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TOWARDS THE IDENTIFICATION OF ORDINARY 

DIFFERENTIAL EQUATIONS FROM :MEASUREMENTS 

K.-H. Hoffmann and J. Sprekels 

Summary: The identification problem of estimating certain functions in a 

system of linear ordinary differential equations from measured data of its state 

is considered. The approach consists in an imbedding of the problem into a 

family of parameter-dependent problems which can be solved at least 

numerically. The corresponding solutions are proved to converge to the 

unknown functions as the parameters tend to infinity. Stability results with 

respect to disturbances in the measmements and the initial data are developed 

as welL The method is applied to detennine mass exchange rates in a 

compartmental system of pharmaco--kinetic models. 

1. INTRODUCTION 

In this paper we deal with the inverse problem of detennining an unknown matrix 

A *(x) in the ordinary differential equation 

d~ u*(x) + A *(x)u*(x) = f*(x) , x E [0,1] , 

where the solution u*(x) is kl1own (sometimes, only certain of its components). Problems 

of this type are treated in the description of the kinematic behaviour of a compartmental 

system considered in pharmaco-kinetics, biology and medicine. 

A compartment is understood as a quantity of material which kinematically behaves 

in a characteristic and homogeneous way. It may not coincide with a physiologically 

realizable region of space. A compartmental system consists of interconnected 

compartments which exchange material either by physical transport or by chemical 

reaction. A compartmental system is therefore characterized by compartments and 

intercompartmental relations which can be described using graphs; e.g.: 



61 

lc. 
lj kj£ 

c. c. _.c 
1 J ~ c 

k. 
Jl 

Let q. , m , v. , f . , f.. be the amount of material present in compartment i , the 
I 1101]1 

production of material in compartment i , the rate of material entering compartment i 

from outside, the excretion flow from the i-th compartment, the transfer flow from 

compartment to compartment i , respectively. A simple mass balance yields the 

following differential equation: 

(Ll) q. = 2, f.. + m. + v. - L fi1. - f0 i , 
1 j#i Jl I I j#i 

j:;tO j;t:O 

where all the quantities may depend on times and state. Dot denotes the time derivative. 

The classical compartment theory assumes linearity and time invariance of the system 

equations (1.1). Hence 

f..= k.. q. 
lJ lj I 

holds for some (unknown) constants k.. . If the mass production is negligible and the 
lJ 

change in compartment i caused by v. is small, then the following system of differential 
1 

equation holds: 

(1.2) u. = 2. k .. u. - 2. k .. u. - k . u. + v .. 
I j#i Jl J j#i lJ 1 01 1 1 

j;t:O j;t:O 

where u. := q. - q~ with q~ denoting the material in compartment 
l 1 1 1 

in the stationary 

state. In matrix notation, (1.2) can be rewritten as 

(1.3) u =Au+ Bv, 

where A , B are matrices, u is the state vector and v is an input vector. The matrix A 

contains the unknown coefficients k .. , which are to be determined by a suitably chosen 
lJ 

input-output experiment. More precisely, the problem becomes: determine A from the 

output data w of system (1.3), which corresponds to a given input function v ; namely, 
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(1.4) w=Cu, 

where the input matrix B , as well as the output matrix C , is known. 

As an example consider the ferrokinematics in a human body. The compartmental 

system consists of four compartments which represent extravascular space (compartment 

1), plasma (compartment 2), bone marrow (compartment 3) and red blood cells 

(compartment 4). The following graph describes the dynamical behaviour of the system: 

vl l l~<oo 
k12 k23 k34 

Cl C2 C3 C4 .. 
k21 ! k32 

k42 

How to plan the input-output experiment in order to get full information on A is a 

question of system theory which is not the object of our paper. We take the standpoint of 

a numerical analyst who knows measured data w from a fixed experiment and wants to 

compute the matrix A using suitable adapted schemes. The common numerical 

algorithms for computing A are based on optimizing, with respect to the elements of A , 

the (nonlinear) L2-fits between the measurements and the data generated by a specific 

solution of (1.3). It is well known that nonlinear L2-fits can encounter certain numerical 

difficulties such as instability, poor convergence, and inadequate step-length control. 

Therefore, we propose a numerical scheme which avoids the use of minimization 

procedures and make it possible to compute A directly by solving a system of partial 

differential equations, and by considering the asymptotically stable steady state of its 

solution. 

The details of our paper are organized as follows. In Section 2, we present the 

system of partial differential equations which will be shown to be the starting point of our 

numerical algorithm. An energy estimate for the solution is derived. In Section 3, 
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convergence properties are analysed for the full system as well as for its finite Galerkin 

approximations, including the limit case when the dimensions of the Galerkin spaces tend 

to infinity, Section 4 contains a stability analysis with respect to disturbances in the 

measurements and input, as well as the initial conditions for the partial differential 

equations. The paper is based on the ideas contained in [1], but the results are more 

comprehensive. 

2. THE PROBLEM A_l\ID ITS IMBEDDING 

In this section we assume that the solution u* and the right hand side f* of the 

system equation are known exactly. 

Let u* E H1(0,l) and f* E L2(0,1) be given. The problem is to find a positive 

definite m x m matrix A* with L2(0,1) elements (written A* E L2(0,1)) which 

satisfies the differential equation 

(2.1) ~ u*(x) + A*(x)u*(x) = f* a.e. in (0,1). 

In this connection a matrix A* E L 2(0,1) is called positive definite if there is a global 

constant y > 0 such that 

(2.2) T 2 w A*(x)w:<:y!wl 

holds for all wE IRm and a.e. in (0,1). Equation (2.1) is a generalization of the 

differential equation governing the compartmental system where the matrix elements are 

assumed to be constant. Since we are not interested in the existence of matrices A* 

satisfying (2.1), we will always assume that the following condition (Al) is satisfied: 

(Al) S: ={A* E L2(0,1) I ~ u* + A*u* = f*} 

contains at least one element of A* . 

For the construction of the partial differential equation mentioned above, A*(x) is 

assumed to be embedded into a family of parameter-dependent matrices A(x,t) which 
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satisfy the following system of initial boundary value problems of parabolic type: 

(2.3) 

(2.4) 

a a at u(x,t) + dx u(x,t) + A(x,t)u(x,t) = f*(x) , (x,t) c (0,1) x IR + 

u(x,O) = u0 (x) a.e. in (0,1) , 

u(O,t) = u*(O) l 
for t;:: 0. 

u(l,t) = u*(l) 

jf A(x,t) = (u- u*)(x,t) u(x,t?, (x,t) E (0,1) x 1R +, 

A(x,O) = A 0 (x) a.e. in (0,1) . 

The initial values u0 e H1(0,1) and A0 e L2(0,1) can be chosen arbitrarily. The 

aim is to study the limits of u(x,t) and A(x,t) as t tends to infinity. Initially, we derive 

an a priori estimate for (u,A) satisfying (2.3), (2.4). 

Let us define w: = u- u* and R: =A- A*. From (2.1) and (2.3) one obtains 

(2.5) a a at w(x,t) + dx w(x,t) + A *(x,t}w(x,t) + R(x,t)u(x,t) = 9 , 

w(x,O) = w0 (x) in (0,1) , 

w(O,t) = w(l,t) = e for t ~ 0 . 

Multiplying (2.5) by w(x,t) e !Rm leads to 

(2.6) 1 [ a 2 a 2] T 2 dt I w(x,t) I + dx I w(x,t) I + w(x,t) A *(x)w(x,t) + 

m m 
+ ~ I. w.(x,t) R. .(x,t)u.(x,t) = 0 

i=lj=l l lj J 

a.e. m (0,1) and t ~ 0, where R(x,t) = (R..(x,t)) .. _1 . 
IJ I,J- , ... ,m 

The matrix relation 

multiplied by R..(x,t) elementwise and summed up over i and j gives 
IJ 

mm 1 a 2 mm 
L L 2 dt (R.(x,t)) - ~ ~ w.(x,t)R .. (x,t)u.(x,t) = 0 , (x,t) E (0,1) x IR 

i=l j=l IJ i=l j=l 1 IJ J + 
(2.7) 
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where }. A(x,t) = jf R(x,t) was used. Introducing the Erhard-Schmid marrixnorm II·IIEs 
and adding the formulas (2.6) and one obtains 

(2.8) 

= -w(x,t)T A*(x)w(x,t), a.e. in (0,1) , t 2: 0. 

Hence 

(2.9) 

where 

1 a r 1 [ 2 2 ] 2 df J o I w(x,t) I + IIR(x,t) liEs d."" + 

1 
+ ~ (I w(l ,t) 12 - I w(O,t) 12 + J w(x,t) T A *(x)w(x,t) dx = 0 . 

0 

Integrating (2.9) over t and using "" w(O,t) = 9 leads to 

l ? 2 . 2 2 .t l T . "Cllw(t)ll- -llw(O)II + IJR(i)ll - IIR(O)II ) + J r w(x,'t) A*(x)w(x,'t) dx d'l: = 0, 
""' o Jo 

2 1 2 2 llw(t) II : = f I w(x,t) I dx and IIRCt) II : = 
0 

1 . 2 . 
IIR(x,t)IIES dx 

was introduced. Since A*(x) is positive definite uniformly in x one obtains finally the 

following a priori estimate: 

(2.11) 

for some constant C < oo • This estimate will appear as a key in the convergence proof 

presented in the next section. 

3. CONVERGENCE RESULTS 

In this paper we shall ignore existence and uniqueness questions in solving (2.3), 

(2.4) and assume that the following condition (A2) always holds: 

(A2) Equations (2.3), (2.4) have a unique global solution 
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TIIEOREM 1: Let (Al) and (A2) be satisfied and { t } be any sequence in IR with 
n + 

t __, 00 • 

n 

Then, there exists a subsequence { t } of { t } such that A { t } converges 
\: n nk 

weakly in L 2(0,1) to a matrix A E S . 
00 

PROOF. Let { t } , t __, oo, be any sequence. By (Al) there exists a positive definite 
n n 

matrix A* whch solves (2.1). For w: ""u -· u* and R: =A- A* the a priori estimate 

(2.11) holds. This implies that {A(t )} is bounded in L2(0,1). Hence, a subsequence of 
n 

{t } exists which we denote by {t } again, with A(t) __,A E L2(0,1) weakly in 
n n n oo 

2 L (0,1) . It remains to show that Aoo e S , that means that 

J u*(x) + A (x)u* = f*(x) , · (0 1) ox oo a.e. 1n , . 

From equation (2.4) using (2.11) one concludes 

(3.1) 11-Jt R(t)ll :s; Cl!w(t)ll 
' 0(0,1) 

for t ;;::: 0 . Hence, 

(3.2) 11 t +S I sup IIA..(t +S)- A..(t )IILl(O 1) = sup r f n A .. (x,t) dt dx::;; I s I ::;;1 lJ n lj n , I s I ;;:::1 J o t lJ 
n 

1 t + ~ I t + 1 ll/2 ::;; J J n I Ai/x,t) I dt dx::;; C J n llw(t)i!2 dt 
0 t -1 t -1 

n n 

is valid for all elements A.. of the matrix A . But the right hand side of (3.2) tends to 
lJ 

zero as n __, "" . Therefore 

(3.3) sup IIA(t +s)- A(t )IILl(O l) __, 0 for n __, oo. 
Is 1:::;1 n n , 

Now let <jl e H 1(0,1) be any fixed test function. Then 

(3.4) <w(t),<jl> + (fx u(t),<jl) + <A(t)u(t),$> = <f* ,$> 
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holds, where <·,·> is the inner product in L2(0,1). Integrating equation (3.4) over t 

from t +S-1 to t +S gives 
n n 

(3.5) <w(tn +S) - w(tn +S-1),<1» + J I.Jx u(t),lj)) dt + J tn +s <A(t)u(t),¢'> = <f* ,¢> . 
t +s-1 \; t +s-1 
n n 

The second term on the left hand side converges to /gu* 
~ \x 

tn +S I a . a J \(ix u(t) - (Jx 
t -1-S-1 
n 

uniformly in s as 

t +s lla II I t +s 11/2 s J n . llv;(t)il ~ dt s C J 11 1/w(t)//2 dt 
t +s-1 t +s-1 

11 11 

Using (2.11) it follows that 

(3.6) dt = (Jx u*,¢) 

uniformly in s . 

The third term in (3.5) is estimated as follows: 

t +S I' t +S J n <A(t)u(t),<!J> dt = J n <A(t)w(t),q» dt + 
t +s-1 t +s-1 
n n 

t +s t +s 
+ J n <(A(t)- A(tn))u*,t[>> dt + J 11 <A(tn)u*,$> dt. 

t +s-1 t +s-1 
11 n 

Each expression in this formula is estimated separately. Since u* E C[O,l] and 

A(t ) ---'-A we obtain n oo 

<A(t )u*,¢> __,<A u*,(l». 
11 00 

Estimating the second term leads to 

I 

t +s 
1 

t +s m , 1 J n <(A(t) - A(t ))u* ,<jl> dt ::;; C J n L j I A..(x,t) - A..(x,t ) / dx dt 
t +s-1 n t +s-1 i, j =l 0 lJ lJ n 
n n 
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t +S 

s; c f n IIA(t)- A(tn)lloco 1) dt -j 0 
t +s-1 ' 
n 

uniformly in s as n -+ "" , because of (3.3). 

For the first term we obtain 

[ 
t +s ] l/2 · J n llw.(t)ll2 dt s; 

t +S-1 J 
n 

[ 
t +1 2 ] 1/2 

::;; C · frll J n llw(t)ll dt · 
t -1 
n 

[ 
t +1 ] 1/2 

s; C J n l[w(t)j[2 dt , 
t -1 
n 

since IIA(t)li2 is bounded on t;:: 0. 

But, because of (2.11), the last integral tends to zero as n-+ oo. Thus we have 

proved 

t +s 1 a ) t +S 1 a ) J n \dx. u(t),$ dt + J n <A(t)u(t),$> dt-+ \"i:JX u* + A00u*,<!> 
t +s-1 t +S-1 n n 

as n -+ oo uniformly in s . 

Integrating (3.5) over [-1,1] and passing to the limit gives: 



69 

The left hand side converges to zero. Hence we have proved that 

(f*- fx u*- A00u*,<j>) = 0 

for all <j> e H1(0,1). Since H1(0,1) is dense in L2(0,1) one finally concludes that 

A eS. # 
00 

For practical applications it is sufficient to study the finite--dimensional Galerkin 

approximations of the equations (2.3), (2.4). In this case the convergence results of 

Theorem 1 can be improved. 

Let V c H1(0,1) and W c L2(0,1) be finite-dimensional subspaces with u0 ,u* e V 

and A0 e W. 

We define by 

Sv:={AeL2(0,1) \ (fxu*+Au*-f*,<J>)=o V<j>ev} 

the set of Galerkin solutions of the original problem (2.1) and consider the Galerkin 

equations for (2.3), (2.4): 

(3.7) 

(3.8) 

(fx u(t) + fx u(t) + A(t)u(t)- f*,<j>) = 0, <j> e V, 

u(O) = u0 

u{O,t) = u*(O) , u(1,t) = u*(1) ; 

(fx A(t)- (u(t)- u*)u(t)T,tll), tlJ e W, 

A(O) = A0 • 

This system of ordinary differential equations has a unique solution 1 
u E c (O,T;V) ' 

A e d(O,T;W) for small T > 0. Its convergence properties are similar to those presented 

in [1]. 

TIIEOREM 2: Let (A1) be satisfied and assume that the compatibility condition 
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(A3) T { (u- u*)u I u e V} c W 

holds. 

Then, the system (3.7), (3.8) has a unique global solution u(t), A(t) which satisfies 

1. There exists A00 E SV : lim IIA(t) - Aooll = 0 , 
t-t"" 

2. lim llu(t)- u*ll = 0. 
t-too 

PROOF: Obviously S c Sv holds. 

Initially, we derive an a priori estimate (2.11) for the present situation. This proves 

1 1 also that (3.7), (3.8) have a unique global solution u E C (O,oo;V) , A E C (O,oo;W) . Let 

w: = u - u * and R: = A - A* . 

We :recall that A* is in SV and is positive definite. From (3.7) one obtains 

(fx w(t) + fx w(t) + A*w(t) + R(t)u(t),$) = 0 

for all $ e V , where w(O) = w0 e V and w(O,t) = w(l,t) = 0 . Choose $: = w . Then 

(3.9) ~if llw(t)ii2 + <A*w(t), w(t)> + <R(t)u(t), w(t)> = 0. 

In (3.8) we choose as a test function <ll: =A- PA*, where P is the orthogonal 

projection in L2(0,1) onto W. This implies that 

0 =(if A(t)- w(t)uT, A(t)- PA*) = 

= (Jf A(t)- w(t)uT, R(t)) +(a% A(t)- w(t)uT, A*- PA*). 

Since A*- PA* e WJ., we obtain using (A3) 

(a% R(t), R(t)) = <R u(t), w(t)> 

and hence with (3.9): 
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1 a 2 2 . 
2 dT (Jiw(t)ll + IIR(t)ll ) + <A''w(t), w(t)> = 0, 

This yields the required a estimate 

1) sup <llw(t)ll2 + IIR(t)ll2) + 
t20 

1 
CIJw(t) 11 2 dt :5: C < co • 

It should be noted that the estimate (3.11) holds for each positive definite matrix 

A* E SV and that the constant C depends on A* but not on the sub spaces V and W . 

In 

{ IIA(t) II} 

sequence 

1) that (3.7), (3.8) has a global solution u(t) , 

is bounded. We conclude that {A( t ) } has a cluster point 
n 

t --+ oo • Proceeding in the same way as we did in the n ~ . 

follows that each such cluster point 

Finally we prove that has only one cluster point for t -+ oo 

, and that 

E \V for each 

of Theorem 1 it 

[1]). 

Fix a positive definite matrix A E SV and consider a cluster point of some 

sequence 

From 

and hence 

(3.12) 

},t--+co~ 
n 

it follows: 

£: =lim Cllw(t)ll2 + JIR(t)ll2) 
t-100 

exists and f does not depend on A00 but on A . 

From the monotonicity we obtain: 

\V(t)> :0:: 0 

I 
lim ,

1
•J 

n-+ co t 
n 

t +1 
IIA(t)- All2 dt + r n l!w(t)jl2 dtl = f' 

w t 
n 

Using (3.11) leads to 

(3.13) 

Now taking any two cluster points A~ , A: and using (3.13) yields: 
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(3.14) 

which holds for all positive definite matrices A E SV . 

Define 

which is positive definite for sufficiently small I e [ . It follows from (3.14) that 

and hence 

which proves A 1 = A 2 . 
00 00 

It remains to show that lim u(t) = u* . 
t-Joo 

This follows easily from (3.12) on using (3.13). # 

Now we investigate convergence properties of the Galerkin solutions as the 

dimension of the subspaces tend to infinity. 

Let Vk and Wp(k) be subspaces of H1(0,1) and L2(0,l) respectively with 

dim vk = k' dim wp(k) = p(k) < 00 0 Furthermore we assume that u0 ,u* E vk and 

A 0 e W p(k) for all k :;::: 2 holds. Additionally, let the compatibility condition (A3), 

(u - u*)u T e W p(k) , be satisfied for u e V k and all k ::2: 2 0 

THEOREM 30 Let Vk and Wp(k) be the Galerkin subspaces of H 1(0,1) and L 2(0,1) 

respectively with vk c vk+l and wp(k) c wp(k+l) for all k:;::: 1 having the property that 

(A4) 

-U""_v_k -IIOIIL2 2 

= L (0,1). 
k=l 

Furthermore, let (Al) and (A2) be satisfied for all k;:;;: 1 and let Aoo,k e SV be the limit 
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. .:J 

point of Ak(t) as t tends to infinity where Ak(t) is constructed by the Galerkin process 

with respect to , W p(k) according to Theorem 2. 

Then each subsequence [A k } of {A , } has a weak cluster point in L2(0,1) 
oo~ 1 oo~l"C 

which belongs to S . 

PROOE Let A* e S . Then A* E SV since S c SV for all k E IT~. 
k k 

Then, from (2.10), it follows that 

where C does not depend on k . 

Hence passing to the limit for t -t oo implies 

1\Aoo,k- A*\\::,; C' 

and C is independent on k. Then each subsequence {A k } of {Aoo,k} has a weak 
"'· g 

cluster point A E L2(0,1) . We have to show that A E S . 

Let ¢! e L2(0,1) be any test function. 

For all (jlk E vk we have: -e e 

:::;lll-4u*+A k u*-f*llll$-$,.\1+ I<A-A. )u*,d.»j . 
• ~ ~~ ~ 00~ 

The first term is bounded since {A k } is bounded. The expression II$- <j>k II can be 
00

' f f 

made arbitrarily small a special choice of for C sufficiently large because of 

condition (A4), and the last tenn converges to zero v.rith f -t oo since A k ~ A in 
oo, f 
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Hence A E S. # 

REMARK: It should be noted that equations (2.3), (2.4) can be solved at least numerically 

and thus define a numerical algorithm to identify A* in (2.1). 

4. STABILITY 

All considerations of Section 3 were based on the assumption that u* is known 

exactly. The question of stability will now be studied. 

As before we consider the differential equation 

fxu*+A*u*=f* a.e. in (0,1) 

with u* E H1(0,1), A* E L2(0,1) and positive definite, and f* e L2(0,1). Let the data 

u* corresponding to f* be disturbed by a small variation wE H 1(0,1) corresponding to 

g e L2(0,1), and define 

u: = u* + w , f: = f* + g . 

The disturbed identification problem consists in finding a matrix BE L2(0,1) such that 

(4.1) B u = g - A *w - fx w 

holds. For convenience we define h: = g- A*w- .Jc w and note that he L2(0,1). 

Equation (4.1) has a solution if there is a constant IJ. > 0 such that 

(A4) 

holds for some index j* uniformly in x e (0,1) ; but in general the solution will not be 

unique. 

Therefore we consider the following optimization problem (P) : 



(P) 
1 

l'vliniwize J IIB(x)ll~s dx , 
0 
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2 B E L (0,1) , subject to B u =h. 

2 1 ? 
This problem has a unique solution B* E L (0,1) and J IIB(x)ll:s dx is estimated in 

0 H 

the following theorem. 

IHEOP-EM 4: Let B* E L2(0,1) be a solution of problem (P) and let condition (A4) be 

satisfied. Then 

(4.2) IIB*II s c[llgll + IIA*wll + llfxwiiJ 

holds for some constant C . 

PROOF. For each BE L2(0,1) satisfying B u = h the inequality 

1 2 1 2 
~ IIB*(x)!IEs dx::;; ~ I!B(x)IIEs dx 

holds. 

Define 

and 

b .. (x) = 0 for i = 1,2, ... ,m and j = 1,2, ... ,m, j * j* . 
IJ 

- - 2 Then B = (bi) E L (0,1) and satisfies the constraints. 

We obtain 

n 1 lmm 2 
IIB*II2 = r IIB*(x)IIEs s J(' L L b .. (x) dx = 

Jo o i=lj=l lJ 

,.1 ~ - * 2 "1 l m 2 
= J L b .. · (x) dx = J ~ L h.(x) dx :<.:: 

0 i= 1 IJ 0 uj · ,x; i= 1 1 

whence (4.2) follows. # 
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REMARK. This result shows that the error B* depends on the variations g and w as 

well as on the matrix A* itself. 

Next we show that the Galerkin approximations of our identification procedure 

described in Section 3 are stable against disturbances in the initial data. We recall that u 

and A are solutions of the equations: 

(43) 

(4.4) 

where V and 

respectively. 

( u(t) + .fx u(t) + A(t)u(t)- f*,<p) = 0, $ E v' 

u(O) = u0 

u(O,t) = u*(O) , u(l,t) = u*(l) , 

<A(t) - (u(t) - u*) u(t?,ti>> = 0 , t!l e W , 

A(O) = A0 , 

w are finite dimensional and 2 L (0,1) , 

Obviously u and A depend smoothly on A*, u*, A0 and u0 in each fixed 

finite time interval [O,T] . Furthermore we know from the convergence result in Section 3 

that 

u* = lim u(t) , 
t-) co 

Ay 3 A""= lim A(t), 
t-)oo 

(45) 2 
llwCt) II ctt < oo • 

THEOREM 5. Let (Al) and (A3) be fulfilled and let A oo be positive definite. Then 

A~ -; A oo as E -) 0 provided that u~ -) u0 and A~ -) A 0 as £ -) 0 . 

PROOF: Let AE, u£ be the solution of (4.3), (4.4) with initial data A~, u~ . Then 
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a a 
dt (ue- u) + ox (ue- u) + (Ae - u) + (Ae -A) ue = 0 in V , 

jf (AE - A) = (ue - u) u! + (u - u*)(ue - u) T in W . 

Multiplying these equations by (ue - u) and (Ae - A) , respectively, integrating 

over (0, 1) and adding leads to 

1 a 2 2 
2 dt <ll<ue- u)(t)ll + IIAe(t)- A(t)li ) + 

1 T 
+ J (ue<x,t) - u(x,t)) A(x,t)(ue(x,t)- u(x,t)) dx-

0 

1 T -J (u(x,t) - u*(x)) (AE(x,t)- A(x,t))(ue(x,t) - u(x,t)) dx = 0 . 
0 

Set 

then 

- <(u(t) - u*, (AE(t) - A(t))(ue(t)- u(t))> 

and hence 

m 1 
= L J (u(x,t)- u*(x,t)). (AE(x,t) - A(x,t)) .. (ue(x,t) - u(x,t)). dx ~ 

i, j =1 0 1 11 J 

m 1 
= L J I (u(x,t)- u*(x)).l I (Ae(x,t)- A(x,t)) .. l I (ue(x,t) - u(x,t)).l dx ~ 

i, j =1 0 1 11 J 

m 1 2 1 1 2 2 
s; L cr J I (ue(x,t) - u(x,t)).l dx + 4cr J I (Ae(x,t)- A(x,t)) .. l I (u(x,t) - u*(x)).l dx 
~j=1 0 J 0 lj 1 

holds for all cr > 0 . 

Since A(t) -t A oo and A oo is positive definite, there exists a time 't and a constant 

o such that 
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holds for all u E IRm and t ~ t , a.e. in 

8 
Choose a: = m , then 

for all t ~ 't. 

+ -1{f max [[(u(t)- u*).[[ 2 oo [[AE(t)- A(t)[[2 
1:::; i:O;m 1 L (0,1) 

Hence ~10(t) s C[[u(t) - u* [[ 2 $2(t) is obtained for all t ~ 't and some constant C . 

Gronwall's Lemma gives 

[[u(s) - u*(s) [[ 2 ds) 

and consequently for all t ;;:: '1: and E ~ 0 

exp(C [[u(s) - u*(s) !1 2 ds) . 

The last expression is finite because of 

Hence 

~[[A;- A00
[[
2 =lim 

t-l 00 

0 c. 

But lim $£('1:) .o= 0 , since on a finite interval the solutions of (4.3), (4.4) depend 
t-l 0 

continuously on the data. 

This completes the proof. # 

REMARK: The numerical test computations have not been fully satisfactory so far. In 

[2], our equation (2A) was modified by averaging the error expression on the right hand 

side. Instead of (2.4), they use the equation 
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a t T 
df A(x,t) = J (u- u*)(x,t) u(x,t) dx 

0 

to get very nice numerical results for test problems. 

This modification seems to suppress the oscillation we have observed in our 

calculation. 
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