69. Local Deformation of Pencil of Curves of Genus Two

By Eiji Horikawa
College of Arts and Sciences, University of Tokyo
(Communicated by Kunihiko Kodaira, m. J. A., Sept. 12, 1988)

§ 1. Introduction. Let S be a compact complex surface which admits a surjective holomorphic map $g: S \rightarrow \Delta$ onto a compact Riemann surface Δ. We suppose that the general fibres are smooth curves of genus 2. Then S is birationally equivalent to a branched double covering S^{\prime} over a \boldsymbol{P}^{1} bundle W over Δ whose branch locus B intersects a general \boldsymbol{P}^{1} at 6 points. Though there are infinitely many choices of W, we can choose one, by applying elementary transformations to W, such that the branch locus B is, in some sense, canonical. After this is done, the singular fibres of g are classified into six types (0), (I_{k}), (II_{k}), (III_{k}), (IV_{k}) and (V) (see [4]). Recall that the singular fibres of type (0) are obtained by resolving only rational double points on the singular model S^{\prime}, and that the most general singular fibres of type (I_{1}) are composed of two elliptic curves with selfintersection number -1 which intersect transversally at one point (they will be called general (I_{1}) type).

In this paper we study deformations of surfaces with such fibration, but only locally at each singular fibre. More precisely, let $g^{-1}(P), P \in \Delta$ be a singular fibre of S and let U be a small neighborhood of P and $X=g^{-1}(U)$. Then we shall prove the following theorem.

Theorem. Assume $g^{-1}(P)$ is a singular fibre of type (T) other than type (0). Then there exists a family $\left\{X_{t}\right\}_{t \in M}$ of deformations of $X=X_{0}$, $0 \in M$ such that
i) each X_{t} admits a holomorphic map $g_{t}: X_{t} \rightarrow U$ whose general fibre is of genus 2, and g_{t} depends holomorphically on t,
ii) for general $t \in M, g_{t}: X_{t} \rightarrow U$ has only singular fibres of general $\left(\mathrm{I}_{1}\right)$ type and type (0),
iii) the number $\delta(\mathrm{T})$ of these singular fibres of general $\left(\mathrm{I}_{1}\right)$ type in g_{t} is given by

$$
\delta\left(\mathrm{I}_{k}\right)=\delta\left(\mathrm{III}_{k}\right)=2 k-1, \quad \delta\left(\mathrm{II}_{k}\right)=\delta\left(\mathrm{IV}_{k}\right)=2 k, \quad \delta(\mathrm{~V})=1
$$

This theorem states that each singular fibre of type (T) is, in some sense, "equivalent" to $\delta(T)$ singular fibres of general $\left(\mathrm{I}_{1}\right)$ type modulo those of type (0). Recall that the value $\delta(\mathrm{T})$ equals the contribution of the singular fibre of type (T) to the difference $c_{1}^{2}-\left(2 \chi+6(\pi-1)\right.$), where $\chi=\chi\left(\mathcal{O}_{S}\right)$, π is the genus of Δ and the Chern number c_{1}^{2} is the value for relatively minimal S [4, Theorem 3].

The result is related to the construction of a family of deformations of elliptic double points which admits simultaneous resolution. To conclude

Introduction we want to pose the question if the same holds globally for S. Namely: Can one deform $g: S \rightarrow \Delta$ to $g_{t}: S_{t} \rightarrow \Delta_{t}$ whose singular fibres are all type (0) or general (I_{1}) type?
§ 2. Fibres of type I and II. We refer to [4] for the basic terminology about infinitely near triple points and the construction of the singular fibres as double coverings over the P^{1}-bundles. In particular, B denotes the corresponding branch locus on a P^{1}-bundle W and $B_{0}=B$-(fibres). To construct a deformation that we want, it is more convenient to pass to a slightly different model. First suppose B has singularities of type (I_{k}). In this case, we apply elementary transformation successively ($2 k-1$) times at one of the triple points of B_{0}. Then B is transformed into a divisor with ($4 k-2$) or ($4 k-1$)-fold triple point Q, not containing the fibre Γ_{0} through Q, and the other singularities are, if any, at most simple triple points. If B is of type $\left(\mathrm{III}_{k}\right)$, we can similarly transform it to the one with $4 k$ or $(4 k+1)$-fold triple point Q. We set $l=2 k-1$ or $2 k$.

In the both cases, B has contact of order 3 with Γ_{0} at Q, and hence the second infinitely near triple point Q_{1} is not on the proper transform of Γ_{0}. For an appropriately chosen inhomogeneous coordinate y on Γ_{0}, we may assume that all the infinitely near triple points are on the proper transform of $y=0$. Then the local equation for B at Q is

$$
y^{3}+b(x) x^{4 l} y+c(x) x^{6 l}=0,
$$

where $b(x), c(x)$ are holomorphic with
ord $b(x)<4$ or ord $c(x)<6$.
As a parameter space we choose a neighborhood of the origin in C^{t} with coordinate ($\alpha_{1}, \alpha_{2}, \cdots, \alpha_{l}$) and set $h(x)=\prod_{i=1}^{l}\left(x-\alpha_{i}\right)$. Then we define a family $\left\{B_{\alpha}\right\}$, in a neighborhood of Q, by the equation

$$
\begin{equation*}
y^{3}+b(x) h(x)^{4} y+c(x) h(x)^{6}=0 . \tag{2}
\end{equation*}
$$

Lemma. Let $\left\{X_{\alpha}^{\prime}\right\}$ be the family of surfaces in (x, y, w)-space defined by

$$
\begin{equation*}
w^{2}=y^{3}+b(x) h(x)^{4} y+c(x) h(x)^{6} \tag{3}
\end{equation*}
$$

If $4 b(0)^{3}+27 c(0)^{2} \neq 0$, then we can simultaneously resolve the singularities of $\left\{X_{\alpha}^{\prime}\right\}$ (without base change).

Proof. We first blow up the ideal generated by w, y and $h(x)^{2}$. Let (z_{0}, z_{1}, z_{2}) be the homogeneous coordinates on P^{2} and consider the graph of $(x, y, w) \rightarrow\left(z_{0}, z_{1}, z_{2}\right)=\left(w, y, h(x)^{2}\right)$. We only need to consider two affine pieces $V_{1}=\left\{z_{1} \neq 0\right\}$ and $V_{2}=\left\{z_{2} \neq 0\right\}$. If we set $\xi_{0}=z_{0} / z_{1}, \xi_{2}=z_{2} / z_{1}$ on V_{1}, then

$$
w=\xi_{0} y, \quad h(x)^{2}=\xi_{2} y, \quad \xi_{0}^{2}=y\left(1+b \xi_{2}^{2}+c \xi_{2}^{3}\right) .
$$

These equations define a double curve along $h(x)=\xi_{0}=0$.
On V_{2}, we set $\eta_{0}=z_{0} / z_{2}, \eta_{1}=z_{1} / z_{2}$. Then

$$
w=\eta_{0} h(x)^{2}, \quad y=\eta_{1} h(x)^{2}, \quad \eta_{0}^{2}=h(x)^{2}\left(\eta_{1}^{3}+b \eta_{1}+c\right)
$$

On the intersection $V_{1} \cap V_{2}$, one has $\eta_{0}=\xi_{0} / \xi_{2}, \eta_{1}=1 / \xi_{2}$. So we blow up the ideal $\left(h(x), \xi_{0}\right)$ on V_{1} and $\left(h(x), \eta_{0}\right)$ on V_{2}. Then V_{2} is desingularized (modulo rational double points). As to V_{1}, since $\xi_{2} \neq 0$ is contained in V_{2}, we only consider a neighborhood of $\xi_{2}=0$. We set $\left(\zeta_{0}, \zeta_{1}\right)=\left(\xi_{0}, h(x)\right)$. Since we only
need to consider the affine piece $\zeta_{0} \neq 0$, we set $u_{1}=\zeta_{1} / \zeta_{0}$. Then

$$
w=\xi_{0} y, \quad h(x)=u_{1} \xi_{0}, \quad u_{1}^{2} \xi_{0}^{2}=\xi_{2} y, \quad \xi_{0}^{2}=y\left(1+b \xi_{2}^{2}+c \xi_{2}^{3}\right)
$$

These equations reduce to $u_{1} \xi_{0}=h(x)$ in $\left(x, u_{1}, \xi_{0}\right)$-space. This is simultaneously desingularized without base change (see [5], [1]).

Similarly, we can prove:
Corollary. Let $\left\{X_{\alpha}^{\prime}\right\}$ be defined by (2) with ord $b(x)<4$ or ord $c(x)<6$. Then $\left\{X_{\alpha}^{\prime}\right\}$ can be simultaneously desingularized after an appropriate base change.

To prove our theorem for singular fibres of type $\left(\mathrm{I}_{k}\right)$ or $\left(\mathrm{II}_{k}\right)$, we construct a family $\left\{B_{\alpha}\right\}$ by (2), the remaining component being unchanged, and resolve the singularities. Thus we obtain a family $\left\{X_{\alpha}\right\}$ of smooth surfaces. If the α_{i} are distinct one another, then X_{α} is obtained from X_{α}^{\prime} by resolving l singular points of the form $w^{2}=2$-fold triple point. Therefore, for general α, X_{α} has l singular fibres of type (I_{1}) at $x=\alpha_{i}$.

To get the fibres of general (I_{1}) type, we regard the constant terms b_{0}, c_{0} of $b(x)$ and $c(x)$ as additional parameters. Then, for general values of α, b_{0} and c_{0}, the discriminants $4 b\left(\alpha_{i}\right)^{3}+27 c\left(\alpha_{i}\right)^{2}$ are all non-zero. We further deform the components which are away from Q, if necessary.
§3. Fibres of type III, IV and V. Let B be the branch locus for the singular fibre of type $\left(\mathrm{III}_{k}\right)$. By elementary transformation at the triple point of B_{0}, B is transformed to a ($4 k-2$)-fold triple point without containing Γ_{0}. Since the singular fibre of type $\left(\mathrm{IV}_{k}\right)$ comes from a $4 k$-fold triple point of B, these two cases may be handled at one time, by setting $l=2 k-1$ or $2 k$.

Let y be a coordinate on Γ_{0} and x a coordinate on U. Since the second infinitely near triple point lies on the proper transform of Γ_{0}, we may assume that all the infinitely near triple points are on the proper transform of the curve $y^{2}-x=0$.

Now the local equation for B is of the form

$$
\left(y^{2}-x\right)^{3}+a x^{l}\left(y^{2}-x\right)^{2}+b x^{2 l}\left(y^{2}-x\right)+c x^{3 l}=0
$$

where a, b, c are holomorphic in (x, y) and of degree $\leqq 1$ in y. We take $\beta=\left(\beta_{1}, \beta_{2}, \cdots, \beta_{l}\right)$ as a parameter and let

$$
f(y)^{2}=\prod_{j=1}^{i}\left(y-\beta_{j}\right)^{2}=P\left(y^{2}\right)+y Q\left(y^{2}\right)
$$

We set $h(x, y)=P(x)+y Q(x)$ and define a deformation by

$$
\begin{equation*}
\left(y^{2}-x\right)^{3}+a h(x, y)\left(y^{2}-x\right)^{2}+b h(x, y)^{2}\left(y^{2}-x\right)+\operatorname{ch}(x, y)^{3}=0 \tag{4}
\end{equation*}
$$

Since $h(x, y)-f(y)^{2}$ is divisible by $y^{2}-x$, we can set

$$
h(x, y)-f(y)^{2}=\left(y^{2}-x\right) G, \quad G=G(x, y, \beta)
$$

For $\beta=0$ we have $G(x, y, 0)=\left(x^{l}-y^{2 l}\right) /\left(y^{2}-x\right)=-\left(x^{l-1}+\cdots+y^{2 l-2}\right)$. Now (4) is written as

$$
\begin{aligned}
& \left(1+a G+b G^{2}+c G^{3}\right)\left(y^{2}-x\right)^{3}+\left(a+2 b G+3 c G^{2}\right) f(y)^{2}\left(y^{2}-x\right)^{2} \\
& \quad+(b+3 c G) f(y)^{4}\left(y^{2}-x\right)+c f(y)^{6}=0 .
\end{aligned}
$$

We can use $z=y^{2}-x$ and y as local coordinates and the above equation shows that, for general β, B has 2 -fold triple points at $(z, y)=\left(0, \beta_{i}\right)$, that
is, at $(x, y)=\left(\beta_{i}^{2}, \beta_{i}\right),(i=1,2, \cdots, l)$.
Let $\left\{X_{\beta}^{\prime}\right\}$ be the family of double coverings with branch loci $\left\{B_{\beta}\right\}$. Then the singularities can be simultaneously desingularized to $\left\{X_{\beta}\right\}$. For general β, X_{β} has l singular fibres of type (I_{1}).

For a singular fibre of type (V), the branch locus is defined by the equation $x\left(y^{6}+a x y^{4}+b x^{2} y^{2}+c x^{4}\right)=0$. If we apply elementary transformation at $(x, y)=(0,0)$, this is transformed into

$$
x\left(x^{2}+a x y^{2}+b y^{4}+c y^{6}\right)=0 .
$$

We define a family with three parameters (t, s, α) by

$$
\left(x-t y^{2}\right)^{3}+a\left(x-t y^{2}\right)^{2}(y-\alpha)^{2}+b\left(x-t y^{2}\right)(y-\alpha)^{4}+(c x+s)(y-\alpha)^{6}=0 .
$$

For $t \neq 0$, this has a 2-fold triple point at $(x, y)=\left(t \alpha^{2}, \alpha\right)$, and determines a singular fibre of type $\left(I_{1}\right)$. The double coverings with these branch loci can be simultaneously desingularized by canonical resolution as in [3, §2].

This completes the proof of the theorem.

References

[1] Brieskorn, E.: Über die Auflösung gewisser Singularitäten von holomorphen Abbildungen. Math. Ann., 166, 76-102 (1966).
[2] -: Die Auflösung der rationalen Singularitäten holomorpher Abbildungen. ibid., 178, 255-270 (1968).
[3] Horikawa, E.: On deformations of quintic surfaces. Invent. Math., 31, 43-85 (1975).
[4] -: On algebraic surfaces with pencils of curves of genus 2. Complex Analysis and Algebraic Geometry. A Collection of Papers dedicated to K. Kodaira. Iwanami Shoten, Publishers and Cambridge Univ. Press, pp. 79-90 (1977).
[5] Tjurina, G. N.: Resolution of singularity of flat deformations of rational double points. Funct. Anal. Appl., 43, 77-83 (1970).

