ, are

,βι) = f fjf φ (exp(zZ) exp {e^yY) exp

χ

X

where ω € £> (G) and ^ = r (ω) aτ. Now # (Z) = (2π)" 3 a (I) here. Thus

x e^1"/2 dzdydwdt (2τr)~3 dλd/x

= (2τr)"2 J ] /77Y 0 (z, y, 0) e ' V ' - H dye'dtdzdλ

= (2τr)-2//[/ + / I fφ(z,y,O)
JJ U(-oo,0) ^(0,+oo)J 7

x e - i [ 2 / 7 + 2 λ ] dydηdzdλ =

#(e) = {r(α;)α r ,α r ).

2. β = span{B,Λ,X,y, Z} where g4 = span{A,X,Y, Z} is the split oscil-
lator, and [£,X] = X,[B,Z] = Z,[B,il] = [5,F] = 0. G4 is realized as
above, and G = (?4 exp (RB) so that the multiplication is

= {z + eV + e^y', y + ely',x + e 5 "^ ' , ί + t;, 5 + s').

The Jordan-Holder sequence is the obvoius extension of that which was
chosen above for g4, the set Ω of generic linear functionals is the same
as before, and for / G Ω, the polarization b (/) is the same as before, but
now qB,G{s,t) = e*"5. G is no longer unimodular: Δ^ (2,y,x,t,s) =
QH,G {Z, y> x, *? s)~ = e 2 s Thus the formula for A now is

(4.2) A ( / ) = f f(s,
JH
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where we have written f (s,t) for f\H. One computes that, for smooth
vectors restricted to H, π (A) — dt,π(B) — ds,π(X) — es~tdt,ττ (Y) — iet.
By Lemma 2.3, for each k,j > 0, there are constants Mkj and Nkj and
elements Vk j , Wkj in U (gc) such that

(i) p W - ^ / ί M ί L < MkJ \\π(VkJ)f\\Hι, and

(ii) je*W'-^V-^/ (s, t) G Co (H) L < iVfcJ ||π

Let U(++) = {(*,<) :s>O,t>s}, £ / ( + - ) = {(s,t) :s>O,t<s},
U(-+) = {(s,t) : s < 0 , ί > s } , U( ) = {(s,t) : s < 0,ί < 5}. Using (i)
and (ii) and the fundamental theorem of calculus we get (Lemma 2.4)

(in) sup {\eksf(s,t)\ : (s,t) G £/(+-) Uί/( )}

< M M ||π (T4,o) / | | W | + 2AΓM | |π (WM) / | | , k > 0.

For each of the above four subsets U of H, we write f(s,t)ese^~s^2 as a
product of a function φ for which one of the above estimates (i), (ii) or (iii)
holds, and a function Φ which is absolutely integrable over U.

U (++) :φ{s,t)=f (5, ί) e 2 V e<*-β)/2, Φ (5, t) = e'8e'\

U ( + - ) :φ(s,t)=f (5,ί) e2 s, Φ (3,ί) = e-'e^-)/ 2 ,

[/ (-+) : φ (5, ί) = / (*, t) e*e('-)/2, Φ (5, t) = e'"*,

[/ ( ) :φ(s,t) = f (5,t), Φ (3,t) = e'e^-V2.

Now in a manner similar to example (1) (cf. also the proof of Theorem 2.2)
we see that (4.2) is absolutely convergent and defines a generalized vector
for π.

The cross-section for if-orbits in f)x Π Ω is

Σ - {(ε1,ε2,/i,0,0) : μ e R ^ = ± l , ε 2 = ±1,} =

where ε = (εi,ε2) runs through {—1,1} . Here the Plancherel measure is
given on each Σ ε by (2τr)~3 dμ. For ω G V (G) and φ = r (ω) α r , we have

( T Γ I M A J A ) = (π ε i, e 2,μH/3 ε i, e 2,μ,/? ε i, ε 2,μ)

' "1 exp

χ

and a computation like that of Example (1) shows that

π î̂ 2,μ (^) βεi^μiβex^μ) dμ = φ (β) =
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5. Concluding Remark.

Suppose that G is any connected, simply connected nilpotent Lie group, H
a closed connected subgroup, and r an associated finite multiplicity mono-
mial representation. Given choices of appropriate basis for Q and fj, there
is a unique construction of a flat cross-section Σ for generic if-orbits in \)L.
Attaching the Vergne polarizations to each / € Σ one has a natural, ex-
plicit algorithm for deriving Pujiwara's Plancherel fromula, and hence for
constructing an explicit, smooth decomposition of r over Σ, as described in
the intriduction. Can one give an explicit description of the Plancherel mea-
sure on Σ? One could even hope that this decomposition diagonalizes the
differential operators on H\G that commute with r, in the manner of [5].
Of course one could also entertain such questions for G completely solvable,
once the technical difficulties surrounding the construction of the generalized
vectors βt are overcome.
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