ON NORMS OF TRIGONOMETRIC POLYNOMIALS ON $S U(2)$

A. Dooley and S. K. Gupta

Abstract

A conjecture about the L^{4}-norms of trigonometric polynomials on $S U(2)$ is discussed and some partial results are proved.

1. Introduction.

If G is a compact abelian group, an elementary argument shows that $M_{p}(G)=$ $M_{q}(G)$ where $M_{p}(G)$ denotes the space of L^{p}-multipliers on G and p and q are conjugate indices. Oberlin [7] found a nonabelian totally disconnected compact group G for which $M_{p}(G) \neq M_{q}(G)$. Herz [4] conjectured that inequality holds for all those infinite nonabelian compact groups G whose degrees of the irreducible representations are unbounded. However, for compact connected groups, the situation is still unresolved, even for $S U(2)$.

The present paper arose from an attempt to study the Herz conjecture for $S U(2)$. In his unpublished M.Sc. thesis [8], S. Roberts formulated a conjecture for $S U(2)$ which, if proved, would settle the Herz conjecture for all compact connected groups. we believe that Robert's conjecture is interesting in its own right as it makes a rather delicate statement connecting the $L^{p_{-}}$ norms of noncentral trigonometric polynomials with the growth of the CleshGordon coefficients.

We have pursued this interesting conjecture and make some partial progress towards settling it. Our results open the way to a detailed study of some new aspects of L^{p} analysis on compact Lie groups.

In Section 2, we establish our notation. We state the conjecture in Section 3 and proove some partial results (Theorem 3.2). In Section 4, we show the relevance of the conjecture to Herz's conjecture.

2. Notation and remarks.

2.1. Irreducible representations of $S U(2)$. We summarise some notation and definitions from [6] concerning the irreducible representation of $S U(2)$.

Let n be a rational number of the form $k / 2$, where $k \in \mathrm{~N}$ and H_{n} be the space of homogeneous polynomials on \mathbb{C}^{2} of degree $2 n$; i.e. of functions of the form

$$
\begin{equation*}
f\left(z_{1}, z_{2}\right)=\sum_{i=-n}^{+n} a_{i} z_{1}^{n-i} z_{2}^{n+i} \tag{2.1}
\end{equation*}
$$

Let (f, g) be the inner product on H_{n} given by the formula

$$
\begin{gather*}
\left(\sum_{i=-n}^{+n} a_{i} z_{1}^{n-i} z_{2}^{n+i}, \sum_{j=-n}^{+n} b_{j} z_{1}^{n-j} z_{2}^{n+j}\right) \tag{2.2}\\
=\sum_{i=-n}^{+n}(n-i)!(n+i)!a_{i} \overline{b_{i}}
\end{gather*}
$$

Let $U\left(H_{n}\right)$ denote the set of unitary operators on H_{n} with respect to the inner product (2.2). The mapping $T_{n}: S U(2) \rightarrow U\left(H_{n}\right)$ given by

$$
\left(T_{n}\left(\begin{array}{cc}
\alpha & \beta \tag{2.3}\\
-\bar{\beta} & \bar{\alpha}
\end{array}\right) f\right)\left(z_{1}, z_{2}\right)=f\left(\alpha z_{1}-\bar{\beta} z_{2}, \beta z_{1}+\bar{\alpha} z_{2}\right)
$$

is an irreducible representation of $S U(2)$ and in fact the set $\left\{T_{n}: n=\right.$ $0,1 / 2, \ldots\}$ forms a complete set of inequivalent irreducible representations of $S U(2)$.

To each operator $T_{n}(x), x \in S U(2)$, there corresponds a unitary matrix (relative to the natural orthonormal basis of H_{n}) whose elements will be denoted by $t_{j k}^{n}(-n \leq j, k \leq n)$. These matrix elements are continuous functions on $S U(2)$. We shall be estimating their norms as convolution operators on L^{p}.

There are many results on the L^{p} multiplier norms of central trigonometric polynomials - see for example [2], or the more recent optimal results of Sogge on Riesz kernels on arbitrary compact manifolds (c.f. also [9], [10]). However, the $t_{j k}^{n}$'s considered here are non-central.

A word about the geometric significance of the matrix coefficients $t_{j k}^{n}$ is in order. By the Peter-Weyl theorem, $L^{2}(G)$ decomposes as a direct sum of the irreducible representations of G, each one occuring with multiplicity equal to its dimension. These isotypic components represent the eigenspaces of the Laplace-Beltrami operator, and convolution by $(2 n+1) \chi_{n}$, where χ_{n} is the characcter of the nth irreducible representation, is the projection onto this space.

For each $j(-n \leq j \leq n)$, the functions $\left\{t_{j k}^{n}:-n \leq k \leq n\right\}$ span one of the above copies of the representation space of degree $2 n+1$. Convolution
on the left by $(2 n+1) t_{j j}^{n}$ is a projection of $L^{2}(G)$ onto this copy. Convolution by the function $(2 n+1) t_{j k}^{n}$ are the natural isometries between the various copies of the nth irreducible representation inside the isotypic component.
2.2. Expressions of products of functions $t_{j k}^{n}$: The tensor product of any two nontrivial irreducible unitary representations of $S U(2)$ is always reducible. If one decomposes such a tensor product into its irreducible components, then the coefficients which appear in the decomposition are known as the Clebsch-Gordan coefficients.

In the case of $S U(2)$ the Clebsch-Gordan coefficients $C\left(n_{1}, n_{2}, n_{3}, j_{1}, j_{2}, j_{3}\right)$ make their appearance in this way in the formula

$$
\begin{array}{rl}
t_{j_{1} j_{2}}^{n_{1}} t_{k_{1} k_{2}}^{n_{2}}=\sum_{m=\left|n_{1}-n_{2}\right|}^{n_{1}+n_{2}} & C\left(n_{1}, n_{2}, m, j_{1}, k_{1}, k_{1}+j_{1}\right) \tag{2.4}\\
& \cdot C\left(n_{1}, n_{2}, m, j_{2}, k_{2}, k_{2}+j_{2}\right) t_{j_{1}+k_{1} j_{2}+k_{2}}^{m}
\end{array}
$$

While the Clebsch-Gordan coefficients are, in general, very complicated [8], there are simple formulas for them in certain situations. Two such cases are given below. they will be of interest in Section 3.

$$
\begin{equation*}
C(n, n, 2 n, j, k, j+k)=\left(\frac{(2 n+j+k)!(2 n-j-k)!2 n!2 n!}{(n-j)!(n+j)!(n-k)!(n+k)!4 n!}\right)^{1 / 2} \tag{2.5}
\end{equation*}
$$

$$
\begin{align*}
C(n, n, 2 m, j, j, 2 j)=(-1)^{n-m} & \left(\frac{(4 m+1)(2 j+2 m)!2 n-2 m!2 m-2 j!}{(2 n+2 m+1)!}\right)^{1 / 2} \tag{2.6}\\
& \times \frac{(m+n)!}{(m+j)!(m-j)!(n-m)!}
\end{align*}
$$

if $n \geq m \geq|j|$ and 0 otherwise

$$
\begin{equation*}
C(n, n, 2 m+1, j, j, 2 j)=0 \tag{2.7}
\end{equation*}
$$

We denote by $C_{i k}^{2 m}$ the Clebsch-Gordan coefficient $C(n, n, 2 m, i, k, i+k)$ where n will considered be fixed throughout the argument.

In Section 4, we use the following convolution identity ([5], 27.20)

$$
t_{j k}^{n} * t_{p q}^{m}=\frac{1}{2 n+1} \delta_{n m} \delta_{k p} t_{j q}^{n} .
$$

By $A_{n} \approx B_{n}, n>1$ we mean that there exist positive constants α, β süch that

$$
\beta B_{n} \leq A_{n} \leq \alpha B_{n}, \quad \forall n \geq 1
$$

The same symbol C may denote two different constants in two different lines.

3. The conjecture.

In this section we state the conjecture and prove some partial results.
Conjecture. Denote by $\underline{z}^{(n)} \in \mathbb{C}^{2 n+1}$ the vector with components $\left\{z_{i}^{(n)}\right\}_{i=-n}^{+n}$. Let

$$
A_{n}=\frac{1}{n^{1 / 8}} \sup _{\substack{z^{(n)} \in \mathbb{C}^{2 n+1} \\ \sum_{i=-n}^{+n}\left|z_{i}^{(n)}\right|=1}} \frac{\left\|\sum_{i=-n}^{+n} z_{i}^{(n)} t_{0 i}^{n}\right\|_{4}}{\left\|\sum_{i=-n}^{+n} z_{i}^{(n)} t_{n i}^{n}\right\|_{4}} .
$$

Then $A_{n} \rightarrow 0$ as $n \rightarrow \infty$.

Remark 3.1. For the motivation of the conjecture, see Section 4.
We will prove the following theorem which is a weaker version of the conjecture:

Theorem 3.2.

(A) Let $\underline{z}^{(n)} \in \mathbb{C}^{2 n+1}$ and $\underline{z}_{i}^{(n)} \geq 0, \forall i=-n, \ldots, n$. Define $F_{n}\left(\underline{z}^{(n)}\right)=$ $\left\{i \mid z_{i}^{(n)} \neq 0\right\}$. Suppose that $\sum_{i=-n}^{+n}\left|z_{i}^{(n)}\right|=1$.

If

$$
\begin{aligned}
&\left|F_{n}\left(\underline{z}^{(n)}\right)\right| \leq \frac{C n^{1 / 3}}{(\log n)^{2 / 3}} \quad \forall n \geq 2, \quad \text { then } \\
& \frac{1}{n^{1 / 8}} \frac{\left\|\sum_{i=-n}^{+n} z_{i}^{(n)} t_{0 i}^{n}\right\|_{4}}{\left\|\sum_{i=-n}^{+n} z_{i}^{(n)} t_{n i}^{n}\right\|_{4}} \leq \frac{C}{(\log n)^{1 / 4}} .
\end{aligned}
$$

(B) Let $\left\{p_{n}\right\}_{n=1}^{\infty}$ be a sequence of natural numbers such that $p_{n} \geq 2 \forall n$. Define $j_{n}=\left[\frac{\log n}{\log p_{n}}\right]$. Then

$$
\frac{1}{n^{1 / 8}} \sup _{\sum_{i=-n}^{+n}\left|z_{i}^{n}\right|=1} \frac{\left\|\sum_{i=-n}^{+n} z_{i}^{(n)} t_{0 p_{n}^{2}}^{n}\right\|_{4}}{\left\|\sum_{i=-n}^{+n} z_{i}^{(n)} t_{n p_{n}^{2}}^{n}\right\|_{4}} \leq C \frac{\log n}{n^{1 / 4}} .
$$

To prove Theorem 3.2, we first obtain an expression for $\left\|\sum_{i=-n}^{+n} z_{i} t_{j i}^{n}\right\|_{4}$ in terms of Clebsch-Gordan coefficients. Let $\underline{z} \in \mathbb{C}^{2 n+1}$.

Set

$$
\begin{aligned}
\varphi_{j}^{n}(\underline{z}) & =\sum_{i=-n}^{+n} z_{i} t_{j i}^{n} \\
\left(\varphi_{j}^{n}(\underline{z})\right)^{2} & =\left(\sum_{i=-n}^{+n} z_{i} t_{j i}^{n}\right)\left(\sum_{k=-n}^{+n} z_{k} t_{j k}^{n}\right) \\
& =\sum_{-n \leq i, k \leq n} z_{i} z_{k} t_{j i}^{n} t_{j k}^{n} \\
& =\sum_{-n \leq i, k \leq n} z_{i} z_{k}\left(\sum_{m=0}^{2 n} C(n, n, m, j, j, 2 j) C(n, n, m, i, k, i+k) t_{2 j i+k}^{m}\right) .
\end{aligned}
$$

Using (2.6)-(2.7), we get

$$
\begin{aligned}
\left(\varphi_{j}^{n}(\underline{z})\right)^{2} & =\sum_{-n \leq i, k \leq n} z_{i} z_{k} \sum_{m=|j|}^{n} C(n, n, 2 m, j, j, 2 j) C(n, n, 2 m, i, k, i+k) t_{2 j i+k}^{2 m} \\
& =\sum_{m=|j|}^{n} C_{j j}^{2 m} \sum_{r=-2 m}^{+2 m}\left(\sum_{\substack{i+k=r \\
-n \leq i, k \leq n}} z_{i} z_{k} C_{i k}^{2 m}\right) t_{2 j r}^{2 m}
\end{aligned}
$$

Since $\left\{\left\{\sqrt{2 n+1} t_{i j}^{n}\right\}_{-n \leq i, j \leq n}\right\}_{n=0,1 / 2, \ldots}$ is an orthonormal set in $L^{2}(S U(2))$, we get

$$
\left\|\left(\varphi_{j}^{n}(\underline{z})\right)^{2}\right\|_{2}^{2}=\sum_{m=|j|}^{n} \frac{\left(C_{j j}^{2 m}\right)^{2}}{(4 m+1)} \sum_{r=-2 m}^{+2 m}\left|\sum_{\substack{i+k=r \\-n \leq i, k \leq n}} z_{i} z_{k} C_{i k}^{2 m}\right|^{2}
$$

In particular,

$$
\begin{equation*}
\left\|\varphi_{0}^{n}(\underline{z})\right\|_{4}=\left[\sum_{m=-n}^{n} \frac{\left(C_{00}^{2 m}\right)^{2}}{4 m+1} \sum_{r=-2 m}^{+2 m}\left|\sum_{\substack{i+k=r \\-n \leq i, k \leq n}} z_{i} z_{k} C_{i k}^{2 m}\right|^{2}\right]^{1 / 4} \tag{3.3}
\end{equation*}
$$

(3.4) $\left\|\varphi_{n}^{n}(\underline{z})\right\|_{4}=\left[\frac{\left(C_{n n}^{2 n}\right)^{2}}{(4 n+1)} \sum_{r=-2 n}^{+2 n}\left|\sum_{\substack{i+k=r \\-n \leq i, k \leq n}} z_{i} z_{k} C_{i k}^{2 n}\right|^{2}\right]^{1 / 4}$

$$
=\left[\frac{1}{(4 n+1)} \sum_{r=-2 n}^{+2 n}\left|\sum_{\substack{i+k=r \\-\leq \leq i, k \leq n}} z_{i} z_{k} C_{i k}^{2 n}\right|^{2}\right]^{1 / 4} \quad \text { as } C_{n n}^{2 n}=1
$$

Next we prove two Lemmas.
Lemma 3.5. There exist constants $C_{1}, C_{2}>0$ satisfying: $(n \geq 2)$
(i) $\frac{C_{2}}{n^{1 / 4}} \leq\left|C_{00}^{2 n}\right| \leq \frac{C_{1}}{n^{1 / 4}}$.
(ii) $\frac{C_{2}}{\sqrt{2 n+1}} \leq\left|C_{00}^{0}\right| \leq \frac{C_{1}}{\sqrt{2 n+1}}$.
(iii) Let $0 \leq|j| \leq n-1$. Then

$$
\frac{C_{2} n^{1 / 4}}{(n+j)^{1 / 4}(n-j)^{1 / 4}} \leq\left|C_{j j}^{2 n}\right| \leq \frac{C_{1} n^{1 / 4}}{(n+j)^{1 / 4}(n-j)^{1 / 4}}
$$

(iv) Let $|j|+1 \leq m \leq n-1$. Then

$$
\begin{aligned}
& \frac{C_{2} \sqrt{m}}{(m+n)^{1 / 4}(m+j)^{1 / 4}(m-j)^{1 / 4}(n-m)^{1 / 4}} \leq\left|C_{j j}^{2 m}\right| \\
& \left|C_{j j}^{2 m}\right| \leq \frac{C_{1} \sqrt{m}}{(m+n)^{1 / 4}(m+j)^{1 / 4}(m-j)^{1 / 4}(n-m)^{1 / 4}}
\end{aligned}
$$

(v) Let $1 \leq j \leq n-1$. Then

$$
\frac{C_{2} j^{1 / 4}}{(n+j)^{1 / 4}(n-j)^{1 / 4}} \leq\left|C_{j j}^{2 j}\right| \leq \frac{C_{1} j^{1 / 4}}{(n+j)^{1 / 4}(n-j)^{1 / 4}}
$$

(vi) Let $1 \leq j \leq n-1$. Then

$$
\frac{C_{2}}{(n+j)^{1 / 4}(n-j)^{1 / 4}} \leq\left|C_{00}^{2 j}\right| \leq \frac{C_{1}}{(n+j)^{1 / 4}(n-j)^{1 / 4}}
$$

Proof. The easy proof using the following inequality

$$
e^{7 / 8} \leq \frac{n!}{(n / e)^{n} n^{1 / 2}} \leq e \text { for } n=1,2,3, \ldots
$$

is left to the reader.

Lemma 3.6. Let $n \geq 2$ be a natural number and $-n \leq i \leq n$. Then there exists a positive constant C such that

$$
\begin{equation*}
\frac{1}{n^{1 / 8}} \frac{\left\|t_{0,}^{n}\right\|_{4}}{\left\|t_{n i}^{n}\right\|_{4}} \leq C\left(\frac{\log n}{n}\right)^{1 / 4} \tag{3.7}
\end{equation*}
$$

Also for every $\epsilon, 0<\epsilon<1$, there exists a $C_{\epsilon}>0$ such that for $0 \leq|i| \leq n \epsilon$, we have

$$
\begin{equation*}
C_{\epsilon}\left(\frac{\log n}{n}\right)^{1 / 4} \leq \frac{1}{n^{1 / 8}} \frac{\left\|t_{0,}^{n}\right\|_{4}}{\left\|t_{n i}^{n}\right\|_{4}} \leq C\left(\frac{\log n}{n}\right)^{1 / 4} \tag{3.8}
\end{equation*}
$$

Proof. Using (3.3)-(3.4), we get
(3.9) $\left\|t_{0 i}^{n}\right\|_{4}=\left[\sum_{m=0}^{n} \frac{\left(C_{00}^{2 m}\right)^{2}}{(4 m+1)}\left(C_{i i}^{2 m}\right)^{2}\right]^{1 / 4}=\left[\sum_{m=|i|}^{n} \frac{\left(C_{00}^{2 m}\right)^{2}\left(C_{|i||i|}^{2 m}\right)^{2}}{4 m+1}\right]^{1 / 4}$
as $C_{i i}^{2 m}=C_{|i||i|}^{2 m}$ and $C_{|i||i|}^{2 m}=0$ for $m<|i|$ and

$$
\begin{equation*}
\| t_{n i \|_{4}}^{n}=\frac{\sqrt{C_{|i||i|}^{2 n}}}{(4 n+1)^{1 / 4}} \tag{3.10}
\end{equation*}
$$

From (3.9)-(3.10) we see that $\left\|t_{0 i}^{n}\right\|_{4}=\left\|t_{0-i}^{n}\right\|_{4}$ and $\left\|t_{n i}^{n}\right\|_{4}=\left\|t_{n-i}^{n}\right\|_{4}$.
Therefore we assume that $0 \leq i \leq n$. We divide the rest of the proof in four steps:
Step 1. $i=0$

$$
\begin{aligned}
\frac{1}{n^{1 / 8}} \frac{\left\|t_{00}^{n}\right\|_{4}}{\left\|t_{n 0}^{n}\right\|_{4}} & =\left[\sum_{m=0}^{n} \frac{\left(C_{00}^{2 m}\right)^{4}}{4 m+1} \frac{(4 n+1)}{\sqrt{n}}\left(C_{00}^{2 n}\right)^{2}\right]^{1 / 4} \\
& \approx\left[\frac{1}{n}+\sum_{m=1}^{n-1} \frac{1}{(n+m)(n-m)(4 m+1)} \frac{(4 n+1)}{\sqrt{n}} \sqrt{n}+\frac{1}{n}\right]^{1 / 4} \\
& \approx\left[\frac{1}{n}+\sum_{m=1}^{n-1} \frac{1}{m(n-m)}\right]^{1 / 4} \\
& \approx\left[\frac{1}{n}+\sum_{m=1}^{n-1} \frac{1}{n}\left[\frac{1}{m}+\frac{1}{n-m}\right]\right]^{1 / 4} \\
& \approx\left[\frac{1}{n}+\frac{1}{n} \sum_{m=1}^{n-1} \frac{1}{n}\right]^{1 / 4} \\
& \approx\left(\frac{\log n}{n}\right)^{1 / 4} \cdot
\end{aligned}
$$

Step 2. $i=n$

$$
\begin{aligned}
\frac{1}{n^{1 / 8}} \frac{\left\|t_{0 n}^{n}\right\|_{4}}{\left\|t_{n n}^{n}\right\|_{4}} & =\left[\frac{4 n+1}{\sqrt{n}} \frac{\left(C_{00}^{2 n}\right)^{2}}{(4 n+1)}\right]^{1 / 4} \\
& \approx \frac{1}{n^{1 / 4}}
\end{aligned}
$$

Step 3. $1 \leq i \leq n-1$

$$
\begin{aligned}
\frac{1}{n^{1 / 8}} & \frac{\left\|t_{0 i}^{n}\right\|_{4}}{\left\|t_{n i}^{n}\right\|_{4}}=\left[\frac{4 n+1}{\sqrt{n}} \sum_{m=i}^{n} \frac{\left(C_{00}^{2 m}\right)^{2}\left(C_{i i}^{2 m}\right)^{2}}{(4 m+1)\left(C_{i i}^{2 n}\right)^{2}}\right]^{1 / 4} \\
& =\left[\frac{4 n+1}{\sqrt{n}}\left\{\frac{\left(C_{00}^{2 i}\right)^{2}\left(C_{i i}^{2 i}\right)^{2}}{(4 i+1)\left(C_{i i}^{2 n}\right)^{2}}+\sum_{m=i+1}^{n-1} \frac{\left(C_{00}^{2 m}\right)^{2}\left(C_{i i}^{2 m}\right)^{2}}{(4 m+1)\left(C_{i i}^{2 n}\right)^{2}}+\frac{\left(C_{00}^{2 n}\right)^{2}}{(4 n+1)}\right\}\right]^{2} \\
& =\left[\frac{4 n+1}{\sqrt{n}}\left\{A_{n}+Z_{n}+B_{n}\right\}\right]^{1 / 4}(\mathrm{say}) \\
A_{n} & =\frac{\left(C_{00}^{2 i}\right)^{2}\left(C_{i i}^{2 i}\right)^{2}}{(4 i+1)\left(C_{i i}^{2 n}\right)^{2}} \\
& \approx \frac{1}{(n+i)^{1 / 2}(n-i)^{1 / 2}} \frac{i^{1 / 2}}{(n+i)^{1 / 2}(n-i)^{1 / 2}} \frac{1}{(4 i+1)} \frac{(n+i)^{1 / 2}(n-i)^{1 / 2}}{n^{1 / 2}} \\
& \approx \frac{1}{n \sqrt{n-i} \sqrt{i}} .
\end{aligned}
$$

Hence $A_{n} \leq \frac{C}{n^{2 / 3}}$.

$$
B_{n}=\frac{\left(C_{00}^{2 n}\right)^{2}}{(4 n+1)} \approx \frac{1}{n^{3 / 2}}
$$

$$
\begin{aligned}
Z_{n} & =\sum_{m=i+1}^{n-1} \frac{\left(C_{00}^{2 m}\right)^{2}\left(C_{i i}^{2 m}\right)^{2}}{(4 m+1)\left(C_{i i}^{2 n}\right)^{2}} \\
& \approx \sum_{m=i+1}^{n-1} \frac{m(n+i)^{1 / 2}(n-i)^{1 / 2}}{(n+m)^{1 / 2}(n-m)^{1 / 2}(n+m)^{1 / 2}(n-m)^{1 / 2}(m+i)^{1 / 2}(m-i)^{1 / 2}(4 m+1) n^{1 / 2}} \\
& \approx \frac{1}{n} \sum_{m=i+1}^{n-1} \frac{(n-i)^{1 / 2}}{(n-m)(m+i)^{1 / 2}(m-i)^{1 / 2}} .
\end{aligned}
$$

Now we further divide Step 3 into three cases:
a) $i=n-1$. Then

$$
A_{n} \leq \frac{C}{n^{3 / 2}}, \quad B_{n} \approx \frac{1}{n^{3 / 2}}, Z_{n}=0
$$

Therefore $\frac{1}{n^{1 / 8}} \frac{\left\|t_{0}^{n}\right\|_{4}}{\left\|t_{n}^{n}\right\|_{4}} \approx \frac{1}{n^{1 / 4}}$.
b) $1 \leq i \leq \frac{n}{2}$. Then

$$
\begin{aligned}
Z_{n} & \leq \frac{C}{\sqrt{n}} \sum_{m=i+1}^{n-1} \frac{1}{(n-m)(m-i)} \\
& =\frac{C}{\sqrt{n}} \sum_{m=i+1}^{n-1}\left[\frac{1}{n-m}+\frac{1}{m-i}\right] \frac{1}{(n-i)} \\
& =\frac{2 C}{\sqrt{n}}\left[\sum_{j=1}^{n-i-1} \frac{1}{j}\right] \frac{1}{(n-i)} \\
& \leq \frac{4 C}{n^{3 / 2}}[1+\log (n-i-1)] \leq \frac{8 C(\log n)}{n^{3 / 2}}
\end{aligned}
$$

Therefore $\frac{1}{n^{1 / 8}} \frac{\left\|t_{n}^{n}\right\|_{4}}{\left\|t_{n, 2}^{n}\right\|_{4}} \leq C\left(\frac{\log n}{n}\right)^{1 / 4}$.
c) $\frac{n}{2} \leq i \leq n-2$. Then

$$
\begin{aligned}
Z_{n} & \leq \frac{C}{n^{3 / 2}} \sum_{m=i+1}^{n-1} \frac{\sqrt{n-i}}{(n-m) \sqrt{m-i}} \\
& =\frac{C}{n^{3 / 2} \sqrt{n-i}} \sum_{m=i+1}^{n-1}\left[\frac{\sqrt{m-i}}{(n-m)}+\frac{1}{\sqrt{m-i}}\right] \\
& \leq \frac{C}{n^{3 / 2}}\left[\sum_{m=i+1}^{n-1} \frac{1}{(n-m)}+\frac{1}{\sqrt{n-i}} \sum_{m=i+1}^{n-1} \frac{1}{\sqrt{m-i}}\right] \\
& \leq \frac{C \log n}{n^{3 / 2}} .
\end{aligned}
$$

Therefore $\frac{1}{n^{1 / 8}} \frac{\left\|t_{2}^{n}\right\|_{4}}{\left\|t_{n, 2}^{n}\right\|_{4}} \leq C\left(\frac{\log n}{n}\right)^{1 / 4}$.
Step 4. Let $0<\epsilon<1$ and $0 \leq i \leq n \epsilon$. In this case,

$$
Z_{n} \approx \frac{1}{\sqrt{n}} \sum_{l=i+1}^{n-1} \frac{1}{(n-l)(l+i)^{1 / 2}(l-i)^{1 / 2}}
$$

Therefore

$$
\begin{aligned}
Z_{n} & \geq \frac{1}{\sqrt{n}} \sum_{l=i+1}^{n-1} \frac{1}{(n-l)(l+i)} \\
& =\frac{1}{\sqrt{n}(n+i)} \sum_{l=i+1}^{n-1}\left[\frac{1}{(n-l)}+\frac{1}{(l+i)}\right] \\
& \geq \frac{1}{n^{3 / 2}} \sum_{j=1}^{n-i-1} \frac{1}{j} \geq \frac{\log (n-i)}{n^{3 / 2}} \\
& \geq C_{\epsilon} \frac{\log n}{n^{3 / 2}} .
\end{aligned}
$$

Hence $\frac{1}{n^{1 / 8}} \| \frac{\left\|t_{0}^{n}\right\|_{4}}{\left\|t_{n}^{n}\right\|_{4}} \geq C_{\epsilon}\left(\frac{\log n}{n}\right)^{1 / 4}$.
Now by Step 1 and Step 3 we have

$$
\frac{1}{n^{1 / 8}} \frac{\left\|t_{0,}^{n}\right\|_{4}}{\left\|t_{n i}^{n}\right\|_{4}} \leq C\left(\frac{\log n}{n}\right)^{1 / 4} \text { for all } 0 \leq i \leq n-1
$$

Therefore $C_{\epsilon}\left(\frac{\log n}{n}\right)^{1 / 4} \leq \frac{1}{n^{1 / 8}}\left\|t_{0, i}^{n}\right\|_{4} \leq C\left(\frac{\log n}{n}\right)^{1 / 4}$.

Proof of Theorem 3.2.
(A) Let $\underline{z}^{(n)}$ be as in the hypothesis of Theorem 3.2(A). Consider

$$
\begin{aligned}
\left\|\sum_{i=-n}^{+n} z_{i}^{(n)} t_{n i}^{n}\right\|_{4} & =\left[\frac{1}{(4 n+1)} \sum_{r=-2 n}^{+2 n}\left|\sum_{\substack{i+k=r \\
-n \leq i, k \leq n}} z_{i}^{(n)} z_{k}^{(n)} C_{i k}^{2 n}\right|^{2}\right]^{1 / 4} \\
& \geq\left[\frac{1}{(4 n+1)} \sum_{i=-n}^{+n}\left(C_{i i}^{2 n}\right)^{2}\left|z_{i}^{(n)}\right|^{4}\right]^{1 / 4} \text { as } C_{i k}^{2 n} \geq 0, \forall i, k \\
& =\left[\sum_{i=-n}^{+n}\left(z_{i}^{(n)}\right)^{4}\left\|t_{n i}^{n}\right\|_{4}^{4}\right]^{1 / 4} .
\end{aligned}
$$

Now

$$
\begin{aligned}
\frac{1}{n^{1 / 8}} \frac{\left\|\sum_{i=-n}^{+n} z_{i}^{(n)} t_{0 i}^{n}\right\|_{4}}{\left\|\sum_{i=-n}^{+n} z_{i}^{(n)} t_{n i}^{n}\right\|_{4}} & \leq \frac{1}{n^{1 / 8}} \frac{\sum_{i=-n}^{+n} z_{i}^{(n)}\left\|t_{0 i}^{n}\right\|_{4}}{\left[\sum_{i=-n}^{+n}\left(z_{i}^{(n)}\right)^{4}\left\|t_{n i}^{n}\right\|_{4}^{4}\right]^{1 / 4}} \\
& \leq \frac{1}{n^{1 / 8}} \frac{\left(\sum_{i=-n}^{+n}\left(z_{i}^{(n)}\right)^{4}\left\|t_{0 i}^{n}\right\|_{4}^{4}\right)^{1 / 4}\left|F_{n}\left(\underline{z}^{(n)}\right)\right|^{3 / 4}}{\left(\sum_{i=-n}^{+n}\left(z_{i}^{(n)}\right)^{4}\left\|t_{n i}^{n}\right\|_{4}^{4}\right)^{1 / 4}} \\
& \leq C\left(\frac{\log n}{n}\right)^{1 / 4}\left(\frac{n^{1 / 3}}{(\log n)^{2 / 3}}\right)^{3 / 4} \leq \frac{C}{(\log n)^{1 / 4}}
\end{aligned}
$$

(by Lemma 3.6).
This completes the proof of part (A).
(B) Consider

$$
\begin{aligned}
\left\|\sum_{i=0}^{j_{n}} z_{i}^{(n)} t_{n p_{n}^{\prime}}^{n}\right\|_{4} & =\left[\frac{1}{(4 n+1)} \sum_{r=0}^{+2 n}\left|\sum_{\substack{p_{n}^{i}+p_{n}^{k}=r \\
0 \leq i, k \leq j_{n}}} z_{i}^{(n)} z_{k}^{(n)} C_{p_{n}^{2} p_{n}^{k}}^{2 n}\right|^{2}\right]^{1 / 4} \\
& \geq\left[\frac{1}{(4 n+1)} \sum_{i=0}^{j_{n}}\left|z_{i}^{(n)}\right|^{4}\left(C_{p_{n}^{2} p_{n}^{\prime}}^{2 n}\right)^{2}\right]^{1 / 4} \text { as } \\
\left|\sum_{p_{n}^{i}+p_{n}^{k}=r} z_{i}^{(n)} z_{k}^{(n)} C_{p_{n}^{i} p_{n}^{k}}^{2 n}\right|^{2} & =\left|z_{l}^{(n)}\right|^{4}\left(C_{p_{n}^{\prime} p_{n}^{l}}^{2 n}\right)^{2} \text { if } r=2 p_{n}^{l} .
\end{aligned}
$$

Therefore $\left\|\sum_{i=0}^{j_{n}} z_{i}^{(n)} t_{n p_{n}^{\mathrm{i}}}^{n}\right\|_{4} \geq\left[\sum_{i=0}^{j_{n}}\left|z_{l}^{(n)}\right|^{4}\left\|t_{n p_{n}^{i}}^{n}\right\|_{4}^{4}\right]^{1 / 4}$.

Hence

$$
\begin{aligned}
\frac{1}{n^{1 / 8}} \frac{\left\|\sum_{i=0}^{j_{n}} z_{i}^{(n)} t_{0 p_{n}^{2}}^{n}\right\|_{4}}{\left\|\sum_{i=0}^{j_{n}} z_{i}^{(n)} t_{n p_{n}^{2}}^{n}\right\|_{4}} & \leq \frac{1}{n^{1 / 8}} \frac{\sum_{i=0}^{j_{n}}\left|z_{i}^{(n)}\right|\left\|t_{0 p_{n}^{2}}^{n}\right\|_{4}}{\left[\sum_{i=0}^{j_{n}}\left|z_{i}^{(n)}\right|^{4}\left\|t_{n p_{n}^{2}}^{n}\right\|_{4}^{4}\right]^{1 / 4}} \\
& \leq \frac{1}{n^{1 / 8}} \frac{\left[\sum_{i=0}^{j_{n}}\left|z_{i}^{(n)}\right|^{4}\left\|t_{0 p_{n}^{2}}^{n}\right\|_{4}^{4}\right]^{1 / 4} j_{n}^{3 / 4}}{\left[\sum_{i=0}^{j_{n}}\left|z_{i}^{(n)}\right|^{4}\left\|t_{n p_{n}^{2}}^{n}\right\|_{4}^{4}\right]^{1 / 4}}
\end{aligned}
$$

(by Hölder's inequality),

$$
\begin{aligned}
& \leq C\left(\frac{\log n}{n}\right)^{1 / 4}(\log n)^{3 / 4} \\
& =C \frac{\log n}{n^{1 / 4}}
\end{aligned}
$$

This completes the proof of the Theorem.

Remark 3.11. The following inequality can be proved by using the ideas of the proof of Theorem $3.2(\mathrm{~B})$:

$$
\begin{gathered}
\frac{1}{n^{1 / 8}} \frac{\left\|z_{1} t_{0 p}^{n}+z_{2} t_{0 q}^{n}\right\|_{4}}{\left\|z_{1} t_{n p}^{n}+z_{2} t_{n q}^{n}\right\|_{4}} \leq C\left(\frac{\log n}{n}\right)^{1 / 4} \\
\quad \text { for }-n \leq p, q \leq n .
\end{gathered}
$$

4.

Let G be a compact group and let Γ be the dual object of G, the set of equivalence classes of irreducible unitary representations of G. For each $\sigma \in \Gamma$, select a representation $U_{\sigma} \in \sigma$, let H_{σ} be the Hilbert space on which U_{σ} acts, and let d_{σ} be the dimension of H_{σ}. Let $B\left(H_{\sigma}\right)$ denote the space of linear operators on H_{σ} and $\mathcal{C}(\Gamma)$ denote the space $\prod_{\sigma \in \Gamma} B\left(H_{\sigma}\right)$.
Definition. Fix $p \in[1, \infty]$. Let m be an element of $\mathcal{C}(\Gamma)$, so that for each $\sigma, m(\sigma) \in B\left(H_{\sigma}\right)$. The function m is a (left) multiplier of $L^{p}\left(=L^{p}(G)\right)$ if for each $f \in L^{p}$, the series

$$
\sum_{\sigma \in \Gamma} d_{\sigma} \operatorname{tr}\left[m(\sigma) \hat{f}(\sigma) U_{\sigma}(x)\right]
$$

is the Fourier series of some function $L_{m} f \in L^{p}$. The collection of all such m is denoted by $M_{p}(G)$ or simply M_{p}.

For each $m \in M_{p}$, the map $f \rightarrow L_{m} f$ defines a bounded linear operator on L^{p}, an operator which commutes with left translations by the elements of G. we regard M_{p} as a Banach space under the operator norm.

When G is abelian, an easy argument shows that if $\frac{1}{p}+\frac{1}{q}=1$, then $M_{p}=M_{q}$. It is known that for $1<p<2, M_{p} \neq M_{q}\left(\frac{1}{p}+\frac{1}{q}=1\right)$ for many nonabelian groups G (see $[1,2,3,4,6]$).

For connected compact non-abelian group G and for $1<p<2$, it is an open problem whether $M_{p}=M_{q}, \frac{1}{p}+\frac{1}{q}=1$.
S.G. Roberts has shown in [8] that if the conjecture is true then $M_{p}(G) \neq$ $M_{q}(G)$ for every connected compact non-abelian group and $1<p<2, \frac{1}{p}+$ $\frac{1}{q}=1$.

We give an easy proof that if the conjecture is true then $M_{p}(S U(2)) \neq$ $M_{q}(S U(2))$ for $1<p<2, \frac{1}{p}+\frac{1}{q}=1$. This proof is essentially due to Roberts [8], but has never to the best of our knoledge been published. We present it here for completeness. The result will follow if we show that

$$
\begin{equation*}
\frac{\left\|t_{0 n}^{n}\right\|_{p}}{\left\|t_{0 n}^{n}\right\|_{q}} \rightarrow \infty \text { as } n \rightarrow \infty \tag{4.1}
\end{equation*}
$$

where $\left\|t_{0 n}^{n}\right\|_{p}$ denotes the norm of $t_{0 n}^{n}$ as an element in M_{p}.
To prove (4.1), we use the following norm estimates for $t_{0 n}^{n}$ and $t_{n=}^{n}$ which are easy to establish (see [8]).

$$
\begin{aligned}
& \left\|t_{0 n}^{n}\right\|_{p} \approx \frac{1}{n^{1 / 4+1 / 2 p}},\left\|t_{n n}^{n}\right\|_{p}=\frac{1}{(n p+1)^{1 / p}} \\
& \left\|t_{0{ }_{n}}^{n}\right\|_{1}=\| t_{0_{n}{ }_{n}\left\|_{1} \approx \frac{1}{n^{3 / 4}},\right\| t_{0{ }_{n}}^{n} \|_{2}=\frac{1}{2 n+1}} .
\end{aligned}
$$

Now by Riesz convexity theorem, we get

$$
\left\|t_{0 n}^{n}\right\|_{p} \leq\left\|t_{0 n}^{n}\right\|_{1}^{\alpha}\left\|t_{0 n}^{n}\right\|_{2}^{1-\alpha}
$$

where

$$
\alpha=\frac{2-p}{p}
$$

Hence

$$
\left\|t_{0 n}^{n}\right\|_{p} \leq \frac{C}{n^{(5 / 4)-(1 / 2 p)}}
$$

Also

$$
\begin{aligned}
\left\|t_{0 n}^{n}\right\|_{p} \geq \frac{\left\|t_{0 n}^{n} * t_{n n}^{n}\right\|_{p}}{\left\|t_{0 n}^{n}\right\|_{p}} & =\frac{1}{(2 n+1)} \frac{\left\|t_{0 n}^{n}\right\|_{p}}{\left\|t_{n n}^{n}\right\|_{p}} \\
& \geq \frac{C}{n^{(5 / 4)-(1 / 2 p)}} .
\end{aligned}
$$

Therefore (4.1) is true if

$$
\begin{equation*}
n^{(5 / 4)-(1 / 2 p)}\left\|t_{0 n}^{n}\right\|_{q} \rightarrow 0 \text { as } n \rightarrow \infty \tag{4.2}
\end{equation*}
$$

A routine argument using Riesz convexity theorem shows that (4.2) is true if

$$
\begin{equation*}
n^{7 / 8}\left\|t_{0 n}^{n}\right\|_{4} \rightarrow 0 \text { as } n \rightarrow \infty \tag{4.3}
\end{equation*}
$$

Now

$$
\begin{aligned}
\left\|t_{0 n}^{n}\right\|_{4} & =\sup _{\substack{f \in L^{4} \\
f \neq 0}} \frac{\left\|t_{0 n}^{n} * f\right\|_{4}}{\|f\|_{4}} \\
& =\sup _{\substack{f \in L^{4} \\
f \neq 0}} \frac{\left\|t_{0 n}^{n} * t_{n n}^{n} * f\right\|_{4}}{\|f\|_{4}}(2 n+1)
\end{aligned}
$$

and

$$
\begin{aligned}
(2 n+1)\left\|t_{n n}^{n} * f\right\|_{4} & \leq(2 n+1)\left\|t_{n n}^{n}\right\|_{1}\|f\|_{4} \\
& =\frac{(2 n+1)}{(n+1)}\|f\|_{4} \leq 2\|f\|_{4} .
\end{aligned}
$$

So

$$
\begin{aligned}
\left\|t_{0 n}^{n}\right\|_{4} & \leq 2 \sup _{\substack{f \in L^{4} \\
f \neq 0}} \frac{\left\|t_{0 n}^{n} * t_{n n}^{n} * f\right\|_{4}}{\left\|t_{n n}^{n} * f\right\|_{4}} \\
& =\frac{2}{(2 n+1)} \sup _{\sum_{i=-n}^{+n}\left|z_{i}^{(n)}\right| \neq 0} \frac{\left\|\sum_{i=-n}^{+n} z_{i}^{(n)} t_{0 i}^{n}\right\|_{4}}{\left\|\sum_{i=-n}^{+n} z_{i}^{(n)} t_{n i}^{n}\right\|_{4}} .
\end{aligned}
$$

Therefore (4.3) is true if the conjecture is true. Hence (4.1) is true if the conjecture is true.

References

[1] M. Baronti and G. Foresti, An example of assymetry of convolution operators, Rend. Circ. Mat. Palermo (2), 31 (1982), 342-350.
[2] A.H. Dooley, Norms of characters and lacunarity for compact Lie groups, J. Functional Anal., 32 (1979), 254-267.
[3] S. Guilini, A remark on the assymetry of convolution operators, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8), 83 (1989), 85-88.
[4] C. Herz, On the assymetry of norms of convolution operators I, J. Functional Analysis, 23 (1976), 11-22.
[5] C. Herz, Assymetry of norms of convolution operators II , Nilpotent Lie groups, Symposia Mathematica, 22 (1977), 223-230.
[6] E. Hewitt and K. Ross, Abstract Harmonic Analysis, II, Springer-Verlag 1970.
[7] D.M. Oberlin, $M p(G) \neq M q(G)\left(p^{-1}+q^{-1}=1\right)$, Israel J. Math., 22 (1975), 175-179.
[8] S.G. Roberts, A^{p} spaces and assymetry of L^{p}-operator norms for convolution operators, M.Sc. Thesis, Flinders University of South Australia, 1982.
[9] A. Seeger, Endpoint estimates for multilier transformation on compact manifolds, Indiana Univ. Math. J., 40 (1991), 471-533.
[10] C.D. Sogge, On the convergence of Riesz means on compact manifolds, Ann. Math., 126 (1987), 439-447.
[11] N.Ja. Vilenkin, Special functions and the theory of group representations, Translations of Mathematical Monographs, Vol. 22, AMS, 1968.

Received October 24, 1994 and revised November 29, 1995.

The University of South Pacific
Suva, Fiji
E-mail address: GUPTA_S@usp.ac.fj

