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Kotlářská 2, 611 37 Brno, Czech Republic

Abstract. It is shown how one can apply the classification of the holonomy
algebras of Lorentzian manifolds to solve some problems. In particular, a
new proof to the classification of Lorentzian manifolds with recurrent curva-
ture tensor is given and the classification of two-symmetric Lorentzian man-
ifolds is explained. Then the conformally recurrent Lorentzian manifolds are
classified and the recurrent symmetric bilinear forms on these manifolds are
described.

1. Introduction

While the classification of the Riemannian holonomy algebras is a classical re-
sult that has many applications both to geometry and physics, see e.g. [4, 15], the
classification of the Lorentzian holonomy algebras has been achieved only recently
[10,17]. We review it in Section 3. The holonomy algebra of a pseudo-Riemannian
manifold is an important invariant of the Levi-Civita connection. It provides infor-
mation about parallel and recurrent tensors on the manifold. Using that property,
we solve some problems in Lorentzian geometry. As a first illustration, in Section
6 we give a new and modern proof to the classification of Lorentzian manifolds
(M, g) with recurrent curvature tensor R, i.e., satisfying the condition

∇XR = θ(X)R (1)

for all vector fields X and a one-form θ. Originally this classification is achieved
in [24]. In Section 7 we discuss the Lorentzian symmetric spaces. As a new result,
in Section 9 we obtain a classification of Lorentzian manifolds with recurrent con-
formal Weyl tensorW . This generalizes a result from [8,9] that gives classification
of Lorentzian manifolds with parallel W . In Section 10 we explain the result from
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[2] about the classification of two-symmetric Lorentzian manifolds (M, g), i.e.,
manifolds satisfying the condition

∇2R = 0, ∇R ̸= 0. (2)

In Section 11 we study the recurrent symmetric bilinear forms on Lorentzian man-
ifolds.

2. Holonomy Algebras. Parallel and Recurrent Tensor Fields

Let (M, g) be a connected pseudo-Riemannian manifold of signature (r, s). The
holonomy group Gx of (M, g) at a point x ∈ M is the Lie group that consists
of the pseudo-orthogonal transformations given by the parallel transports along all
piecewise smooth loops at the point x. It can be identified with a Lie subgroup of
the pseudo-orthogonal Lie group O(r, s) = O(TxM, gx). The corresponding sub-
algebra gx of so(r, s) = so(TxM, gx) is called the holonomy algebra of (M, g)
at the point x ∈M .
The Ambrose-Singer Theorem states that the holonomy algebra gx is spanned by
the following endomorphisms of TxM

τ−1
γ ◦Ry(τγX, τγY ) ◦ τγ

where γ is a piecewise smooth curve starting at the point x with an end-point
y ∈M , and X,Y ∈ TxM .
Since the manifold M is connected, the holonomy groups (holonomy algebras) of
(M, g) at different points are isomorphic, and one may speak about the holonomy
group G ⊂ O(r, s) (the holonomy algebra g ⊂ so(r, s)) of (M, g).
Recall that a tensor field T on (M, g) is parallel if ∇T = 0, where ∇ is the
Levi-Civita connection and T is called recurrent if ∇T = θ ⊗ T for a one-form
θ.
The fundamental principle [4] states that there exists a one-to-one correspondents
between parallel tensor fields T on M and tensors T0 of the same type at x pre-
served by the holonomy group (more precisely, by its tensor extension of its rep-
resentation). Similarly, there exists a one-to-one correspondents between rank one
parallel subbundles of a tensor bundle over M and one-dimensional subspaces of
the space of tensors of the same type at x preserved by the holonomy group. Any
section of a rank one parallel subbundle of a tensor bundle is a recurrent tensor
field. Conversely, any non-vanishing recurrent tensor field defines such parallel
subbundle.
If the manifold M is simply connected, then the holonomy group is connected and
it is uniquely defined by the holonomy algebra. Then the parallel and the recurrent
tensors may be described in terms of the holonomy algebra.
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3. Classification of the Lorentzian Holonomy Algebras

Here we review results from [10,17]. Let (M, g) be a simply connected Lorentzian
manifold of dimension n+ 2, n ≥ 0. Fix an arbitrary point x∈M . The respective
tangent space (TxM, gx) can be identified with the Minkowski space (R1,n+1, η).
Then the holonomy algebra (M, g) at the point x is identified with a subalgebra
g ⊂ so(1, n+ 1).
We may assume that the holonomy algebra g ⊂ so(1, n + 1) of (M, g) is weakly
irreducible, i.e., it does not preserve any non-degenerate proper vector subspace
of the tangent space. Indeed, if g ⊂ so(1, n + 1) is not weakly irreducible, then
by the Wu theorem, (M, g) is at least locally can be decomposed into a product
of a Lorentzian manifold and a Riemannian manifold, see e.g. [10]. Thus we
assume that (M, g) is locally indecomposable. If g ⊂ so(1, n + 1) is irreducible,
then g ≡ so(1, n + 1). Suppose that g ⊂ so(1, n + 1) is not irreducible, then g
preserves an isotropic line in R1,n+1.
The Lie algebra so(1, n+1) can be identified with the space of bivectors Λ2R1,n+1

in such a way that

(X ∧ Y )Z = η(X,Z)Y − η(Y, Z)X.

Let p ∈ R1,n+1 be an isotropic vector. Fix an isotropic vector q ∈ R1,n+1 such that
η(p, q) = 1. Let E be the orthogonal complement to Rp⊕ Rq, then E ≃ Rn is an
Euclidean space and we get

R1,n+1 = Rp⊕ E ⊕ Rq.

Denote by sim(n) the maximal subalgebra in so(1, n+1) preserving the isotropic
line Rp, then it holds

sim(n) = Rp ∧ q + so(n) + p ∧ E

in which so(n) = so(E) ≃ ∧2E. Any weakly irreducible not irreducible subalge-
bra g ⊂ so(1, n + 1) preserves an isotropic line in R1,n+1, hence g is conjugated
to a subalgebra of sim(n). The weakly irreducible Lorentzian holonomy algebras
g ⊂ sim(n) are the following

type I g = Rp ∧ q + h+ p ∧ E
type II g = h+ p ∧ E
type III g = {φ(A)p ∧ q +A ; A ∈ h}+ p ∧ E
type IV g = {A+ p ∧ ψ(A) ; A ∈ h}+ p ∧ E1

where h ⊂ so(n) is a Riemannian holonomy algebra, φ : h → R is a linear map
that is zero on the commutant [h, h]. For the last algebra, E = E1 ⊕ E2 is an
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orthogonal decomposition, h annihilates E2, i.e., h ⊂ so(E1), and ψ: h → E2 is a
surjective linear map that is zero on [h, h].

4. The Spaces of Curvature Tensors

We will need the following algebraic results. Let (W,η) be a pseudo-Euclidean
space and f ⊂ so(W ) be a subalgebra. The vector space

R(f)={R ∈ Λ2W ∗⊗f ; R(X,Y )Z+R(Y, Z)X+R(Z,X)Y= 0, X, Y, Z∈W}

is called the space of algebraic curvature tensors of type f. The space R(f) is an
f-module with the action

(ξ ·R)(X,Y ) = [ξ,R(X,Y )]−R(ξX, Y )−R(X, ξY ), ξ ∈ f, R ∈ R(f).

From the Ambrose-Singer Theorem it follows that if f ⊂ so(W ) is the holonomy
algebra of a pseudo-Riemannian manifold (N,h), then the values of the curvature
tensor of (N,h) belong to R(f) and

f = span{R(X,Y ) ; R ∈ R(f), X, Y ∈W}

i.e., f is spanned by the images of the elements R ∈ R(f).
The spaces R(g) for Lorentzian holonomy algebras g ⊂ sim(n) are found in [11,
12]. Let e.g. g = Rp ∧ q + h + p ∧ E. For the subalgebra h ⊂ so(n) define the
space

P(h) = {P ∈ E∗ ⊗ h · η(P (X)Y,Z)

+ η(P (Y )Z,X) + η(P (Z)X,Y ) = 0, X, Y, Z ∈ E}.

Any R ∈ R(g) is uniquely given by

λ ∈ R, v⃗ ∈ E, P ∈ P(h), R0 ∈ R(h) and T ∈ End(E) with T ∗ = T

in the following way

R(p, q) =− λp ∧ q − p ∧ v⃗, R(X,Y ) = R0(X,Y )− p ∧ (P (Y )X−P (X)Y )

R(X, q) =− g(v⃗, X)p ∧ q + P (X)− p ∧ T (X), R(p,X) = 0

for all X,Y ∈ E. For the algebras g of the other types, any R ∈ R(g) can be
given in the same way and by the condition that R takes values in g. For example,
R ∈ R(h+ p ∧ E) if and only if λ = 0 and v⃗ = 0.
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5. Walker Metrics and pp-Waves

Consider the local form of a Lorentzian manifold (M, g) with the holonomy alge-
bra g ⊂ sim(n). Since g preserves an isotropic line of the tangent space, (M, g)
locally admits a parallel distribution of isotropic lines. Locally there exist the so
called Walker coordinates v, x1, ..., xn, u and the metric g has the form

g = 2dvdu+ h+ 2Adu+H(du)2 (3)

where h = hij(x
1, ..., xn, u)dxidxj is an u-dependent family of Riemannian met-

rics, A = Ai(x
1, . . . , xn, u)dxi is an u-dependent family of one-forms, and H

is a local function on M , see e.g. [10]. The vector field ∂v defines the parallel
distribution of isotropic lines.
Consider the fields of frames

p = ∂v, Xi = ∂i −Ai∂v, q = ∂u − 1

2
H∂v

and the distribution E = span{X1, ..., Xn}. At each point m of the coordinate
neighborhood we get the decomposition

TmM = Rpm ⊕ Em ⊕ Rqm

hence the value Rm of the curvature tensor can be expressed in terms of some λm,
v⃗m, R0m, Rm and Tm as above. The space Em is isomorphic to the tangent space
of a Riemannian manifolds with a metric from the family h, then R0 is defined by
the curvature tensor of the family of the Riemannian metrics h.
It is known [10] that the holonomy algebra of the manifold (M, g) is contained in
p ∧ E ⊂ sim(n) if and only if the metric can be locally written in the form

g = 2dvdu+

n∑
i=1

(dxi)2 +H(du)2, ∂vH = 0. (4)

Such spaces are called pp-waves.

6. Lorentzian Manifolds with Recurrent Curvature Tensor

In this section we consider Lorentzian manifolds (M, g) with recurrent curvature
tensor R, i.e., satisfying (1). Note that for Riemannian manifolds (1), implies
θ = 0, i.e., the manifold is locally symmetric [16].
Many facts about recurrent spaces, or more generally about r-recurrent spaces,
and a long list of literature on this topic can be found in the fundamental review
of Kaigorodov [16]. There is a recent review by Senovilla [20], where similar
problems are considered.
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In this section we give a new proof to the following theorem proven by Walker
in [24].

Theorem 1. Let (M, g) be a Lorentzian manifold of dimension n + 2 ≥ 3. Then
(M, g) is recurrent and not locally symmetric if and only if in a neighborhood
of each point of M there exist coordinates v, x1, ..., xn, u such that one of the
following holds:

I. there exists a function H(x1, u) such that

g = 2dvdu+
n∑

i=1

(dxi)2 +H(x1, u)(du)2. (5)

II. There exist real numbers λ1, ..., λn with |λ1| ≥ · · · ≥ |λn|, λ2 ̸= 0, and a
function F : U ⊂ R → R such that

g = 2dvdu+
n∑

i=1

(dxi)2 + F (u)λ2i (x
i)(du)2. (6)

Moreover, for some system of coordinates ∂21H is not constant or
dF

du
̸= 0.

The form of the metric may change from one system of coordinates to another, i.e.,
it can be flat for some systems of coordinates. Examples of such spaces can be
constructed taking the metrics of the form (6) with F (u) = 0 if |u| ≥ ϵ for some
ϵ > 0, any such metric is flat on the spaces {(v, x1, . . . xn, u) ; |u| ≥ ϵ}, hence we
may glue these metrics on such flat spaces. In this example the function F (u) is
not analytic. Theorem 3 below states that if the manifold (M, g) is analytic, then
the metric is the same for all systems of coordinates.
Note that the local metric (6) is symmetric if and only the function F is a constant,

i.e.,
dF (u)

du
= 0. In this case we get the so called Cahen-Wallach space [6]. Next,

the local metric (6) is two-symmetric, i.e., ∇2R = 0, if and only if
d2F (u)

(du)2
= 0,

see Section 10 below. Finally, it is conformally flat if and only if λ1 = · · · = λn
[13].

6.1. Proof of Theorem 1

First we reduce the problem to the case when (M, g) is locally indecomposable.

Lemma 2. Let (M, g) be a recurrent and not locally symmetric Lorentzian man-
ifold. Suppose that (M, g) is locally decomposable, i.e., each point of M has an
open neighborhood U such that (U, g|U ) is isometric to the product of a Lorentzian
manifold (M1, g1) and a Riemannian manifold (M2, g2). If ∇R|U ̸= 0, then
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(M1, g1) is recurrent and (M2, g2) is flat. If ∇R|U = 0, then both (M1, g1) and
(M2, g2) are locally symmetric.

Proof: Since (U, g|U ) = (M1 × M2, g1 + g2), for the corresponding curvature
tensors and their covariant derivatives it holds

R|U = R1 +R2, ∇R|U = ∇R1 +∇R2.

Suppose that ∇R|U ̸= 0. Restricting the equality ∇R = θ ⊗ R to (M2, g2), we
get ∇R2 = θ|M2 ⊗ R2. Since (M2, g2) is a Riemannian manifold, θ|M2 = 0. Let
X1 ∈ Γ(TM1) and X2, Y2 ∈ Γ(TM2), then

0 = ∇X1R1(X2, Y2) +∇X1R2(X2, Y2)

= θ(X1)R1(X2, Y2) + θ(X1)R2(X2, Y2) = θ(X1)R2(X2, Y2).

Since θ|U ̸= 0, R2 = 0. This proves the lemma. �

The condition (1) implies that for any point m ∈ M , the holonomy algebra gm of
(M, g) preserves the line RRm ⊂ R(gm) in the space of possible values of the
curvature tensor at the point m.
The only possible irreducible holonomy algebra of (M, g) is the Lorentzian Lie
algebra so(1, n + 1) [10]. Form the results of [1] it follows that the only line
preserved by so(1, n+1) in the space R(so(1, n+1)) consists of curvature tensors
defined by the scalar curvature. Consequently the manifold is Einstein and locally
symmetric. Hence the holonomy algebra of (M, g) is weakly irreducible and not
irreducible and it is contained in sim(n).
The condition that the holonomy algebra gm at the pointm ∈M preserves the line
RRm ⊂ R(gm) can be expressed as

ξ ·Rm = µ(ξ)Rm, ξ ∈ gm

where µ: gm → R is a linear map. Let e.g. gm = Rpm ∧ qm + h+ pm ∧ Em. As
the h-module, the space R(gm) admits the decomposition

R(g) = R⊕ Em ⊕R(h)⊕ P(h)⊕⊙2Em.

The space P(h) does not contain any h-invariant one-dimensional subspace [12],
hence Pm = 0. For X,Y, Z ∈ Em it holds

µ(pm ∧ Z)R0m(X,Y ) = µ(pm ∧ Z)Rm(X,Y ) = ((pm ∧ Z) ·Rm)(X,Y )

= [pm ∧ Z,R0m(X,Y )] = −pm ∧R0m(X,Y )Z.

This implies R0m = 0. Thus over the current coordinate neighborhood it holds
R0 = 0 and P = 0. The same can be shown for the other possible holonomy alge-
bras. We get R(p⊥, p⊥) = 0. In [18] it is proved that in this case the coordinates
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can be chosen in such a way that

g = 2dvdu+

n∑
i=1

(dxi)2 +H(du)2. (7)

In particular, h = 0 and either gm = pm ∧ Em, or gm = Rpm ∧ qm + pm ∧ Em.
Let us consider these two cases.
Case 1. Suppose that gm = pm ∧ Em. Then ∂vH = 0. In [2] it is shown that the
covariant curvature tensor and its covariant derivative have the form

R =
1

2
(∂i∂jH)(q′ ∧ ei ∨ q′ ∧ ej) (8)

∇R =
1

2
(∂k∂i∂jH)ek ⊗ (q′ ∧ ei ∨ q′ ∧ ej)

+
1

2
(∂u∂i∂jH)q′ ⊗ (q′ ∧ ei ∨ q′ ∧ ej) (9)

where ei = dxi and q′ = du. The condition (1) is equivalent to

∂k∂i∂jH = θk∂i∂jH, ∂u∂i∂jH = θu∂i∂jH

where θk = θ(∂k) and θu = θ(∂u). If ∂i∂jH ̸= 0 for some i, j on some open
subspace, then

θk = ∂k ln |∂i∂jH|, θu = ∂u ln |∂i∂jH|

i.e., dθ = 0 and there exists a function f such that θ = df . We get

∂k(ln |∂i∂jH| − f) = ∂u(ln |∂i∂jH| − f) = 0

i.e.,
ln |∂i∂jH| = f + cij , cij ∈ R, cij = cji.

Thus,
∂i∂jH = efCij , Cij = ecij .

Consider the new coordinates

ṽ = v, x̃i = aijx
j , ũ = u

where aij is an orthogonal matrix. With respect to these coordinates the metric g
takes the same form and it holds

∂̃i∂̃jH̃ = ef̃aria
s
jCrs.
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The orthogonal transformation aji can be chosen in such a way that the matrix
C̃ij = aria

s
jCrs is diagonal with the diagonal elements λ1, ..., λn. Assume that

|λ1| ≥ · · · ≥ |λn|. Thus it holds

∂i∂jH = efδijλi, λi ∈ R.

If λ2 = · · · = λn = 0, then

H = F (x1, u) +

n∑
i=2

Gi(u)x
i.

Consider the new coordinates given by the inverse transformation

u = ũ, xi = x̃i + bi(ũ), v = ṽ −
∑
j

dbj(ũ)

dũ
x̃j (10)

such that 2d2bj(u)
(du)2

= Gj(u) and b1(u) = 0. With respect to the new coordinates it
holds H = F (x1, u) and we obtain the Case I of the formulation of the theorem.
Suppose that λ2 ̸= 0. From the above we get that if i ̸= j, then ∂i∂jH = 0,
i.e., H is of the form H =

∑
iHi(x

i), and d2Hi

(dxi)2
= efλi. Taking i = 1, 2 and

differentiating the last equality with respect to ∂j , we get ∂jf = 0, i.e., f depends
only on u. Now it is clear that

H =
1

2
ef(u)λ2i (x

i) +Bi(u)x
i +K(u).

Let F (u) = 1
2e

f(u). From the results of [2] it follows that the coordinates can be
chosen in such a way that H = F (u)λ2i (x

i).

Case 2. Suppose that gm = Rpm ∧ qm + pm ∧ Em. The curvature tensor Rm is
given by the elements λm, v⃗m and Tm. It holds

µ(pm ∧ qm)(−λmpm ∧ qm − pm ∧ v⃗m)

= ((pm ∧ qm) ·Rm)(pm, qm) = [pm ∧ qm, R(pm, qm)] = pm ∧ v⃗m
hence

µ(pm ∧ qm)λm = 0, (µ(pm ∧ qm) + 1)v⃗m = 0.

Similarly, ((pm ∧ qm) · Rm)(X, qm) = µ(pm ∧ qm)Rm(X, qm), for X ∈ Em

implies
µ(pm ∧ qm)v⃗m = 0, (µ(pm ∧ qm) + 1)Tm = 0.

In the same way, using an element pm ∧X ∈ gm, we get

µ(pm ∧X)λm = 0, µ(pm ∧X)v⃗m = λmX

µ(pm ∧X)v⃗m = 0, g(v⃗m, Y )X = µ(pm ∧X)Tm(Y ).
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The obtained equalities imply v⃗m = 0 and λm = 0. Consequently, over this
coordinate neighborhood, λ = 0 and v⃗ = 0. This shows that this coordinate
neighborhood is the same as in Case 1. �

6.2. The Case of Analytic (M, g)

Suppose that (M, g) is analytic. In this case, Theorem 1 can be reformulated in the
following way

Theorem 3. Let (M, g) be analytic Lorentzian manifold of dimension n+ 2 ≥ 3.
Then (M, g) is recurrent and not locally symmetric if and only if one of the follow-
ing holds

I. In a neighborhood of each point ofM there exist coordinates v, x1, ..., xn, u
and a function H(x1, u) such that

g = 2dvdu+

n∑
i=1

(dxi)2 +H(x1, u)(du)2 (11)

and ∂21H is not constant for some system of coordinates. In this case if
n ≥ 2, the manifold is locally a product of the three-dimensional recurrent
Lorentzian manifold with the coordinates v, x1, u and of the flat Riemannian
manifold with the coordinates x2, ..., xn.

II. There exist real numbers λ1, ..., λn with |λ1| ≥ · · · ≥ |λn|, λ2 ̸= 0, and an
analytic function F : U ⊂ R → R with dF

du ̸= 0, and in a neighborhood of
each point of M there exist coordinates v, x1, ..., xn, u such that

g = 2dvdu+

n∑
i=1

(dxi)2 + F (u)λ2i (x
i)(du)2. (12)

The manifold (M, g) is locally indecomposable if and only if all λi are non-
zero. If for some r (2 ≤ r < n) it holds λr ̸= 0 and λr+1 = · · · = λn = 0,
then (M, g) is locally a product of the recurrent Lorentzian manifold with
the coordinates v, x1, . . . , xr, u and of the flat Riemannian manifold with
the coordinates xr+1, ..., xn.

In particular, the theorem states that in the second case the metric is the same in
each coordinate neighborhood.

Proof: Suppose that a point m belongs to two coordinate neighborhoods with the
coordinates v, x1, . . . , xn, u and ṽ, x̃1, . . . , x̃n, ũ. Suppose that for the first system
of coordinates it holds H = F (u)λ2i (x

i), λ1, λ2 ̸= 0, and dF
du ̸= 0, i.e., the metric

restricted to the first coordinate neighborhood is not flat. If in the second coordi-
nate system the metric is flat, then on the intersection of the coordinate domains
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it holds dF
du = 0. Since F is analytic, this implies dF

du = 0 for all points of the
first coordinate neighborhood and we get a contradiction (this is the only place,
where we use the analyticity). Since the metric restricted to the second coordinate
neighborhood is not flat, the parallel vector field ∂̃v is defined up to a constant and
we may assume that ∂̃v = ∂v. Then the transformation of coordinates must have
the form

u = ũ+ c, xi = aij x̃
j + bi(ũ), v = ṽ −

∑
j

aji
dbj(ũ)

dũ
x̃i + d(ũ)

where c ∈ R, aji is an orthogonal matrix, and bi(ũ), d(ũ) are some functions of ũ
[2]. Clearly, the metric written in the second coordinate system can not be as in
Case I of Theorem 1, i.e., it holds

H̃ = F̃ (ũ)λ̃i(x̃
i)2.

Note that
F̃ (ũ)δijλ̃i = F (ũ+ c)δklλka

k
i a

l
j .

Since the matrix aji is orthogonal, after some change

(F (ũ), λ̃i) 7→
(
1

C
F (ũ), Cλ̃i

)
, C ̸= 0

we obtain λ̃i = λi and F̃ (ũ) = F (ũ+ c). After the transformation ũ 7→ ũ− c we
get F̃ = F . This proves the theorem. �

7. Lorentzian Symmetric Spaces

Classification of simply connected Riemannian symmetric spaces is a classical re-
sult of Élie Cartan [4]. Simply connected Lorentzian symmetric spaces are clas-
sified by Cahen and Wallach [6, 7]. Here we show how the last result can be
reproved using the holonomy theory. It is well-known that a simply connected
pseudo-Riemannian symmetric space is uniquely defined by the pair (g, R), where
g is its holonomy algebra and R is its curvature tensor at a fix point. Such pair
satisfies R ∈ R(g), g annihilates R and the image of R coincides with g. Note
that R can be defined up to a positive constant. Now we describe such pairs for
g ⊂ so(1, n + 1). It is enough to consider indecomposable spaces, i.e., we may
assume that g ⊂ so(1, n + 1) is weakly irreducible. If g = so(1, n + 1), then
such R constitute a one-dimensional space without the zero. The connected com-
ponents of this space define de Sitter and Anti de Sitter spaces. These are the only
indecomposable simply connected Lorentzian symmetric spaces with semi-simple
isometry group (equivalently, with reductive holonomy algebra). Now we sup-
pose that g ⊂ sim(n). In the same way as we did in Section 6, we conclude that
g = p ∧ E and R is given by a symmetric endomorphism T of E (in notation of
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Section 4). Thus such pair corresponds to a pp-wave (4). Equation (9) shows that
∂k∂i∂jH = ∂u∂i∂jH = 0 i.e., H = aijx

ixj + bi(u)x
i + c(u). Changing the

coordinates, we get H =
∑

i λi(x
i)2, λi ∈ R. Metric (4) with such H is defined

on Rn+2 and it is complete. These symmetric spaces are called the Cahen-Wallach
spaces.

8. The Weyl Conformal Curvature Tensor of a Walker Metric

Below we will need the expression for the Weyl tensor W of a Walker metric in
terms of notations of Section 4. This expression is obtained in [13]. One has

W = R+RL

where RL is defined via

RL(p,X) =
1

n
p ∧

(
Ric(h) +

(n− 1)λ− s0
n+ 1

id

)
X (13)

RL(p, q) =
1

n

(
2nλ− s0
n+ 1

p ∧ q + p ∧ (v⃗ − R̃icP )

)
(14)

RL(X,Y ) =
1

n
(p ∧ ((X ∧ Y )v⃗)

(15)

+

(
Ric(h)− s

2(n+ 1)

)
X ∧ Y +X ∧

(
Ric(h)− s

2(n+ 1)

)
Y

)

RL(X, q) =
1

n

(
(trT )p ∧X + g(X, v⃗ − R̃icP )p ∧ q +X ∧ (v⃗ − R̃icP )

(16)

+

(
Ric(h) +

(n− 1)λ− s0
n+ 1

id

)
X ∧ q

)
and where Ric(h) is the Ricci operator of the metric h, s = 2λ + s0 is the scalar
curvature of g and S0 is the scalar curvature of h. This expression is used in [13]
to find all conformally flat Walker metrics.

9. Lorentzian Manifolds with Recurrent and Parallel Weyl Tensor

Conformally symmetric Lorentzian manifolds, i.e., Lorentzian manifolds with par-
allel Weyl tensor W are classified by Derdzinski and Roter [8,9]. These spaces are
exhausted by conformally flat spaces, i.e., with W = 0, by locally symmetric
spaces, i.e., with ∇R = 0, and by some special pp-waves. As a generalization of
this condition one consider conformally recurrent spaces, i.e., with recurrent Weyl
tensor, ∇W = θ ⊗W , see e.g. [19, 23]. We prove the following theorem.
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Theorem 4. Let (M, g) be a locally indecomposable Lorentzian manifold of di-
mension n + 2 ≥ 4 with a recurrent Weyl tensor W , then either W = 0, or
∇R = 0, or locally g has the form

g = 2dv2du+
n∑

i=1

(dxi)2 +

(
a(u)

n∑
i=1

(xi)2 + F (u)
n∑

i=1

λ2i (x
i)

)
(du)2

where a(u), F (u) are functions, and λi ∈ R,
∑n

i=1 λi = 0.

Note that the for the above metric it holds ∇W = 0 if and only if dF (u)
du = 0. In

particular, we recover the result by Derdzinski and Roter. Next, ∇R = 0 if and
only if da(u)

du = dF (u)
du = 0. Also, ∇R = θ ⊗ R if and only if a(u) = F (u), or

a(u) = 0, or all λi = 0. Finally, W = 0 if and only if all λi = 0 or F (u) = 0 [13].
Proof of Theorem 4. The proof is very similar to the proof of Theorem 1 and
we omit some obvious computations. Suppose that W ̸= 0 and ∇R ̸= 0. Let
g ⊂ so(1, n + 1) be the holonomy algebra of (M, g) at a point m ∈ M . Then g
preserves the line in the space R(g) spanned by Wm. For g = so(1, n + 1) this
would imply Wm = 0, which follows from [1]. Hence, g ⊂ sim(n). Suppose that
Wm ̸= 0.

Lemma 5. The manifold (M, g) is a pp-wave, i.e., g = pm ∧ Em.

Proof: For each ξ ∈ g it holds ξ ·Wm = µ(ξ)Wm, where µ : g → R is a linear
map.
First let us suppose that h = 0. Then we have either g = Rpm ∧ qm+ pm ∧Em, or
g = pm∧Em. Suppose that g = Rpm∧qm+pm∧Em. Then we may assume also
that λm ̸= 0 or v⃗m ̸= 0. Let Z ∈ Em be not proportional to v⃗m. By considering
((pm ∧ Z) · Wm)(pm, qm), we obtain λm = 0. In a similar way considering
((pm ∧ Z) ·Wm)(Zm, qm), we get v⃗m = 0. We conclude that g = pm ∧ Em.
Suppose now that h ̸= 0. Let A ∈ h and let ξ be either A, or A + φ(A)pm ∧ qm,
or A + pm ∧ ψ(A) depending on the type of g. Note that any one-dimensional
representation of h is trivial, consequently, µ(ξ) = 0. Using this and considering
the projection of (ξ ·Wm)(X,Y ) to so(n), for X,Y ∈ Em, we get

A ·
(
1

n
(· ∧ (v⃗m − R̃icPm)) + Pm

)
= 0

where we consider the representation of h in the space P(so(n)). The module P(h)
never contains non-zero elements annihilated by h [12]. If Pm = 0, then from the
above equality it follows that v⃗m = 0. Otherwise, since h ̸= 0, there exists A ∈ h

such that A · Pm ̸= 0. This implies that 0 ̸= · ∧ A(v⃗m − R̃icPm) ∈ P(h).
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Consequently, h = so(n). We conclude that

Pm =
1

n
(· ∧ (v⃗m − R̃icPm)).

Applying R̃ic, we get R̃icPm = (1− n)v⃗m, and we conclude that

Pm = − · ∧v⃗m.

This shows that the expression of Wm does not include v⃗m and Pm. Considering
((pm∧Z) ·Wm)(pm, qm), Z ∈ Em, we get that Ric(h)m = c1 idEm , where c1 can
be expressed in terms of λm and s0m. Taking the trace, we get a relation between
λm and s0m. Taking ξ as above, using the equality prso(n)((ξ ·W )(X,Y )) = 0,
X,Y ∈ Em, and expressing R(h)m in terms of the Weyl tensor of h, Ric(h)m
and s0m, we get another relation between λm and s0m. Then we conclude that
λm = s0m = 0, Ric(h)m = 0, and R(h)m = 0. Now Wm depends only on Tm.
Since h ̸= 0 and R(h) = 0, we may assume that Pm ̸= 0, and we have just seen
that this implies h = so(n). Taking A ∈ so(n) and considering (A ·Wm)(X, qm),
we get TmA = ATm. The Schur Lemma implies that Tm is proportional to idEm .
Thus, Wm = 0. And we get a contradiction. Thus, h = 0 and g = pm ∧ Em, this
proves the lemma. �

Now we should find all functions H such the Weyl tensor of metric (4) of a pp-
wave is recurrent, i.e., ∇W = θ ⊗ W for a one-form θ. For W and ∇W we
get the formulas (8) and (9) with ∂i∂jH replaced by ∂i∂jH − 1

nδij∆H , where
∆ =

∑n
k=1 ∂

2
k . We obtain the equations

∂k

(
∂i∂jH − 1

n
δij∆H

)
= θk

(
∂i∂jH − 1

n
δij∆H

)
∂u

(
∂i∂jH − 1

n
δij∆H

)
= θu

(
∂i∂jH − 1

n
δij∆H

)
where θk = θ(∂k) and θu = θ(∂u). As in Section 6, we get

∂i∂jH − 1

n
δij∆H = efCij , Cij = Cji ∈ R

for all i, j. Since ∆ is invariant with respect to an orthogonal transformation of the
coordinates x1, ..., xn, we may apply a transformation as in Section 6, ad we may
assume that

∂i∂jH − 1

n
δij∆H = efδijλi, λi ∈ R.

If i ̸= j, then ∂i∂jH = 0, i.e., H is of the form H =
∑n

i=1Hi(x
i, u). We get the

system of equations

∂2iHi −
1

n

n∑
k=1

∂2kHk = efλi.
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We may view this system as a system of linear equations with respect to the un-
knowns ∂2iHi. The rank of this system is equal to n − 1. Summarizing the equa-
tions, we see that if a solution exists, then

∑n
i=1 λi = 0. In this case the dimension

of solutions equals to one, and we have ∂2iHi =
1
2a + efλi for a function a. This

implies that both a and f are functions depending only on u. We obtain

H = a(u)
n∑

i=1

(xi)2 + F (u)λ2i (x
i)

where F (u) = 1
2e

f(u) and we assume that the terms linear in xi are zero, since we
can get read of them using a transformation of coordinates. The theorem is proved.

�
Results about four-dimensional conformally recurrent Lorentzian spaces are col-
lected in [21, Ch. 35].

10. Two-Symmetric Lorentzian Manifolds

In this section we consider two-symmetric Lorentzian manifolds, i.e., manifolds
satisfying (2). The following theorem is proved in [2].

Theorem 6. Let (M, g) be a locally indecomposable Lorentzian manifold of di-
mension n + 2. Then (M, g) is two-symmetric if and only if locally there exist
coordinates v, x1, ..., xn, u such that

g = 2dvdu+

n∑
i=1

(dxi)2 + (Hiju+ Fij)x
ixj(du)2

where Hij is a nonzero diagonal real matrix with the diagonal elements λ1 ≤
· · · ≤ λn, and Fij is a symmetric real matrix.

Detailed investigation of two-symmetric Lorentzian spaces initiated Senovilla in
[20], where it is proven that any two-symmetric Lorentzian space admits a parallel
isotropic vector field, i.e., locally the metric has the form (3) with ∂vH = 0.
Now we explain the proof of the above theorem from [2]. The assumption that a
Lorentzian manifold (M, g) is two-symmetric implies that the holonomy algebra
g ⊂ so(1, n + 1) of (M, g) at a point m ∈ M annihilates the tensor ∇Rm ̸= 0.
The tensor ∇Rm belongs to the g-module ∇R(g) that consists of linear maps from
R1,n+1 to R(g) satisfying the second Bianchi identity. The results from [22] show
that the space ∇R(so(1, n+1)) does not contain any non-zero element annihilated
by so(1, n + 1). Hence, g can not coincide with so(1, n + 1), and g must be
contained in sim(n). We show that the holonomy algebras g of types I and III do
not annihilate any non-zero element in ∇R(g), i.e., g must be of type II or IV. In
this case (M, g) admits a parallel isotropic vector field, i.e., we reprove the result
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of [20]. Next, we prove a reduction lemma that allows to consider the following
two cases: g = h + p ∧ E, where h ⊂ so(n) is an irreducible subalgebra, and
g = p ∧ E.

We prove that the first case is impossible. For this we find the form of all tensors in
∇R(g) annihilated by g, it turns out that this space is one-dimensional. Then we
may find the form of ∇R. We calculate ∇Ric, and show that the Weyl conformal
tensor W is parallel (∇W = 0). Then, using the results of Derdzinski and Roter
[8, 9] and of [13], we get a contradiction.

The second case corresponds to pp-waves (4). The condition ∇2R = 0 and simple
computations allow us to find the coordinate form of the metric.

The proof of this result from [2] especially shows the power of the methods intro-
duced in this paper, since lately there appeared another more technical proof [5]
that uses computations in local coordinates for metric (3).

11. Recurrent Symmetric Bilinear Forms

In [3] Aminova proved that if an indecomposable Lorentzian manifold (M, g) ad-
mits a parallel symmetric bilinear form not proportional to the metric, then the
manifold admits a parallel isotropic vector field p, and the space of parallel sym-
metric bilinear forms is spanned over R by the metric g and by τ ⊗ τ , where
τ = g(p, ·) is the dual one-form to p. We generalize this result to the case of
recurrent symmetric bilinear forms.

Theorem 7. If an indecomposable Lorentzian manifold (M, g) admits a recurrent
symmetric bilinear form not proportional to the metric, then the manifold has ho-
lonomy algebras contained in sim(n), in particular locally it is given by the metric
(3) and locally it admits recurrent isotropic vector fields.

Let g be given by (3) and suppose that it is indecomposable. If ∂2vH = ∂i∂vH = 0,
then the coordinates can be chosen in such a way that ∂vH = 0, in this case any
recurrent symmetric bilinear form equals to f(αg + βτ ⊗ τ), where α, β ∈ R,
τ = du = g(∂v, ·), and f is a function. If ∂2vH ̸= 0 or ∂i∂vH ̸= 0, then any
recurrent symmetric bilinear is proportional either to g, or to τ ⊗ τ .

For the proof it is enough to find for the holonomy algebra g ⊂ sim(n) at a point
m ∈ M all invariant one-dimensional subspaces in ⊙2(R1,n+1)∗ preserved by g.
For algebras of type I and III these subspaces are Rgm and Rτm⊗τm. For algebras
of type II and IV these subspaces are one-dimensional subspaces in Rgm⊕Rτm⊗
τm. The condition ∂2vH = ∂i∂vH = 0 holds only for the holonomy algebras of
type II and IV.
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The above theorem can be used for studying Lorentzian manifolds with recurrent
Ricci tensors. We see that one deals with a Walker metric, and the equations will
be very similar to the Einstein equation on the Walker metric, see [14].
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