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68. A Note on Morita’s P.spaces

By Vincent j. MANCUS0
St. John’s University, Jamaica, New York, U. S. A.

(Comm. by Kinjir5 KVNV(I, M. Z. A., March 12, 1970)

1. Introduction. K. Morita [10] introduced the notion of a P-
space and demonstrated its importance in the theory of product spaces.
The purpose of this note is to prove some results about P-spaces which
will have application in homotopy extension. Let A X be closed and

f" X--.Y continuous. If, in the free union X+ Y, we identify a e A
with f(a) e Y, we obtain a quotient space Z called the ad]unction space
of X and Y via the map f[3, p. 127]. A normal space X is called
totally normal if every open subset G of X can be covered by a family
locally finite in G, of open F, sets of X[1]. We will prove the follow-
ing theorems"

Theorem 1. If X and Y are normal P-spaces, the adjunction
space Z of X and Y is a normal P-space.

Theorem 2. If X is a totally normal P-space and Y is a compact
metric space, X Y is a totally normal P-space.

Actually, Theorem 2 will follow from the slightly more general"
Theorem 2’. If X is totally normal and countably paracompact,

and Y is compact metric, X Y is totally nomal.
Theorem 3. An open subspace of a totally normal P-space is a

(normal) P-space.
Remark 1o The compactness of Y in Theorem 2’ cannot be

dropped since Michael [9] has given an example of a hereditarily
paracompact (and hence totally normal and countably paracompact)
space such that its product with a separable metric space is not normal.
We are therefore led to the following question"

Question 1. If X is a totally normal P-space and Y is a metric
space, is X Y totally normal? Note that the normality of X Y is
assured since X is a normal P-space [10, Theorem 4.1]. In view of
[11, Theorem 2], it would be sufficient to show that X Y is hereditari-
ly countably paracompact.

In proving Theorem 1, we will use the closed set dual of the defi-
nition of a P-space given in [10].

Definition 1. Let m be a cardinal number _> 1. X is a P(m)-space
if for any set t9 of power m and for any family {F(a, ..., a); a,
.., ae 9;i-1, 2,...} of closed sets of X such that F(a,...,a)
DF(a,..., a, a/) for each sequence a, a, ., there exists a family
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of open sets {G(a, ..., a,); a, ..., a,e/2; i=l, 2, ...} satisfying
F(a,..., a,) G(a, ..., a,) for each sequence a, a., and {G(a,
..,a,); i-1,2,...}- for any sequence {a} such that {F(a,...

a,);i--l, 2,...}--. X is called a P-space if X is a P(m)-space for
each m_> 1.

Remark 2. By Ishikawa [7], a P(1)-space is countably metacom-
pact, and by Dowker [2], a normal space is a P(1)-space if and only if
it is countably paracompact.

2. Proofs of theorems. At this point, we will assume the reader
is familiar with the salient features of the adjunction space as, for
example, those given in [3, Theorem 6.3, p. 128], or in [5]. The proof
of Theorem 1 now follows"

Since Z is normal [5, Lemma 3.3], we need only show that Z is a
P(m)-space for each m>_l. Let {F(a, ., a) a, ., a e 9 i--1,
2,...} be a amily of closed sets o Z, with 9 o power m, such that
F(a, ...,a)F(a, ...,a,a/) or each sequence a, a, Then
since Y is a P(m)-space, there is a 2amily {V(a, ..., a) a, ..., a e 9;
i= 1, 2,... } o open subsets of Y satisfying"
(1) F(a, ...,a) YV(a, ...,c)
or each sequence a, a, and,
( 2 ) {V(a, ..., a) i=1, 2, }- or any sequence {a} such that

{F(a, ..., a)D Y; i-1,2, ...}-.
Since Y is normal, there exists a family V’(a, ..., a) a, ..., a

e tg; i-1, 2,... } of open subsets of Y such that
( 3 F(a, ..., a) Y V’(a, ..., a) and
( 4 Cl(V’(a, ..., a)) V(a, ..., a) (Cl-closure)
for each sequence a, a2, Moreover, we may assume that
( 5 ) V’(a, ..., a) V’(a, ..., a, a/)
for each sequence a, a2,

Let k-p IX where p" X+YZ is the natural projection. Now
set K(a, ..., a)- k-[F(a, ..., a) U Cl(V’(a, ., a))]. Then

{K(a, a) a, ...,a e [2 i=1,2, ...}
is a amily o elosed sets of X, and by (5),
6 ) K(a, ..., a)K(a, ..., a, a/)

for each sequence a, a,
Since X is a P(m)-spaee, there exists a amily {H(a..., a) a,

.., a e/2; i--1, 2,... } of open subsets of X satisfying"
( 7 K(a, ..., a)cH(a, ..., a)
or each sequence a, a, and,
( 8 {H(a, ., a) i- 1, 2, }--B for any sequence {a} such that

{K(a, ...,a) i-1,2, ...}-
Let G(a, ., a)- k(H(a, ..., a)-A) t2 V’(a, ..., a). Using (7),
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we .can argue as in [5, p. 377] to show that each G(o, ..., q) is open
in Z. Now writing

F(q, ..., ) [F(c,... ,q) gl Y] (2 [F(q,... ,q) Z- Y] and using
(3) and the fact that tclX-A is an embedding, we get

F(, ...,)G(, ..., )
for each sequence ,.q,

Now suppose {F(q. ., ) i--l, 2, .}--- or some sequence
(q.}. By (2) and (4), (CI(V’(q, ..., q) i=l, 2, ...}-- and so
(K(, ...,q); i--l, 2, ...}--t or (q}. By (8), ((H(q, ...,)
i--1,2, ...-- for (q}. Again, since ktX--A is an embedding,

(G(o, ..., o) i= 1, 2, }= or {q}, and the proof is complete.
Proof of Theorem 2’. X Y is normal by [2, Lemma 3]. Let G

be open in X Y and let ----(B; i e N} be a countable base or Y.
For each i N’N, there exists H open in X such that HBcG
and G={H B; i e N’}. Let (--(H; i e N’}. It follows easily
from Theorem 1.3 in [10] with m----0, that X is hereditarily countably
paracompact. (is therefore countably paracompact and normal, and
so there exists a locally finite (in J() open refinement c;_(V} such
that VH for each i eN’. Since X is totally normal, each
V--{W. e 9} where (W. q e 2} is a collection, locally finite in
V, of open F, sets of X.

For each i e N’ and e , let C.--W. B. Clearly, each C is
an open F, set of X Y, and G--J(C, ;o e , i e N’}. We contend
that (C e 9, i e N’} is locally finite in G Let (x, y) e G. There
exists a neighborhood N of x in / (and hence in X) such that N
meets at most V,, ..., V. If x e V, there exists a neighborhood

N of x in V (and hence in X) such that N meets at most finitely
many members of the amily {W. e/2}. Then N (N x e N}
is a neighborhood of x in X. Let B(y) be any member of ! contain-
ing y. It ollows that (NN)B(y) is a neighborhood of (x, y) in
G which meets at most finitely many of (C. ;a e 9, i e N’}, and this
completes the proof.

Proof of Theorem 2. Since X is a P-space, X Y is normal and
since Y is compact, X Y is a P-space [10, Corollary 3.5]. By Remark
2 and Theorem 2’, X Y is totally normal.

Observe that with the hypothesis of Theorem 2’, X Y is count-
ably paracompact [2, Theorem 1] and so X Y is hereditarily count-
ably paracompact [10, Theorem 1.3].

Proof of Theorem :. We will modify the technique used by
Hodel [6]. Let G be an open subspace of a totally normal P-space X.
Then G--(G. a e/2} where {G. e/2} is a family, locally finite in

G, of open F sets of X. Each G. is a normal P(m)-space [10, Corol-
lary 3.7]. Since G is normal, there exists an open refinement (V.
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a e/2} of {G er e 9} such that CI(V)G for a e 9 (closure is taken
in G). Applying Corollary 3.7 again, and then Theorem 3.6 of [10],
we get that G is a P(m)-space. This completes the proof.

Remark 3. Theorem 3 also holds if P-space is everywhere re-
placed by M-space [10, p. 379]. A very similar argument works
except that the crucial results needed on M-spaces are to be found in
[8] and [13].

Question 2. Is every subspace of a totally normal P-space a P-
space? Using Theorem 4.1 in [10], it is easy to show that an affirm-
ative answer to Question 1 implies an affirmative answer to Question
2. However, another method is available. Hodel’s technique [6,
Theorem 1] would also yield an affirmative answer if we could prove
the following: If every open subspace of X is a P-space, every sub-
space of X is a P-space. The same question appears to be open for
M-spaces.

Example 1. Let X=flY, the Stone-Cech compactification of Y
where Y is Michael’s example [9]. Clearly, X is a normal P-space but
Y is a hereditarily paracompact subspace which is not a P-space.

Example 2. Let X=w(Y), the Wallman compactification of Y
where Y is Frolik’s example [4]. Y is a Hausdorff space which is not
countably compact and yet every point-finite open cover has a finite
subcover. It follows that Y could not be countably metacompact.
Therefore, X must have an open subspace which is not countably
metacompact and hence not. a P-space (see Remark 2). This example
shows that an open subspace of a P-space X need not be a P-space.

Note that X of Example 2 is not normal. As yet the author has
not found an example of an open subspace of a normal P-space which
is not a P-space. Such an example can be found if there exists a
completely regular T space X which is not countably metacompact,
for then, as above, fiX must have an open subspace which is not a P-
space.

Example 3. Let X be the Tychonoff plank, [0, 9] x [0, w], and let
G be the open subspace X-{9, w}. Clearly, X is a normal M-space
and yet it is shown in [12] that G is not an M-space (but G is a P-space).

3. Applications to homotopy extension. We will merely state
the theorems in this section, since their proofs will be given elsewhere.

Let I [0, 1] and C Xx {0} U A x I.
Theorem 4. Let X be an ANR(normal P-space) and A a closed

G in X such that A is also an ANR(normal P-space). Then any
continuous f CoY has a homotopy extension F" XX I--. Y.

Theorem 5. Let A be closed in a totally normal P-space X such
that Ind (X-A)<n. Let Y be complete separable metric and LCn.
Then any continuous f" CoY has a homotopy extension F" Xx I--. Y.
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