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Abstract
We formalize various properties of characteristic fungtam p-groups, and
discuss relationships between them. Applications to thenigson subgroup and
certain of its analogues are then given.

1. Introduction

In a now classical paper ([8]), John Thompson introduced, @ prime number
and S a p-group, the subgrougdg(S) (there denoted byl(S)) generated by the abelian
subgroups ofS of maximal rank:

(1.1) IS zdef_<A e ab(s) | m(A) = max m(B)>,

whereah(S) denotes the set of all abelian subgroupsSpfand, forC an abelian group,
m(C) denotes the minimal cardinality of a generating systen€ of
Later on, in [2], Glauberman modified that definition to:

(1.2) J(S) =der. <A e ab(9) | |Al = ng(é)l BI>-

Thompson had formulated p-nilpotence criterion usinglg; this work was later
built upon by Glauberman ([2]) with hiZJ-theorem, and by Thompson himself ([9]).
For the primep = 2, it is often more convenient to work with the subgrodgs),
defined usingelementaryabelian subgroups instead of abelian ones:

a3) 3(S) =as (A< ab(S) | 1A= max iBi)

where ab,(S) denotes the set aflementaryabelian subgroups o8.
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The functorsle, Jg andJ areexcellently abelian generated characteristic p-functors
in the sense of3 below. In§4, we shall establish various reduction results concern-
ing such objects; most notably, in certain cases, the nasmaf W(S) in G (for
S e Syl,(G) and W a characteristicp-functor) can be inferred from the (apparently
much weaker) property ofontrol of p-nilpotenceby W (see Theorem 4.1 (2)). In the
fifth paragraph, we shall specialize our results to the pripre2 and the functorsle
and J (for the definition of the last one of which see [3]), and shehceforth refine,
in a very particular case, Thompson’s factorization theof§9], Theorem 1 (c)), thus
recovering the results of [6].

In the course of the proof some reduction lemmas of indepenohterest, con-
cerning normality ofp-subgroups and control gb-nilpotence, will be established.

Our notations are standard: f@ a (finite) group andp a prime number,0,(G)
will denote the largest normg-subgroup ofG, Oy (G) the largest normal subgroup of
G with order prime top, and Z(G) the center of G. We seto(G) = |G|,
ro(G) =m(G) if G is an elementary abeliap-group for some primep, andre(G) =0
else; for &, y) € G2

y* = x7lyx,
and, forAC G andx € G:
A ={y*|ye Al

As usual, by a slight abuse of languagg, will be said to havep-length one
if G = Op,p,p(G). By a classof groups, we shall mean a family of groups con-
taining every subgroup and every homomorphic image of edcliscelements. .Ab
will denote the class of finite abelian groupSolv the class of finite solvable groups,
and, for p a prime, Ab, the class of finite abeliap-groups. ForH a finite group,
C’(H) will denote the class of finite groups, no section of whichsismorphic toH.
For p a prime andn € N, Cg will denote the class of finite groups, one (i.e. all) of
whose Sylow p-subgroups has (resp. have) nilpotency class at mosfs usual, p
still denoting a prime number, a finite group will be termed p-closedif it has a
normal Sylow p-subgroup (equivalently, a unique Sylogtsubgroup), i.e. ifG/Op(G)
is a p’-group, andG will be termed p-constrained if, settingﬁ: G/Op(G), one has
Cg(Op(é)) c Op(G_). A solvable groupG is p-constrained for all prime.

By ab(G) we shall denote the set of abelian subgroups of a g@ug-inally, X,
will denote the symmetric group of degree

| am deeply grateful to the organizers of the conference it&iGroups 2003”
(Gainesville, March 6th—13th, 2003) for giving me the oppoity to present for the
first time the main results of this paper. A preliminary versiappeared in 2006 as
I.H.E.S. preprint M/06/55; | am deeply indebted to Cécile ikbtieoukh for her help in
that occasion.
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2. A preliminary lemma

The following result was first stated by Hayashi ([5], Lemm8,3.101), though
with an incomplete proof; our own attempt at a proof ([6], Lrag) was not conclusive
either (the sentence@, agissant sans point fixe sur le 2-groupe abélien élémentair
X, est donc cyclique” is ambiguous, as in order to thus esfalihie cyclicity of Q,
we need to know thakach nonidentity element of @cts onX without fixed point,
which is not obvious). Here, we shall take the opportunityckarify the matter once
and for all; during the course of the proof, we shall feel fteeuse some ideas from
[5] and [6].

Lemma 2.1. Let G be a(solvablg {2, 3}-group then the following statements
are equivalent
(1) G is X4-freg and
(2) G=03.236).

REMARK 2.2. According to Burnside’g?qP-theorem, the solvability hypothesis
is redundant.

Proof. The implication (2)= (1) is obvious, as the conditio® = O3, yG) is
inherited by all sections of5, and £, 7 O3 2 o(X4).

Let G denote a minimal counterexample to the statement that(1R); it is clear
that O3(G) = 1, thatG possesses a unique minimal non-trivial normal subgrdyphat
X is a 2-group, and thaly = O, 3(G) C G is the uniqgue maximal normal subgroup of
G. It follows (as O3(G/No) = 1) that G/Ny has order 2; therefore one h&(G) ¢
Ng, whenceG = 03%(G), thus

3 G _ 03(G)X _ G
O(‘)‘ TX

X

whence

G G
2 =055(~>).
% =0ue( )

Take nowQ € Syl;(G); we have just established th@X < G, and the Frattini argu-
ment yields:

G = XNg(Q).
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Let L =qer. Ng(Q); thenL # G and G =L X. Let us assumé& C H C G; then

H=HNG
=HNLX
=L(H N X);
but HN X < (H, X) =G, whenceH N X =1 or HnN X = X. In the second case,

H = LX = G, a contradiction; therefored N X =1, andH =L(HN X)=L: L is a
maximal subgroup ofs. Taking nowH =L in the above argument yields:

LN X=1.

LetC=C_(X); thenC < LX =G, andX Z C (else one would hav& =LX =L,
a contradiction), therefor€ = 1. As X <1 G, X C 0,(G), whenceX <1 Oy(G) and
Y = XNZ(0x(G)) #1; butY <« G, thereforeY = X, i.e. X € Z(0,(G)). It follows that

02(G) < Cs(X)
=Cs(X)N XL
= XCL(X)
= X.

_ ThereforeX = Ox(G). Let us setG = G/X; then 02(5) =0,(G)/X =1, and (as
G is solvable)

(+) C5(03(G)) < O3(G).

Let nowt =tX denote an element of order 2 (ﬁ_: G/X; according to %), t does not
centralize O3(G), therefore somey e O3(G) is not centralized byt, thus
Z:def. [t1 ﬂ ? 11 ZE 03(6)1 and

Let (@) = 3" (m > 1), and v =g 22 ; then w(v) = 3 and o = o1, whence
t,v) ~ i Set now V = X(t, t’); then V/X = (t,v) ~ X3 and
03(V) € Cs(02(V)) € Cs(X) € X, whenceO3(V) =1. If V #G, then (by induction)

V=0324V), whenceV =0, 3(V), te O,(V), (t, t’) S Oy(V), V is a 2-group, and hence
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also is\7, a contradiction. Therefor¥ =G andL ~G/X = V ~ ¥3. It follows that
G=LX=LxX, X (as a minimal normal subgroup &) being a nontrivial irreducible
F,L ~ F,X3-module. But thenX has to be isomorphic to the canonical modH@for
Y3 ~ SLy(F»), and one obtain& ~ X3 x F2 ~ %,, a contradiction. ]

3. Characteristic p-functors: generalities

For p a prime numberG, will denote the category of finitg-groups (morphisms
in Gp being the group isomorphisms in the usual sense).

DerINITION 3.1 ([2], p.1116). By a characteristgfunctor we shall mean a func-
tor K: Gp — G, such that, for eaclP € Gy, K(P) € P andK(P) #1 if P # 1.

Clearly, wheneveK; andK, are characteristip-functors, K; o K, (simply denoted
by K1K3), defined by:

(K1 0 K2)(P) =der. K1(K2(P))

is one. Examples of characterisgiefunctors includelg, J, J, Je, Z, and€2, (n € N),
the last one defined by:

(P) =der. (x € P | X" = 1).
A general class of characteristis-functors is obtainedia:

DEFINITION 3.2. Lety denote a mapping fromib, to N = {0, 1,...}, invariant
under isomorphisms, and such that

AZl = o(A) =1,

then, for P a p-group, let

K, (P) Edef,<A abelian subgroup oP | p(A) = 5 max §0(B)>-

C A; B abelian

It is easily seen thaK, is a characteristicp-functor; such characteristip-functors
will be termedexcellently abelian generatecClearly, J, Jgr and Je are such; in fact,
J =Ko, Jr=Km and J. = K;,.

DErINITION 3.3. The characteristip-functor W is termed excellent if, when-
ever G is a finite group, P € Syl (G), x € G, and W(P) € Q < P*, then
W(P) = W(Q) = W(P*) (= W(P)*). In particular, W(P) is weakly closed inP, and
characteristic in anyp-subgroup ofG that contains it.
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Lemma 3.4. Any excellently abelian generated characteristic p-foncis ex-
cellent

Proof. ForS a p-group, let
ro(S) =ger. Anax o(A).
Let us assume tha,(P) € Q € P*, and let Ag € ab(P) such that
¢(Ao) = max ¢(A) =ry(P).

Obviously,

r,(Q) < rgo(Px)

max A
Acab(P¥) o(A)

max ¢(C*
Ceab(P) (C")

= max ¢(C) (asg is invariant under isomorphisms)
Ceab(P)

=1,(P)
= ¢(Ao)
<r,(Q) (as Ay S K,(P) € Q).

Thereforer,(P) =r,(Q), whence

Ke(Q) = (A€ ab(Q) | p(A) =1,(Q))
=(Aeab(Q) | ¢(A) =r,(P))
= (A ab(P) | ¢(A) =r,(P))
= K,(P)

(becauseA € ab(P) and ¢(A) =r1,(P) yield A € K,(P) € Q).

Incidentally we have shown that,(Q) = r,(P*), whenceK,(Q) € K,(P*) and
Ky(P) = Ky (Q) € K, (P¥) = (Ky(P))*, and equality all along follows. ]

4. A reduction theorem

Let p, W and C denote respectively a prime number, a characterigtfanctor,
and a class of groups; the following properties of the tri& C, p) will be considered
(S denoting a Sylowp-subgroup of the grou®s):
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(P1) For eachG € C, one has
G = No(W(9)0p(G).
(P2) For eachp-solvableG € C, one has
G = No(W(S)) 0y (G).
(P3) For each solvabl& € C, one has
G = No(W(9) Oy (G).

(P4) For each solvabl& < C, all of whose Sylowqg-subgroups for all primes| # p
are abelian, one has

G = Na(W(S)Op(G).

(P5) W controls p-lengthl in C, i.e. for eachp-solvable Ge C, if Ng(W(S)) has
p-length one therG has p-length one.

(P6) W controls p-nilpotence i, i.e. for eachG € C, if Ng(W(S)) is p-nilpotent
then G is p-nilpotent.

Stellmacher’s result ([7]) asserts the existence of a @plicit) characteristic
2-functor W such that (P1) (and hence (P2)—(P6)) hold @f, C'(24), 2), where, ac-
cording to the notations described abo?4X4) denotes the class &4-free groups. In
fact, Stellmacher establishes (P1) faW (D, 2), whereD denotes the class df,-free
groups all of whose non-abelian simple sections are isohiomggther to a Suzuki group
or to PSLy(3™) for some odd integem; but a theorem of Glauberman ([3]), the proof of
which can be much simplified using Stellmacher’s result|dgghat in factD = C'(Z4).

Theorem 4.1. (1) One has(Pl) = (P2) = (P3) = (P4) = (P6), and (P3) =
(P5) = (P6).
(2) If p=2, W(S) € Q1(S) for all S, and either
(i) C < Cy» (the class of2-groups with nilpotency class at mog) and W is
excellent
or
(i) W is excellently abelian generated
then (P6) = (P2), and hence propertiefP2)—(P6)are equivalent

Proof. (1) The implications (P1} (P2) = (P3) = (P4) are trivial.
In order to establish that (P3) (P5), let us assume (P3), |& denote a counter-
example to (P5) with minimal order. We shall use argumentsilai to Bauman’s in



1050 P. LEscoT

[1], pp.388-389. IfOy(G) # 1, let G =ger. G/0Op(G); then one has:

ey - W(SO0p(G)
Ns(W(9) = NG(W)
Op(G)
N Ng(W(S))
~ Ng(W(S) N Oy(G)

(by the Frattini argument)

ThereforeNG—(W(S_)) has p-length one, whence, by induction (ée C andG is
p—solvable),(g has p-length one, hence so h&, a contradiction. Thu(G) =1,
whence (ass is p-solvable)Cg(O,(G)) € Oy(G); in particular, Op(G) # {1}. Let now
G = G/Op(G), and let H = Ng(W(9); if H = G, then W(S) < G, thus
W(S) € 0p(G) =1, W(S) =1, S=1, S= 0,(G), W(S = W(0,(G)) <« G, and
G = Ng(W(9)) has p-length one, a contradiction. Therefoke C G; as Ny (W(9)) C
Ng(W(S)) has p-length one, so habl by induction, hence so had, hence so ha6,
again by induction @ and H both belonging taC). Let K = Oy(G); it appears that
SK <1 G, henceSK <1 G; if SK # G, one finds by induction tha8K has p-length 1;
but SK < G, whenceOy(SK) <« G and Oy (SK) € Oy(G) = 1. ThereforeS <1 SK,
whenceS = O,(SK) < G, and againW(S) < G and G = Ng(W(S)), a contradiction.
ThereforeG = SK, and G = SK.

For q € 7(K), let Q denote a Sylowg-subgroup ofK; the total number of Sylow
g-subgroups ofK is |K : NK—((§)| # 0[p], therefore one of themK_q, is Sinvariant.
If, for eachq € n(K_), one hasSK; # G, then, by induction,SK; has p-length one;
but Oy (SKq) S Ce(Op(SKy)) S Cs(Op(G)) S Op(G), thus Op(SKy) = 1 and
S < SKy, thus Ky € Ng(S), hence

K = (Kq |qen(K)) < N(d

and S <« SK =G, a contradiction. Thus for some pringeone hasG = SK;, and it
appears thaG is solvable (in fact, a solvablép, q}-group for some primey). But
now (P3) yields thailG = Ng(W(S)), whenceG has p-length one, a contradiction (in
this proof, due to the hypotheses @n all the groups that appedrelong toC; such
will be the case in all subsequent similar reasonings).

Assuming (P4), letG denote a counterexample to (P6), with minimal order; then
Thompson's arguments ([8], pp.43—44) yield tf@§(G) =1, Op(G) 71 andG is a
{p, q}-group with (elementary) abelian Sylow subgroups for somm@q # p. But
then (P4) yields thaG = Ng(W(S)), whenceG is p-nilpotent, a contradiction. There-
fore (P4)= (P6) is established.

In order to establish that (P53} (P6), the same argument works; here, we only
need Thompson’s reduction up to an earlier poing, Oy(G) =1 andG p-solvable.

(2) Let us assume all the conditions in (2), and@tlenote a minimum counter-
example to (P6)= (P2); it is clear, as usual, th&@,(G) = 1, and then (by the same
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reasoning as in (1)) thad,(H) = 1 for any subgrougH of G containingS, and there-
fore that M := Ng(W(9)) is the unique maximal subgroup @ containingS. Let
G = G/0y(G); then G is 2-solvable, andV is the unique maximal subgroup @
containingS. By induction, one has

G = Ng(W(S))02(G)
= Ng(W(S))(SQ(G));

the two factors on the right-hand side of this equality cint®, whence at least one
is not contained inM, i.e. eitherNg(W(S)) =G or G = SQy(G). The first possibility
leads to a contradiction as in the proof that (R3)(P5); thereforeG = SO, (G), i.e.G
has 2-length one. o _

As S is contained into a unique maximal subgroup ®f(M), O2(G) possesses
a unique maximalS-invariant proper subgroupOy(G) N M. It follows, firstly, that
O2(G) is a g-group for some primeg # 2: O2(G) = Q (Q € Syl4(G)), and there-
fore thatG = SQ s a solvable{2, g}-group, and secondly tha® acts irreducibly on
Q/®(Q); in particular, Z(S) is cyclic.

Let N =ger (W(S)®) <1 G; then Ox(N) =1, andSN N € Syl,(N). If N < G, the
minimality of G yields:

N = Nn(W(SN N))O2(N)
= Nn(W(SN N)).
But W(S) € SN N € S, whenceW(S) = W(SN N), asW is excellent (in case (i) by
assumption, and in case (ii) by Lemma 3.4). The Frattini mugnt now yields that:
G =NNg(SNN)
N Ng(W(SN N))
< Ng(W(SN N))
g Gl

N

N

whence G = Ng(W(S N N)) = Ng(W(S)) is 2-nilpotent, a contradiction. Therefore
N =G, i.e.G = (W(S)®); thence

and S= SNW(S)Q = W(S)(SN Q) = W(S), i.e. S= W(S)0x(G).
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In case (i), let W = K,; then W(S) ¢ O,(G) (else one would have
S = W(902(G) = Ox(G) <« G), whence there is an abelian subgrodpof S with
@(A) =r1,(P) and A € Ox(G). Let N = (A®) < G; if N #G, then, by induction, it
follows as above thatW(SN N) <« N whenceW(SN N) € O,(N) € Ox(G). But

9(A) =1,(SNN) =1,(S) = ¢(A)

whenceg(A) =1,(SN N) and A € K,(SN N) = W(SN N) € Ox(N) € 0x(G), a
contradiction. Thereforé& = (A®), whence
G = (AC)
= (A%
=(ASQ (asQ < G);
therefore
S=SnG
= SN (A5Q
= (A%(SN Q)
= (AS).
By a well-known property ofp-groups, it follows thatS = A; in particular, S is
abelian.
In case (i),C € Ca,, i.e.cl(S) < 2, whence
[S S < Z(9
C Cs(02(G))
C 02(G)
(by the solvability of G and the Hall-Higman lemma), whence, agafﬁ,is abelian.
Therefore, S is abelian in both cases, (i) and (ii). Now, from the fact tHLS) is
cyclic, follows thatS itself is. But S=W(S) € Q1(S) < Q1(S) (by the hypothesis),
thereforeS has order 2. _ _
Now, asS acts irreducibly on théq-module M = Q/®(Q), the nontrivial element

t of S either centralizes each_ elerrlent df, or inverts each element_dﬂ; now, irrg-
ducibility forces|M| =q, i.e. Q/®(Q) = M is cyclic; but then so ar€®, and Q >~ Q.
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Let now H = 8_49(6); thenH < G (in fact, |G: H| =q), and S< H. Therefore
H is contained inM = Ng(W(S)), whence
[S, 2(Q)] = [W(S), ®(Q)]
< [W(S), HIN®(Q)

[W(S), M] N &(Q)
W(S N &(Q)

Iﬂ N

1
=

i.e. S centralizesd(Q). If |Q| > g2, then1(Q) € ®(Q), whenceS centralizes2,(Q),
and thereforeS centralizesQ, a contradiction. Thu$Q| =g, andG = SQ is dihedral
of order 2y; it follows that Sis a maximal subgroup dB, i.e.Sis a maximal subgroup
of G. ThereforeS= M = Ng(W(S)), and Ng(W(9)) is 2-nilpotent; but now (P6) yields
that G itself is 2-nilpotent, a contradiction. ]

5 OfJeandJ

By a well-known variation ([4], Proposition 4.162, p.253) 8hompson’s factoriza-
tion ([9], Theorem 1 (c)), any solvablEs-free finite groupG with Sylow 2-subgroup
S satisfies:

(6.1) G = Ng(J(9))Cs(2(9)02(G).

In [3] Glauberman introduced a new characteristic funclohaving the property
that, for each 2-groufs, one has:

(5.2) k(ci9cs

For this functor he was able to prove ([3], Theorem 7.4, pth8&), for each 2-constrained
34-free finite groupG and eaclt € Syl,(G), one had:

(5.3) G = Na(J(9)Cs(Z(9)02(G).
By (5.2) one findsJe(S) = Je(J(S)) charJ(S) whence
Ne(J(S)) € Ng(J(9);

(5.3) is therefore stronger than (5.1).
In the particular case the® has nilpotence class at most two, we can state

Theorem 5.1. Let G be a&-constrained X4-free finite group with Sylo®-subgroup
S of nilpotence class at most twben one has

G = Ne(J(9)02(G).
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By the above remark follows
Corollary 5.2. In the situation of the theorem
G = Ng(Je(5)O2(G).
Thus one can assert

Corollary 5.3. Let G be a finite solvablé,-free group with Sylow2-subgroup
S of class at most twahen

G = Ng(Je(95) O2(G).
In other words (Je, C'(24) N Solv, 2) satisfies(P1), and hence(P2)—(P6).
This Corollary was first proved by the author in [6].

Proof of Theorem 5.1. LeG be a counterexample of minimal order.
(1) Ox(G)=1 |Ifnot, G=G/0Ox(G) is of smaller order tharG and satisfies

the hypothesis, whence
G = N5(J(9)02(G) = Ns(J(9).

But the canonical mapS — S(G)/02(G) = S is an isomorphism, whence
J(S) = J(§02(G)/02(G) and

Ne(J(902(G)) _ Ne(3(9)02(G)
02(G) 02(G)

N(J(9) =

by the Frattini argument. Thus we gét= Ng(J(S))O2(G), a contradiction.
(2) Cgs(02(G)) € 0x(G). Obvious, becaus& is 2-constrained an®y(G) = 1.
(3) M =Ng(J(9) is the unique maximal subgroup ofG that contains S. By
hypothesisM C G. Let H be a proper subgroup ofs containing S; one has
0O,(G) € SC H, whence (as in the proof of Theorem 4.1 (1))

02(G) € Oz(H)

and:

Ch(O2(H)) = H N Cs(O2(H))

H N Cs(02(G))

H N Ox(G) (by (2)
O2(H).

N 1N N
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ThereforeO,(H) =1 andH is 2-constrained with Sylow 2-subgrou the minimality
of G now yields:

H = N1 (3(8)0z(H) = Nu(3(9)
< No(3(9) = M.

Thus M is a proper subgroup dB that contains any proper subgroup @fcontaining
S, the result follows.
(4) Z(9 € Z(G). By (5.3) one has

G = No(J(9)Cas(Z(5)02(G) = MCa(Z(9));

thus SC Cg(Z(9) € M, whenceCg(Z(9) =G by (3).
(5) G centralizes O,(G)/Z(G). Let C =Cg(02(G)/Z(G)) <« G; then

[S OAG)] €[S, 9§ < Z(9 < Z(G)
(by (4) and the hypothesis 08). It follows that S C C, whence
G =CNg(9),

again by the Frattini argument. € were different fromG, one would haveC € M
(because of (3)) and

G =CNg(S) € MNg(S) € M.M = M,

a contradiction. Thu€ = G.
(6) The End. By (5) one has G, 0x(G)] € Z(G), i.e.

[G, 02(G), G] =[02(G), G, G] = 1.
Philip Hall's three subgroups lemma now yields
[G, G, 0(G)] =1,
that is:
G’ € Cs(02(G)),
whence G’ € Oy(G) by (2). ThereforeH = G/0O(G) is an abelian group with

O,(H) =1, i.e. an abelian'Zgroup; it appears thad = 0,(G) « G, whencej(S) <G,
thus G = M and again a contradiction ensues. This concludes the proof. ]
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REMARK 5.4. It seems difficult to generalize directly Corollary 5.2nd even

Corollary 5.3, as the counter-examples to #ietheorem forp = 2 given by Glauberman
in the last paragraph of [2] show. Such a counterexan@lis solvable, with Sylow
2-subgroupsS of nilpotence class 3 (this is not difficult to see), adgossesses a unique
abelian subgroup of maximal ordek, that is elementary abelian. Therefodg(S),
Jr(9), J(S) andZJ(S) all coincide with A, and neither is normal iG.

(1]
(2]

(3]
(4]
[5]
(6]
[7]

El
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