ON GALOIS EXTENSION WITH INVOLUTION OF RINGS

Dedicated to Professor Kiiti Morita on his 60th birthday

Teruo KANZAKI

(Received December 3, 1974)

1. Introduction

For a Galois extension field L of a field K with Galois gruop G, A. Rosenberg and R. Ware [9] proved that if [L:K] is odd then the Witt ring $\mathrm{W}(K)$ is isomorphic to $\mathrm{W}(L)^{G}$. The proof was simplified by M. Knebusch and W. Scharlau [5], and the theorem was generalized by M. knebusch, A. Rosenberg and R. Ware [6] to the case of commutative semilocal rings. In this note, concerning with sesqui-linear forms over a non commutative ring defined in [2], we want to extend the theorem to a case of non commutative rings. In §2 and §3, we difine a Galois extension with involution of a ring and an odd type Galois extension with involution. From the theorem of Scharlau (cf. [11], [7]), we know that for a Galois extension with involution $L \supset K$ of fields, $L \supset K$ is an odd type Galois extension with involution if and olnly if $[L: K]$ is odd. If $A \supset B$ is a G Galois extension with involution of rings, then we can prove the isomorphism $i^{*} \circ t_{\sigma *}(q)=\sum_{\sigma \in G} \perp \sigma^{*}(q)$ for any sesqui-linear left A-module $q=(M, q)$. This isomorphism is a generalization of the case of fields [4], semilocal rings [6]. If A is an algebra over a commutative ring R, and if $A \supset R$ is an odd type G-Galois extension with involution, then it is obtained that the inclusion map $i: R \rightarrow A$ induces a group monomorphism $i^{*}: \mathrm{W}(R) \rightarrow \mathrm{W}(A)$ of Witt groups of hermitian left modules, and its image is $T_{G^{*}}(\mathrm{~W}(A))$. Throughout this paper, we assume that every ring has identity element and module is unitary. Furthermore, ring homomorphisms are assumed to correspond identity element to identity element.

2. Sesqui-linear forms

Definition 1. Let A be a ring with involution $A \rightarrow A ; a \leadsto \leadsto a$, i.e. $\overline{a+b}=$ $\bar{a}+\bar{b}, \bar{a} \bar{b}=\bar{b} a$ and $\overline{\bar{a}}=a$ for every a, b in A. For a subring B and a finite group G of ring-automorphisms of $A, A \supset B$ is called a G-Galois extension with involution if every element in G is compatible with the involution, i.e. $\overline{\sigma(a)}=\sigma(a)$ for all $a \in A, \sigma \in G$, and if $A \supset B$ a G-Galois extension, i.e. $A^{G}=B$ and there exist
elements $x_{1}, x_{2}, \cdots x_{n}$ and $y_{1}, y_{2}, \cdots y_{n}$ in A, called a G-Galois system, such that $\sum x_{i} y_{i}=1$ and $\sum x_{i} \sigma\left(y_{i}\right)=0$ for $\sigma \neq I$ in G.

Definition 2. (cf. [2]) Let A be a ring with involution, and M a left A module. A form $q: M \times M \rightarrow A$ is called a sesqui-linear form if it satisfies

$$
\begin{aligned}
& q\left(a\left(m+m^{\prime}\right), n\right)=a q(m, n)+a q\left(m^{\prime}, n\right) \quad \text { and } \\
& q\left(m, b\left(n+n^{\prime}\right)\right)=q(m, n) \bar{b}+q\left(m, n^{\prime}\right) \bar{b}
\end{aligned}
$$

for every $a, b \in A$ and $m, m^{\prime}, n, n^{\prime} \in M$.
Definition 3. Let $A \supset B$ be a G-Galois extension with involution, C the center of A and C_{0} the fixed subring of C by the involution, i.e. $C_{0}=\{c \in C ; c=\bar{c}\}$. For any $u \in C_{0}$ let us denote by $t_{G}^{u}: A \rightarrow B$ a B-linear map defined by $t_{G}^{u}(a)=$ $\sum_{\sigma \in G} \sigma(u a)$ for $a \in A$, particularly, when $u=1$, it is denoted by t_{G}. For a sesquilinear left A-module $q=(M, q)$, a sesqui-linear left B-module $t_{G}^{u} *(q)=\left({ }_{B} M, t_{G}^{u} q\right)$ and a sesqui-linear left A-module $\sigma^{*}(q)=\left({ }_{\sigma} M, \sigma q\right)$, for $\sigma \in G$, are defined as follows;

$$
\begin{aligned}
& t_{G}^{u} q: M \times M \rightarrow B ;\left(m, m^{\prime}\right) \rightsquigarrow \rightarrow t_{G}^{u}\left(q\left(m, m^{\prime}\right)\right), \quad \text { and } \\
& \sigma q:{ }_{\sigma} M \times{ }_{\sigma} M \rightarrow A ;\left(m, m^{\prime}\right) \rightsquigarrow \rightarrow \sigma\left(q\left(m, m^{\prime}\right)\right),
\end{aligned}
$$

where ${ }_{\sigma} M$ is a left A-module defined by a new operation $* ; a * m=\sigma^{-1}(a) m$, for $a \in A, m \in M$. For a sesqui-linear left B-module $h=(N, h)$ and the inclusion map $i: B \rightarrow A$, a sesqui-linear left A-module $i^{*}(h)=\left(A \otimes_{B} N\right.$, ih) is defined by $i h$: $\left(A \otimes{ }_{B} N\right) \times\left(A \otimes_{B} N\right) \rightarrow A ; i h\left(a \otimes n, a^{\prime} \otimes n^{\prime}\right)=a h\left(n, n^{\prime}\right) a^{\prime}$ for $a \otimes n, a^{\prime} \otimes n^{\prime} \in A \otimes \otimes_{B} N$.

Lemma 1. Let $A \supset B$ be a G-Galois extension with invoultion. For any left B-module N there is an A-isomorphism $\Phi: A \otimes_{B} \operatorname{Hom}_{B}(N, B) \rightarrow \operatorname{Hom}_{A}\left(A \otimes_{B} N, A\right)$ defined by $\Phi(a \otimes f)\left(a^{\prime} \otimes n\right)=a^{\prime} f(n) \bar{a}$ for $a \otimes f \in A \otimes_{B} \operatorname{Hom}_{B}(N, B)$ and $a^{\prime} \otimes n \in A$ $\otimes_{B} N$, where the operations by A and B are as follows: $(b f)(x)=f(x) \bar{b}$, for $f \in \operatorname{Hom}_{B}(N, B), b \in B, x \in N$, and $(a g)(y)=g(y) a$ for $g \in \operatorname{Hom}_{A}(A \otimes N, A), a \in A$, $y \in A \otimes_{B} N$.

Proof. If $\sum a_{i} \otimes f_{i}$ is in Ker Φ, then $\sum f_{i}(n) \bar{a}_{i}=\Phi\left(\sum a_{i} \otimes f_{i}\right)(1 \otimes n)=0$ for all n in N. Let $x_{1}, x_{2}, \cdots x_{n}$ and $y_{1}, y_{2}, \cdots y_{n}$ be a G-Galois system of A. Then we have $\sum a_{i} \otimes f_{i}=\sum_{i, j} x_{j} t_{G}\left(y_{j} a_{i}\right) \otimes f_{i}=\sum_{i, j} x_{j} \otimes t_{G}\left(y_{j} a_{i}\right) f_{i}=0$, since $\sum_{i} t_{G}\left(y_{j} a_{i}\right) f_{i}$ $=0 \quad$ is obtained by $\left.\quad\left(\sum_{i} t_{G}\left(y_{j} a_{i}\right) f_{i}\right)(n)=\sum_{i} f_{i}(n) \overline{t_{G}\left(y_{j} a_{i}\right.}\right)=\sum_{i} t_{G}\left(f_{i}(n) \overline{y_{j} a_{i}}\right)=$ $t_{G}\left(\sum_{i} f_{i}(n) \bar{a}_{i} \bar{y}_{j}\right)=0$ for all $n \in N$. Hence Ker $\Phi=0$. If g is any element in $\operatorname{Hom}_{A}\left(A \otimes_{B} N, A\right)$, we put $f_{i}: N \rightarrow B ; f_{i}(n)=t_{G}\left(g(1 \otimes n) x_{i}\right)$ for every $n \in N, i=$ $1,2, \cdots n$. Then f_{i} is in $\operatorname{Hom}_{B}(N, B)$ and so $\sum \bar{y}_{i} \otimes f_{i}$ is an element in $A \otimes_{B}$ $\operatorname{Hom}_{B}(N, B)$ such that $\Phi\left(\sum \bar{y}_{i} \otimes f_{i}\right)=g$, because $\Phi\left(\sum \bar{y}_{i} \otimes f_{i}\right)(a \otimes n)=\sum a f_{i}(n) y_{i}$ $=\sum a t_{G}\left(g(1 \otimes n) x_{i}\right) y_{i}=a g(1 \otimes n)=g(a \otimes n)$ for all $a \otimes n \in A \otimes_{B} N$.

Lemma 2. Let $A \supset B$ be a G-Galois extension with involution. If M is a left A-module, then for any element u in the unit group $U\left(C_{0}\right)$ of the fixed subring C_{0} of the center of A by the involution, a map

$$
\theta: \operatorname{Hom}_{A}(M, A) \rightarrow \operatorname{Hom}_{B}(M, B) ; f \mathcal{W} \rightarrow t_{\theta}^{u} \circ f
$$

is a B-isomorphism as left B-modules defined by $(b f)(m)=f(m) \bar{b}$ for $b \in B, m \in M$ and $f \in \operatorname{Hom}_{A}(M, A)$ or $\operatorname{Hom}_{B}(M, B)$.

Proof. If f is in $\operatorname{Hom}_{A}(M, A)$ and $t_{\sigma}^{u} \circ f=0$, then for any $m \in M$ we have $u f(m)=\sum x_{i} t_{G}\left(y_{i} u f(m)\right)=\sum x_{i}\left(t_{G}^{u} \circ f\left(y_{i} m\right)\right)=0$, hence $f=0$. If g is in $\operatorname{Hom}_{B}(M, B)$, an A-homomorphism $f: M \rightarrow A$ defined by $f(m)=\sum u^{-1} x_{i} g\left(y_{i} m\right)$ for $m \in M$, satisfies $t_{G}^{u} \circ f(m)=\sum t_{G}\left(x_{i} g\left(y_{i} m\right)\right)=\sum t_{G}\left(x_{i}\right) g\left(y_{i} m\right)=g\left(\sum t_{G}\left(x_{i}\right) y_{i} m\right)=g(m)$ for all $m \in$ M, therefore $t_{G}^{u} \circ f=g$ and so θ is a B-isomorphism.

Proposition 1. Let $A \supset B$ be a G-Galois extension with involution, and C_{0} the subring of the center of A whose element is fixed by the involution.

1) If a sesqui-linear left B-module $h=(N, h)$ is non degenerate i.e. $\phi: N \rightarrow$ $\operatorname{Hom}_{B}(N, B) ; n \rightsquigarrow \rightarrow h(-, n)$ and $\psi: N \rightarrow \operatorname{Hom}_{B}(N, B) ; n \rightsquigarrow \longrightarrow \overline{h(n,-)}$ are $B-$ isomorphisms, then $i^{*}(h)=\left(A \otimes_{B} N\right.$, ih) is also non degenerate, where $i: B \rightarrow A$ is the inclusion map.
2) If a sesqui-linear left A-module $q=(M, q)$ is non degenerate, then $t_{\sigma *}^{u}(q)=$ $\left({ }_{B} M, t_{G}^{u} q\right)$ and $\sigma^{*}(q)=\left({ }_{\sigma} M, \sigma q\right)$ are also non degenerate for every $u \in U\left(C_{0}\right)$ and $\sigma \in G$.

Proof. 1) Let $h=(N, h)$ be a non degenerate sesqui-linear left B-module. Since $\phi: N \rightarrow \operatorname{Hom}_{B}(N, B) ; n \rightsquigarrow \rightarrow h(-, n)$ and $\Phi: A \otimes_{B} \operatorname{Hom}_{B}(N, B) \rightarrow \operatorname{Hom}_{A}$ $\left(A \otimes_{B} N, A\right)$ are B-isomorphisms, the composition $\Phi \circ(I \otimes \phi) ; A \otimes_{B} N \rightarrow \mathrm{Hom}_{A}$ $\left(A \otimes{ }_{B} N, A\right)$ is an A-isomorphism. And, it is obtained that $\Phi \circ(I \otimes \phi)(a \otimes n)=$ $i h(-, a \otimes n)$ for $a \otimes n \in A \otimes{ }_{B} N$, because $\Phi \circ(I \otimes \phi)(a \otimes n)\left(a^{\prime} \otimes n^{\prime}\right)=\Phi(a \otimes h(-, n))$ $\left(a^{\prime} \otimes n^{\prime}\right)=a^{\prime} h\left(n^{\prime}, n\right) \bar{a}=i h\left(a^{\prime} \otimes n^{\prime}, a \otimes n\right)$ for every $a^{\prime} \otimes n^{\prime} \in A \otimes_{B} N$. For $\psi: N \rightarrow$ $\operatorname{Hom}_{B}(N, B) ; n \rightsquigarrow \longrightarrow \overline{h(n,-)}$, similarly, we obtain the isomorphism $\Phi \circ(I \otimes \psi)$; $A \otimes_{B} N \rightarrow \operatorname{Hom}_{A}\left(A \otimes_{B} N, A\right) ; a \otimes n \rightsquigarrow \longrightarrow \overline{\operatorname{ih}(a \otimes n,-)} . \quad$ Therefore, $\quad i^{*}(h)=\left(A \otimes_{B}\right.$ $N, i h)$ is non degenerate. 2) Let $q=(M, q)$ be a non degenerate sesqui-linear left A-module. From the following diagram and Lemma 2, we can conclude that $t_{G *}^{u}(q)$ is non degenerate;

where $\phi^{\prime},\left(\psi^{\prime}\right),: M \rightarrow \operatorname{Hom}_{B}(M, B) ; m \rightsquigarrow \rightarrow t_{G}^{u} q(-, m),\left(m \leadsto \leadsto \overline{\left.t_{\theta}^{u} q(m,-)\right)} . \quad \sigma^{*}(q)\right.$ is obviously non degenerate.

Theorem 1. Let $A \supset B$ be a G-Galois extension with involution. For any sesqui-linear left A-module $q=(M, q)$, we have an isometry

$$
i^{*} \circ t_{\sigma *}(q) \cong \sum_{\sigma \in G} \perp \sigma^{*}(q) .
$$

Proof. Let $x_{1}, x_{2}, \cdots x_{n}$ and $y_{1}, y_{2}, \cdots y_{n}$ be a G-Galiois system of A. For each $\sigma \in G$, we can define an A-homomorphism $e_{\sigma}: A \otimes_{B} M \rightarrow A \otimes_{B} M ; a \otimes m M \longrightarrow$ $\sum a \sigma\left(x_{i}\right) \otimes y_{i} m$. Because, for any $c \in A$, we have $e_{\sigma}(a c \otimes m)=\sum_{i} a c \sigma\left(x_{i}\right) \otimes y_{i} m=$ $\sum_{i, j} a \sigma\left(x_{j} t_{G}\left(y_{j} \sigma^{-1}(c) x_{i}\right)\right) \otimes y_{i} m=\sum_{i, j} a \sigma\left(x_{j}\right) \otimes t_{G}\left(y \sigma^{-1}(c) x_{i}\right) y_{i} m=\sum_{j} a \sigma\left(x_{j}\right) \otimes y_{j}$ $\sigma^{-1}(c) m=e_{\sigma}\left(a \otimes \sigma^{-1}(c) m\right)$, particularly, if c is in B, we obtain $e_{\sigma}(a c \otimes m)=e_{\sigma}(a \otimes c m)$, therefore e_{σ} is well defined. Since $e_{\sigma}(a \otimes m)=e_{\sigma}\left(1 \otimes \sigma^{-1}(a) m\right)$ for $a \otimes m \in A \otimes_{B} M$, the image of e_{σ} is equal to $e_{\sigma}(1 \otimes M)$. Now, we check identities $e_{\sigma} \circ e_{\tau}=$ $\left\{\begin{array}{l}e_{\sigma}, \text { for } \sigma=\tau \\ 0, \text { for } \sigma \neq \tau\end{array},(\sigma, \tau \in G)\right.$, and $\sum_{\sigma \in G} e_{\sigma}=I$. For any $a \otimes m \in A \otimes_{B} M$, we have $e_{\sigma} \circ e_{\tau}(a \otimes m)=\sum_{i} e_{\sigma}\left(a \tau\left(x_{i}\right) \otimes y_{i} m\right)=\sum_{i} e_{\sigma}\left(a \otimes \sigma^{-1} \tau\left(x_{i}\right) y_{i} m\right)=\left\{\begin{array}{ll}e_{\sigma}(a \otimes m), & \text { for } \sigma=\tau \\ 0 & \text { for } \sigma \neq \tau\end{array}\right.$, and $\quad \sum_{\sigma \in G} e_{\sigma}(a \otimes m)=\sum_{i, \sigma \in G} a \sigma\left(x_{i}\right) \otimes y_{i} m=\sum_{i} a t_{G}\left(x_{i}\right) \otimes y_{i} m=a \otimes \sum t_{G}\left(x_{i}\right) y_{i} m=$ $a \otimes m$. Accordingly, $A \otimes_{B} M=\sum_{\sigma \in G} \oplus e_{\sigma}(1 \otimes M)$ is obtained. Further, $e_{\sigma}(1 \otimes M)$ and ${ }_{\sigma} M$ are A-isomorphic by an A-homomorphism $\zeta_{\sigma}:{ }_{\sigma} M \rightarrow e_{\sigma}(1 \otimes M) ; m M \rightarrow$ $e_{\sigma}(1 \otimes m)$. Because, $\zeta_{\sigma}(a * m)=\zeta_{\sigma}\left(\sigma^{-1}(a) m\right)=e_{\sigma}\left(1 \otimes \sigma^{-1}(a) m\right)=e_{\sigma}(a \otimes m)=a e_{\sigma}(1 \otimes m)$ $=a \zeta_{\sigma}(m)$, and if $\zeta_{\sigma}(m)=e_{\sigma}(1 \otimes m)=\sum_{i} \sigma\left(x_{i}\right) \otimes y_{i} m=0$ then by a canonical homomrphism $A \otimes_{B} M \rightarrow M ; a \otimes m \mathcal{M} \rightarrow \sigma^{-1}(a) m, \zeta_{\sigma}(m)=0$ is sent to $m=\sum_{i} x_{i} y_{i} m=$ 0. Thus, $A \otimes_{B} M=\sum_{\sigma \in G} \oplus e_{\sigma}(1 \otimes M) \cong \sum_{\sigma \in G} \oplus_{\sigma} M$ as left A-modules. Now, we shall show that the subspaces $\left\{e_{\sigma}(1 \otimes M) ; \sigma \in G\right\}$ of $i^{*} t_{\sigma *}(q)=\left(A \otimes_{B} M, i t_{\theta} q\right)$ are orthogonal each other and $e_{\sigma}\left(1 \otimes_{B} M\right)$ is isometric to $\sigma^{*}(q)=\left({ }_{\sigma} M, \sigma q\right)$ for each $\sigma \in G$. For $m, n \in M$ and $\sigma, \tau \in G$, we have $i t_{G} q\left(e_{\sigma}(1 \otimes m), e_{\tau}(1 \otimes n)\right)=i t_{\theta} q$ $\left(\sum_{i} \sigma\left(x_{i}\right) \otimes y_{i} m, \sum_{j} \tau\left(x_{j}\right) \otimes y_{j} n\right)=\sum_{i, j} \sigma\left(x_{i}\right) t_{G} q\left(y_{i} m, y_{j} n\right) \tau\left(x_{j}\right)=\sum_{i, j, \gamma \in G} \sigma\left(x_{i}\right) \gamma$ $\left(q\left(y_{i} m, y_{j} m\right) \overline{\tau\left(x_{j}\right)}=\sum_{\gamma \in G} \sigma\left(\sum_{i} x_{i} \sigma^{-1} \gamma\left(y_{i}\right)\right) \gamma(q(m, n)) \overline{\tau\left(\sum_{j} x_{j} \tau^{-1} \gamma\left(y_{j}\right)\right.}\right)=\left\{\begin{array}{l}\sigma q(m, n) \\ 0\end{array}\right.$ for $\sigma=\tau$. Accordingly, we obtain $\left(A \oplus_{B} M, i t_{\sigma} q\right)=\sum_{\sigma \in G \perp} \perp e_{\sigma}(1 \otimes M)$ and an
for $\sigma \neq \tau$ isometry $\zeta_{\sigma}:\left({ }_{\sigma} M, \sigma q\right) \rightarrow\left(e_{\sigma}(1 \otimes M), i t_{\sigma} q\right) ; m \rightsquigarrow \rightarrow e_{\sigma}(1 \otimes m)$ for each $\sigma \in G$, hence $i^{*}{ }^{\circ} t_{G *}(q) \cong \sum_{\sigma \in G} \perp \sigma^{*}(q)$.

3. Witt groups

Let A be a ring with involution.
Definition 4. (cf. [2]) A sesqui-linear left A-module $q=(M, q)$ is called hermitian, if $q(m, n)=\overline{q(n, m)}$ is satisfied for every $m, n \in M$. And, a hermitian left A-module (M, q) is called metabolic, if there exists a hermitian left A-module $\left(V \oplus V^{*}, h_{g}\right)$ defined by $h_{g}\left(v+f, v^{\prime}+f^{\prime}\right)=\overline{f\left(v^{\prime}\right)}+f^{\prime}(v)+g\left(v, v^{\prime}\right), v, v^{\prime} \in V, f, f^{\prime} \in V^{*}$ $=\operatorname{Hom}_{A}(V, A)$ for some hermitian left A-module (V, g), and if (M, q) is isometric to $\left(V \oplus V^{*}, h_{g}\right)$. We shall call that a hermitian left A-module (M, q) is
reflexive, (finitely generated projecctive), if M is reflexive i.e. the map $\xi: M \rightarrow$ $\operatorname{Hom}_{A}\left(\operatorname{Hom}_{A}(M, A), A\right) ; \xi(m)(f)=\overline{f(m)}, f \in \operatorname{Hom}_{A}(M, A), m \in M$, is an A-isomorphism, (M is finitely generated projecteve).

Let $\mathfrak{S}_{r}(A)$, $\left(\mathfrak{S}_{p}(A)\right)$, denote the category of non degenerate and reflexive, (finitely generated projective), hermitian left A-modules and their isometries, and $\mathfrak{M}_{r}(A)$, $\left.\mathfrak{M}_{p}(A)\right)$, the subcategory of $\mathfrak{E}_{r}(A)$, $\left(\mathfrak{E}_{p}(A)\right)$, consiting of metabolic left A-modules. ${ }^{1)}$ Since $\mathfrak{S}_{r}(A)$ and $\mathfrak{M}_{r}(A),\left(\mathfrak{E}_{p}(A)\right.$ and $\left.\mathfrak{M}_{p}(A)\right)$, have the product \perp, we can construct the Witt-Grothendieck group $G W_{r}(A),\left(G W_{p}(A)\right)$, and the Witt group $W_{r}(A),\left(W_{p}(A)\right)$. We can check that from the inclusion map $i: B \rightarrow A$, the trace map $t_{\theta}^{u}: A \rightarrow B$ and σ in G,

$$
\begin{aligned}
& i^{*}: W_{r}(B) \rightarrow W_{r}(A),\left(W_{p}(B) \rightarrow W_{p}(A)\right), \\
& t_{\theta *}^{u}: W_{r}(A) \rightarrow W_{r}(B),\left(W_{p}(A) \rightarrow W_{p}(B)\right), \quad \text { and } \\
& \sigma^{*}: W_{r}(A) \rightarrow W_{r}(A),\left(W_{p}(A) \rightarrow W_{p}(A)\right),
\end{aligned}
$$

are induced, where $u \in U\left(C_{0}\right)$ and $A \supset B$ is a G-Galois extension with involution.
Lemma 3. Let $A \supset B$ be a G-Galois extension with involution. If M is a reflexive left B-module, then $A \otimes_{B} M$ is also a reflexive A-module.

Proof. If $\xi: M \rightarrow \operatorname{Hom}_{B}\left(\operatorname{Hom}_{B}(M, B), B\right) ; m \leadsto \backsim(f \leadsto \neg \overline{f(m)})$ is a B-isomorphism, $I \otimes \xi: A \otimes_{B} M \rightarrow A \otimes_{B} \operatorname{Hom}_{B}\left(\operatorname{Hom}_{B}(M, B), B\right)$ is an A-isomorphism. Since $\Phi: A \otimes_{B} \operatorname{Hom}_{B}(M, B) \rightarrow \operatorname{Hom}_{A}\left(A \otimes_{B} M, A\right) ; a \otimes f M \rightarrow\left(a^{\prime} \otimes m \leadsto \rightarrow a^{\prime} f(m) a\right)$ is an A-isomorphism, the composition $\Phi^{\prime}=\operatorname{Hom}\left(\Phi^{-1}, I\right) \circ \Phi: A \otimes_{B} \operatorname{Hom}_{B}\left(\operatorname{Hom}_{B}\right.$ $(M, B), B) \rightarrow \operatorname{Hom}_{A}\left(\operatorname{Hom}_{A}(M, A), A\right)$ is also an A-isomorphism, and so is $\Phi^{\prime} \circ(I \otimes \xi): A \otimes_{B} M \rightarrow \operatorname{Hom}_{A}\left(\operatorname{Hom}_{A}\left(A \otimes_{B} M, A\right), A\right)$. We can check $\Phi^{\prime} \circ(I \otimes \xi)$ $(a \otimes m)(f)=\overline{f(a \otimes m)}$ for $f \in \operatorname{Hom}_{A}\left(A \otimes_{B} M, A\right) \quad$ and $\quad a \otimes m \in A \otimes_{B} M$; For $f \in$ $\operatorname{Hom}_{A}\left(A \otimes_{B} M, A\right)$, we put $\Phi^{-1}(f)=\sum b_{i} \otimes g_{i}$ in $A \otimes_{B} \operatorname{Hom}_{B}(M, B)$, then we have $\Phi^{\prime} \circ(I \otimes \xi)(a \otimes m)(f)=\Phi(a \otimes \xi(m))(f)=\operatorname{Hom}\left(\Phi^{-1}, I\right) \circ(a \otimes \xi(m))(f)=$ $\Phi(a \otimes \xi(m))\left(\Phi^{-1}(f)\right)=\Phi(a \otimes \xi(m))\left(\sum b_{i} \otimes g_{i}\right)=\sum b_{i} \xi(m)\left(g_{i}\right) a=\sum b_{i} g_{i}(m) \bar{a}=$ $\overline{\sum a g_{i}(m) \bar{b}_{i}}=\overline{f(a \otimes m)}$. Thus, $A \otimes_{B} M$ is reflexive over A.

Lemma 4. Let $A \supset B$ be a G-Galois extension with involution. If M is a reflexive left A-module, then M is also reflexive over B.

Proof. Since by Lemma 2, $\theta: \operatorname{Hom}_{A}(M, A) \rightarrow \operatorname{Hom}_{B}(M, B) ; f M \rightarrow t_{G} \circ f$ is a B-isomorphism, the lemma is obtained from the following commutative diagram;

[^0]

The commutativity is as follows; for any $m \in M$ and $f \in \operatorname{Hom}_{B}(M, B)$, setting $g=\theta^{-1}(f)$ in $\operatorname{Hom}_{A}(M, A)$, we have $\operatorname{Hom}\left(\theta^{-1}, I\right) \circ \theta \circ \xi_{A}(m)(f)=\operatorname{Hom}\left(\theta^{-1}, I\right)$ $\left.\left(t_{G} \circ \xi_{A}(m)\right)(f)=t_{G} \circ \xi_{A}(m)\left(\theta^{-1}(f)\right)=t_{G} \overline{(g(m)}\right)=\overline{t_{G} \circ g(m)}=\overline{f(m)}=\xi_{B}(m)(f)$.

Lemma 5. Let $A \supset B$ be a G-Galois extension with involution, C_{0} the fixed subring of the center of A by the involution, and u an element of the unit group $U\left(C_{0}\right)$. If $q=(M, q)$ is in $\mathfrak{M}_{r}(A),\left(\mathfrak{M}_{p}(A)\right)$, then $i^{*}(q)=\left(A \otimes_{B} M, i q\right), t_{\sigma}^{u *}(q)=$ $\left({ }_{B} M, t_{G}^{u} q\right)$ and $\sigma^{*}(q)=(M, \sigma q)$, for $\sigma \in G$, are in $\mathfrak{M}_{r}(A)$, $\left(\mathfrak{M}_{p}(A)\right)$.

Proof. This is easily obtained from Lemma 3 and Lmma 4.
Thus, group-homomorphisms of Witt groups $i^{*}, t_{G *}^{u}$ and σ^{*}, for $\sigma \in G$, are well defined. From now on, we shall denote by $W(A)$ one of $W_{r}(A)$ and $W_{p}(A)$. We put $G^{*}=\left\{\sigma^{*}: W(A) \rightarrow W(A) ; \sigma \in G\right\}, T_{G^{*}}=\sum_{\sigma^{*} \in G^{*}} \sigma^{*}$ and $W(A)^{G^{*}}=\{[q] \in$ $W(A) ; \sigma^{*}([q])=[q]$ for all $\left.\sigma^{*} \in G^{*}\right\}$.

From Theorem 1 we have
Theorem 2. Let $A \supset B$ be a G-Galois extension with involution. Then, we have

$$
i^{*} \circ t_{G *}=T_{G^{*}} \text { on } W(A)
$$

Let $A \supset B$ be a G-Galois extension with involution, C_{0} the fixed subring of the center of A by the involution. Then easily we have

Lemma 6. For any $u \in U\left(C_{0}\right)$, a sesqui-linear left B-module $\left(A, b_{t}^{u}\right)$ defined by $b_{t}^{u}: A \times A \rightarrow B ;\left(a, a^{\prime}\right) \mathcal{M} \rightarrow t_{G}\left(a u a^{\prime}\right)$ is non degenerate and hermitian.

Definition 5. $A \supset B$ is called an odd type G-Galois extension with involution, if there exists u in $U\left(C_{0}\right)$ such that $\left(A, b_{t}^{u}\right) \cong\langle 1\rangle \perp h_{m},\langle 1\rangle=(B, I) ; I\left(b, b^{\prime}\right)=$ $b \bar{b}^{\prime}$, for $b, b^{\prime} \in B$, and h_{m} is a metabolic left B-module.

Proposition 2. Let A be an algebra over a commutative ring R, and $A \supset R$ an odd type G-Galois extension with involution. We suppose that u is in the fixed subring of the center of A by the involution such that u is unit in A and $\left(A, b_{t}^{u}\right) \cong$ $\langle 1\rangle \perp h_{m}$ for a metabolic left R-module $h_{m}=\left(N, h_{m}\right)$. Then we have $t_{\sigma}^{u} \circ^{*} *=I$ on $W(R)$ and $\sum_{\sigma \in G} \perp \sigma^{*}\langle u\rangle \cong\langle 1\rangle \perp i^{*}\left(h_{m}\right)$ as hermitian left A-modules, where $\langle u\rangle$ denotes a hermitian left A-module defined by a form $A \times A \rightarrow A ;(x, y) \rightsquigarrow \rightarrow x u \bar{y}$.

Proof. If $q=(M, q)$ is in $\mathfrak{S}_{r}(R),\left(\mathfrak{S}_{p}(R)\right)$, then $t_{G}^{u} * \circ i^{*}(q)=\left(A \otimes_{R} M, t_{\sigma}^{u} i q\right)$ is also in $\mathfrak{S}_{r}(R),\left(\mathfrak{S}_{p}(R)\right)$. We can check $t_{G}^{u} i q=b_{t}^{u} \otimes q$ as follows; for any $a \otimes m$, $a^{\prime} \otimes m^{\prime}$ in $A \otimes_{R} M$, we have $t_{G}^{u} i q\left(a \otimes m, a^{\prime} \otimes m^{\prime}\right)=t_{G}\left(u a q\left(m, m^{\prime}\right) a^{\prime}\right)=t_{G}\left(u a a^{\prime}\right) q\left(m, m^{\prime}\right)$ $=b_{t}^{u}\left(a, a^{\prime}\right) q\left(m, m^{\prime}\right)=b_{t}^{u} \otimes q\left(a \otimes m, a^{\prime} \otimes m^{\prime}\right)$. Since R is commutative and A is an R-algebra, the tensor product $\left(A, b_{t}^{u}\right) \otimes(M, q)=\left(A \otimes_{R} M, b_{t}^{u} \otimes q\right)=\left(A \otimes_{R} M, t_{\sigma}^{u} i q\right)$ is well defined in $\mathfrak{S}_{r}(R),\left(\mathfrak{S}_{p}(R)\right)$, and so we have $t_{G *}^{u} \circ i^{*}(q)=b_{t}^{u} \otimes q \cong\left(\langle 1\rangle \perp h_{m}\right)$ $\otimes q \cong(\langle 1\rangle \otimes q) \perp\left(h_{m} \otimes q\right)=q \perp\left(h_{m} \otimes q\right)$. But, by Lemma 3 and Lemma 4, if M is reflexive over R then $A \otimes_{R} M \cong(R \oplus N) \otimes_{R} M=M \oplus\left(N \otimes_{R} M\right)$ is also reflexive over R, and hence so is $N \otimes_{R} M$. Accordingly, $h_{m} \otimes q=\left(N \otimes_{R} M, h_{m} \otimes q\right)$ is in $\mathfrak{S}_{r}(R),\left(\mathfrak{S}_{p}(R)\right)$. On the other hand, $h_{m} \otimes q$ is also metabolic, ${ }^{2)}$ (cf. [5], Lemma 1.2 and Lemma 1.5). Therefore, we have $t_{\sigma *}^{u} \circ i^{*}([q])=[q]$ for all $[q]$ in $W(R)$. Since we have easily $\left(A, b_{t}^{u}\right)=t_{\sigma *}(\langle u\rangle)$ and $\left(A, b_{t}^{u}\right) \cong\langle 1\rangle \perp h_{m}$ as hermitian left R-modules, we obtain $i^{*}\left(b_{t}^{u}\right)=i^{*}{ }^{\circ} t_{\sigma *}(\langle u\rangle) \cong \sum_{\sigma \in G} \perp \sigma^{*}\langle u\rangle$ by Theorem 1. Therefore $\sum_{\sigma \in G \perp} \perp \sigma^{*}\langle u\rangle \cong\langle 1\rangle \perp i^{*}\left(h_{m}\right)$.

Theorem 3. Let A be an algebra over a commutative ring R, and $A \supset R$ an odd type G-Galois extension with involution. Then we have

1) $i^{*}: W_{r}(R) \rightarrow W_{r}(A)$ and $i^{*}: W_{p}(R) \rightarrow W_{p}(A)$ are injective,
2) $t_{\sigma *}: W_{r}(A) \rightarrow W_{r}(R)$ and $t_{G *}: W_{p}(A) \rightarrow W_{p}(R)$ are sujective and split, and so $W_{r}(A) \cong i^{*}\left(W_{r}(R)\right) \oplus \operatorname{Ker} t_{G *}, W_{p}(A) \cong i^{*}\left(W_{p}(R)\right) \oplus \operatorname{Ker} t_{G *}$,
3) $\operatorname{Ker} t_{\sigma^{*}}=\operatorname{Ker} T_{G^{*}}, \operatorname{Im} i^{*}=\operatorname{Im} T_{G^{*}}$, i.e. $i^{*}: W_{r}(R) \rightarrow T_{G^{*}}\left(W_{r}(A)\right)$ and $i^{*}:$ $W_{p}(R) \rightarrow T_{G^{*}}\left(W_{p}(A)\right)$ are isomorphisms.
Furthermore, if A is commutative, then we have $T_{G^{*}}\left(W_{r}(A)\right)=W_{r}(A)^{G^{*}}$ and $T_{G^{*}}\left(W_{p}(A)\right)=W_{p}(A)^{G^{*}}$, i.e. $i^{*}: W_{r}(R) \rightarrow W_{r}(A)^{G^{*}}$ and $i^{*}: W_{p}(R) \rightarrow W_{p}(A)^{G^{*}}$ are isomorphisms.

Proof. Let C_{0} be the fixed subring of the center of A by the involution. For any $u \in U\left(C_{0}\right)$ and a sesqui-linear left A-module $q=(M, q)$, the scaling ${ }^{\text {u }} q=$ $\left(M,{ }^{u} q\right)$ by u is defined to be ${ }^{u} q: M \times M \rightarrow A ;(m, n) W \rightarrow u q(m, n)$. If $q=(M, q)$ is non degenerate, or hemitian, then so is ${ }^{u} q=\left(M,{ }^{u} q\right)$, respectively. If q is metabolic then so is ${ }^{u} q$. Therefore, a scaling $[q] \mathcal{W} \rightarrow\left[{ }^{u} q\right]$ defines a group-automorphism μ of the Witt group $\mathrm{W}(A)$. Take u in $U\left(C_{0}\right)$ such that $\left(A, b_{t}^{u}\right) \cong\langle 1\rangle \perp h_{m}$. Since by Proposition $2 t_{G *}^{u} \circ i^{*}=I$, we have that $i^{*}: \mathrm{W}(R) \rightarrow \mathrm{W}(A)$ is injective and $I=t_{G *}^{u} \circ i^{*}=t_{G *} \circ \mu \circ i^{*}$. Therefore, it is obtained that $t_{\sigma *}: \mathrm{W}(A) \rightarrow \mathrm{W}(R)$ is surjective and split, and $\mathrm{W}(A)=\operatorname{Ker} t_{G *} \oplus \mu \circ i^{*}(\mathrm{~W}(R)) \cong \operatorname{Ker} t_{G *} \oplus i^{*}(\mathrm{~W}(R))$. Since by Theorem $1 \quad i^{*} \circ t_{G *}=T_{G^{*}}$ on $\mathrm{W}(A)$, we have $i^{*}=i^{*} \circ t_{G *} \circ \mu \circ i^{*}=T_{G^{*} \circ \mu \circ i^{*}}$, and so $i^{*}: \mathrm{W}(R) \rightarrow T_{G^{*}}(\mathrm{~W}(A))$ is an isomorphism and $\operatorname{Ker} t_{\sigma^{*}}=\operatorname{Ker} T_{G^{*}}$. If A is a commutative ring, then $\mathrm{W}(A)$ becomes a commutative ring with identity $[\langle 1\rangle]$. $T_{G^{*}}: \mathrm{W}(A) \rightarrow \mathrm{W}(A)^{G^{*}}$ is a ring-homomorphism, and $T_{G_{*}}(\mathrm{~W}(A))$ is an ideal of $\mathrm{W}(A)^{G^{*}}$. But by Proposition $2 T_{G^{*}}(\langle u\rangle)=\langle 1\rangle \perp i^{*}\left(h_{m}\right)$ and $i^{*}\left(h_{m}\right)$ is a metabolic
2) See Appendix.
left A-module. Therefore, $[\langle 1\rangle]=T_{G^{*}}([\langle u\rangle])$ is in $T_{G^{*}}(\mathrm{~W}(A))$, and so $T_{G^{*}}(\mathrm{~W}(A))$ $=\mathrm{W}(A)^{G^{*}}$.

4. Examples

In this section, we expose some examples of Galois extension with involution.

Example 1. Let L, K be fields and $L \supset K$ a G-Galois extension with non trivial involution. Put $L_{0}=\{a \in L ; a=a\}$ and $K_{0}=L_{0} \cap K$. Then we have two cases;

Case I; $K \neq K_{0}$, then $L \supset L_{0}$ and $K \supset K_{0}$ are quadratic extensions, G induces the Galois group of $L_{0} \supset K_{0}$, and $L=L_{0} K=L_{0} \otimes_{K_{0}} K$.

Case II; $K=K_{0}$, then $L \supset L_{0} \supset K$ and $[L: K]=|G|$ is even.
Proposition 3. (cf. [11]) Let L, K be fields and $L \supset K$ a G-Galois extension with involution. Then $L \supset K$ odd type if and only if $|G|=[L: K]=o d d$.

Proof. If $L \supset K$ is odd type then obviously $[L: K]=$ odd. We shall show the converse. Firstly, we suppose that $L \supset K$ is a G-Galois extension with trivial involution and $|G|=$ odd. Then there is an a in L such that $L=K[a]$. Put $[L: K]=2 m+1$. From the proof of Scharlau's theorem (cf. [7], Th. 1.6, p. 195), we have that a K-linear map $f: L \rightarrow K$ defined by $f(1)=1$ and $f\left(a^{i}\right)=0$ for $i=$ $1,2, \cdots, 2 m$, defines a non degenerate bilinear left K-module $\left(L, b_{t}^{u}\right)$ by $b_{l}^{u}(x, y)$ $=f(x y)$ for $x, y \in L$, where $u \in L$ is determined by $b_{t}^{1}(u,-)=f$. Then we have $\left(L, b_{t}^{u}\right)=K \perp\left(K a \oplus K a^{2} \oplus \cdots \oplus K a^{2 m}\right)$, where $K=\langle 1\rangle$, and $K a \oplus \cdots \oplus K a^{2 m}$ is a metabolic subspace, because $K a \oplus \cdots \oplus K a^{m}$ is a total isotropic subspace of it. Accordingly, $L \supset K$ is odd type. Secondaly, suppose that $L \supset K$ is a G-Galois extension with non trivial involution, and $|G|=$ odd. By Case I, the involution is non trivial on K, i.e. $K \neq K_{0}$, and so $L=L_{0} K \cong L_{0} \otimes_{K_{0}} K$. Since $L_{0} \supset K_{0}$ becomes a G-Galois extension with trivial involution, $L_{0} \supset K_{0}$ is odd type, and so there is u in L_{0} such that $\left(L_{0}, b_{t}^{u}\right)$ is isometric to the orthogonal sum of $\langle 1\rangle$ and some metabolic K_{0}-subspace h_{m}. Then we have $\left(L, b_{t}^{u}\right) \cong i^{*}\left(L_{0}, b_{t}^{u}\right)=\left(K \otimes_{K_{0}} L_{0}\right.$, $\left.i b_{t}^{u}\right) \cong i^{*}(\langle 1\rangle) \perp i^{*}\left(h_{m}\right)=\langle 1\rangle \perp i^{*}\left(h_{m}\right)$ as hermitian K-modules, and $i^{*}\left(h_{m}\right)$ becomes a metabolic K-module. Thus, $L \supset K$ is odd type.

Corollary 1. Let $L \supset K$ be fields and a G-Galois extension with involution. If $|G|=o d d$, then the inclusion map $i: K \rightarrow L$ induces an isomorphism of hermitian Witt groups $; i^{*}: W(K) \rightarrow T_{G^{*}}(W(L))=W(L)^{G^{*}}$.

Example 2. Let R be a commutative ring, (V, q) a non degenerate quadratic R-module having a orthogonal base; $(V, q)=R v_{1} \perp R v_{2} \perp \cdots \perp R v_{n}$. Then 2 and $q\left(v_{i}\right) i=1,2, \cdots n$ are invertible in R. Let $\rho_{v_{i}}$ be a symmetry defined by
v_{i}, i.e. $\rho_{v_{i}}(x)=x-\frac{B_{q}\left(x, v_{i}\right)}{q\left(v_{i}\right)} v_{i}$ for $x \in V$. The Clifford algebra $C(V, q)=C_{0}(V, q)$ $\oplus C_{1}(V, q)$ is a separable and $Z /(2)$-graded R-algebra (cf. [1], [8]). Each $\rho_{v_{i}}$ is extended to an algebra-automorphism $\hat{\rho}_{i}$ of $C(V, q)$, for $i=1,2, \cdots n$, and $\hat{\rho}_{i}$ is homogeneous i.e. $\hat{p}_{i}\left(C_{j}(V, q)\right)=C_{j}(V, q), j=0,1 . \quad C(V, q)$ has an involution defined by $\overline{\left(x_{1} x_{2} \cdots x_{r}\right)}=x_{r} \cdots x_{2} x_{1}$ for $x_{i} \in V$. Then $\hat{\rho}_{i}$ is compatible with this involution. Let G be a group of automorphisms of $C(V, q)$ generated by $\hat{\rho}_{1}, \hat{\rho}_{2}$, $\cdots \hat{\rho}_{n}$. Then, we can show that $C(V, q) \supset R$ is a G-Galois extension with involution.

Proposition 4. Let $C(V, q), \hat{\rho}_{1}, \hat{\rho}_{2}, \cdots \hat{\rho}_{n}$ and G be as above. Then $C(V, q)$ $\supset R$ is a G-Galois extension with involution, and $G=\left(\hat{\rho}_{1}\right) \times\left(\hat{\rho}_{2}\right) \times \cdots \times\left(\hat{\rho}_{n}\right)$.

Proof. If $n=1, C\left(R v_{1}, q\right) \cong R[X] /\left(X^{2}-q\left(v_{1}\right)\right)$ is a separable quadratic extension of R, and so $C\left(R v_{1}, q\right) \supset R$ is a Galois extension with Galois group ($\hat{\rho}_{1}$) (cf. [8]). Suppose that $n>1$ and $C\left(R v_{1} \oplus \cdots \oplus R v_{n-1}, q\right) \supset R$ is a Galois extension with Galois group $\left(\hat{\rho}_{1}\right) \times\left(\hat{\rho}_{2}\right) \times \cdots \times\left(\hat{\rho}_{n_{-1}}\right)$. Since $R v_{1} \oplus \cdots \oplus R v_{n}=\left(R v_{1} \oplus \cdots \oplus R v_{n-1}\right)$ $\perp R v_{n}$, it is well known that $C\left(R v_{1} \oplus \cdots \oplus R v_{n}, q\right)=C\left(R v_{1} \oplus \cdots \oplus R v_{n-1}, q\right) \hat{\otimes}$ $C\left(R v_{n}, q\right)$, where $\hat{\otimes}$ denotes the graded tensor product over R. Let $x_{1}, \cdots x_{s}$ and $y_{1}, \cdots y_{s}$ be a $\left(\hat{\rho}_{1}\right) \times \cdots \times\left(\hat{\rho}_{n-1}\right)$-Galois system of $C\left(R v_{1} \oplus \cdots \oplus R v_{n-1}, q\right)$ and $u_{1}, \cdots u_{t}$ and $w_{1}, \cdots w_{t}$ a $\left(\hat{\rho}_{n}\right)$-Galois system of $C\left(R v_{n}, q\right) . \quad x_{i}, y_{i}$ and u_{j}, w_{j} are chosen as homogeneous elements in $C\left(R v_{1} \oplus \cdots \oplus R v_{n-1}, q\right)$ and $C\left(R v_{n}, q\right)$, respectively. Then, $\left\{(-1)^{\partial y_{i} \theta u_{j}} x_{i} \otimes u_{j} ; 1 \leqq i \leqq s, 1 \leqq j \leqq t\right\}$ and $\left\{y_{i} \otimes w_{j} ; 1 \leqq i \leqq s, 1 \leqq\right.$ $j \leqq t\}$ are a $\left(\hat{\rho}_{1}\right) \times \cdots \times\left(\hat{\rho}_{n-1}\right) \times\left(\hat{\rho}_{n}\right)$-Galois system of $C\left(R v_{1} \oplus \cdots \oplus R v_{n}, q\right)=C\left(R v_{1}\right.$ $\left.\oplus \cdots \oplus R v_{n-1}, q\right) \widehat{\otimes} C\left(R v_{n}, q\right)$, where ∂u_{j} and ∂y_{i} denete the degree of u_{j} and y_{i}. Because, $\quad \sum_{i, j}(-1)^{\partial y_{i} \partial u_{j}} x_{i} \otimes u_{j} \cdot \sigma \times \tau\left(y_{i} \otimes w_{j}\right)=\sum_{i, j} x_{i} \sigma\left(y_{i}\right) \otimes u_{j} \tau\left(w_{j}\right)=\left\{\begin{array}{l}1 \otimes 1 ; \\ 0\end{array} ;\right.$ $\sigma \times \tau=I \times I$
$\sigma \times \tau \neq I \times I$, for $\sigma \in\left(\hat{\rho}_{1}\right) \times \cdots \times\left(\hat{\rho}_{n-1}\right)$ and $\tau \in\left(\hat{\rho}_{n}\right)$. Since $C\left(R v_{1} \oplus \cdots \oplus R v_{n-1}, q\right) \widehat{\otimes}$ $C\left(R v_{n}, q\right)=C\left(R v_{1} \oplus \cdots \oplus R v_{n-1}, q\right) \otimes C\left(R v_{n}, q\right)$ as R-modules and $\left(C\left(R v_{1} \oplus \cdots \oplus\right.\right.$ $\left.\left.R v_{n-1}, q\right) \otimes C\left(R v_{n}, q\right)\right)\left(\hat{\rho}_{1}\right)^{\left.\hat{\rho}_{1}\right) \times \cdots \times\left(\hat{\rho}_{n}\right)}=C\left(R v_{1} \oplus \cdots \oplus R v_{n-1}, q\right)^{\left(\hat{\rho}_{1}\right) \times \cdots \times\left(\hat{\rho}_{n-1}\right)} \otimes C\left(R v_{n}\right.$, $q)^{\left(\hat{\varsigma}_{n}\right)}=R \otimes R=R$, we have that $C\left(R v_{1} \oplus \cdots \oplus R v_{n}, q\right) \supset R$ is a Galois extension with Galois group ($\left.\hat{\rho}_{1}\right) \times \cdots \times\left(\hat{\rho}_{n}\right)$. Thus, the proposition is obtained by induction.

Example 3. Let $A \supset B$ be a G-Galois extension with involution. The $n \times$ n-matrix ring A_{n} over A has an invoution $A_{n} \rightarrow A_{n} ;\left(a_{i j}\right) \mathcal{M} \rightarrow{ }^{t}\left(a_{i j}\right)$, where ${ }^{t}(\quad)$ denotes the transpose matrix. Then, $A_{n} \supset B_{n}$ is also a G-Galois extension with involution. Furthermore, if $A \supset B$ is odd type, then so is $A_{n} \supset B_{n}$. Because, we suppose that u is a unit in the fixed subring C_{0} of the center of A by the involution, and (A, b_{t}^{u}) is a orthogonal sum of $\langle 1\rangle$ and a metabolic B-left module $h_{g}=\left(N, h_{g}\right)$. Then $A_{n} \simeq B_{n} \otimes_{B} A$ as B_{n}-left modules and C_{0} is the fixed subring
of the center of A_{n} by the involution. Therefore, we have $\left(A_{n}, b_{t}^{u}\right) \cong\left(B_{n} \otimes_{B} A\right.$, $\left.i b_{t}^{u}\right) \cong i^{*}\langle 1\rangle \perp i^{*} h_{g}=\langle 1\rangle \perp i^{*} h_{g}$ as sesqui-linear B_{n}-left modules, and $i^{*} h_{g}$ is a metabolic B_{n}-module, where $i: B \hookrightarrow B_{n}$.

Using the Morita context, Example 3 is extended as follows;
Example 4. (cf. [2], Chap. I, 8.) Let $A \supset B$ be a G-Galois extension with involution, $\Delta(A, G)=\sum_{\sigma \in G} \oplus A u_{\sigma}$ a crossed product of A and G with a trivial factor set, and M a faithful left $\Delta(A, G)$-module. We may assume that u_{I} is the identity element in $\Delta(A, G)$, and A is a subring of $\Delta(A, G)$. We suppose that M has a non degenerate hermitian form [,]: $M \times M \rightarrow A$ satisfying $\left[u_{\sigma}(m)\right.$, $\left.u_{\sigma}(n)\right]=\sigma([m, n])$ for every $\sigma \in G$ and $m, n \in M$. Put $\Lambda^{\circ}=\operatorname{Hom}_{A}(M, M)$ and $\Gamma^{0}=\operatorname{Hom}_{\Delta(A, G)}(M, M)$, then M is regarded as right Λ-module and so as $A-\Lambda$ bimodule. We can define an involution $\Lambda \rightarrow \Lambda ; \lambda M \rightarrow \bar{\lambda}$ by $[m, n \lambda]=[m \bar{\lambda}, n]$ for every $m, n \in M$ (cf. [2], p. 61). For each $\sigma \in G$, a ring-automorphism $\sigma^{\prime}: \Lambda \rightarrow \Lambda$ is defined by $m \sigma^{\prime}(\lambda)=u_{\sigma}\left(\left(u_{\sigma}^{-1}(m)\right) \lambda\right)$ for $m \in M$ and $\lambda \in \Lambda$. Put $G^{\prime}=\left\{\sigma^{\prime} ; \sigma \in G\right\}$. Since $u_{\sigma} u_{\tau}=u_{\sigma \tau}$ in $\Delta(A, G)$, the map $G \rightarrow G^{\prime} ; \sigma M \rightarrow \sigma^{\prime}$ is a group homomorphism. We can easily check $\Lambda^{G^{\prime}}=\Gamma$. For any $\lambda \in \Lambda, \sigma^{\prime} \in G^{\prime}, \sigma^{\prime}(\bar{\lambda})=\overline{\sigma^{\prime}(\lambda)}$ is satisfided; for any $m, n \in M$, we have $\left[m \sigma^{\prime}(\bar{\lambda}), n\right]=\left[u_{\sigma}\left(u_{\sigma}^{-1}(m) \bar{\lambda}\right), n\right]=\sigma\left(\left[u_{\sigma}^{-1}(m) \bar{\lambda}, u_{\sigma}^{-1}(n)\right]=\right.$ $\sigma\left(\left[u_{\sigma}^{-1}(m), u^{-1}(n) \lambda\right]\right)=\left[m, n \sigma^{\prime}(\lambda)\right]=\left[m \overline{\sigma^{\prime}(\lambda)}, n\right]$. Put $M^{G}=\left\{m \in M ; u_{\sigma}(m)=m\right.$ for all $\sigma \in G\}$, then M^{G} becomes a left B-module. We can show that if M^{G} is finitely generated projective and generator over B, then $\Lambda \supset \Gamma$ is also a G^{\prime}-Galois extension with involution and $G^{\prime} \cong G$. Now, we shall prove this. We denote by (,) a sesqui-linear form $M \times M \rightarrow \Lambda$ defined by $\left[m, m^{\prime}\right] m^{\prime \prime}=m\left(m^{\prime}, m^{\prime \prime}\right)$ for every m, m^{\prime} and $m^{\prime \prime} \in M$ (see [2], p. 61).

Lemma 7. Under above conditions, we have $M=A M^{G} \cong A \otimes_{B} M^{G}$, and [,] induces a non degenerate hermitian form $[] \mid, M^{G} \times M^{G}$ over B.

Proof. Let $x_{1}, \cdots x_{n}$ and $y_{1}, \cdots y_{n}$ be a G-Galois system of A. For any $m \in M, m$ is written as $m=\sum_{i, \sigma \in G} x_{i} \sigma\left(y_{i}\right) u_{\sigma}(m)=\sum_{i, \in G} x_{i} u_{\sigma}\left(y_{i} m\right)=\sum_{i} x_{i} t_{G}\left(y_{i} m\right)$, and is contained in $A M^{G}$, where $t_{G}\left(y_{i} m\right)=\sum_{\sigma \in G} u_{\sigma}\left(y_{i} m\right)$ is in M^{G}. If $\sum_{i} a_{i} \otimes m_{i}$ is an element in $A \otimes_{B} M^{G}$ such that $\sum a_{i} m_{i}=0$, then we have $\sum a_{i} \otimes m_{i}=\sum_{i, j}$ $x_{j} t_{G}\left(y_{j} a_{i}\right) \otimes m_{i}=\sum_{i, j} x_{j} \otimes t_{G}\left(y_{j} a_{i}\right) m_{i}=\sum_{j} x_{j} \otimes t_{G}\left(y_{j} \sum a_{i} m_{i}\right)=0$. Therefore, $M=$ $A M^{G} \cong A \otimes \otimes_{B} M^{G}$ is obtained. Since $\sigma([m, n)]=\left[u_{\sigma}(m), u_{\sigma}(n)\right]$ for every $\sigma \in G$ and $m, n \in M,[,]^{\prime}=[] \mid, M^{G} \times M^{G}$ defines a hermitian B-form [, $]^{\prime}: M^{G} \times$ $M^{G} \rightarrow B$. By $M=A M^{G},\left[M^{G}, m\right]^{\prime}=0$ implies $m=0$. If f is any element in $\operatorname{Hom}_{B}\left(M^{G}, B\right)$, then $I \otimes f$ is in $\operatorname{Hom}_{A}(M, A)$, hence there is an element m in M such that $f=[-, m]$. But, $f(n)$ is in B for all $n \in M^{G}$, then we have $[n, m]=f(n)$ $=\sigma([n, m])=\left[u_{\sigma}(n), u_{\sigma}(m)\right]=\left[n, u_{\sigma}(m)\right]$ for all $n \in M^{G}, \sigma \in G$, and so $m=u_{\sigma}(m)$ for all $\sigma \in \mathrm{G}$, i.e. $m \in M^{G}$. Therefore, [, $]^{\prime}$ is non degenerate.

Proposition 5. If M^{G} is finitely generated projective and generator over B,
then $\Lambda \supset \Gamma$ is a G^{\prime}-Galois extension with involution, and $G^{\prime} \cong G$.
Proof. Let $x_{1}, \cdots x_{n}$ and $y_{1}, \cdots y_{n}$ be G-Galois system of A. Since M^{G} is a finitely generated projective and generator B-module, and [,] $\mid M^{G} \times M^{G}$ is non degenerate, hence there exist $m_{1}, \cdots m_{r}$ and $n_{1}, \cdots n_{r}, u_{1}, \cdots u_{s}$ and $v_{1}, \cdots v_{s}$ in M^{G} such that $\sum_{i}\left[m_{i}, n_{i}\right]=1, I=\sum_{i}\left[-, u_{i}\right] v_{i}=\sum_{i}\left(u_{i}, v_{i}\right)$. Put $m_{i_{j}}^{\prime}=\bar{x}_{j} u_{i} n_{i j}^{\prime}$ $=y_{j} v_{i}$. Then we have $\sum_{i, j}\left(m_{i j}^{\prime}, u_{\sigma}\left(n_{i j}^{\prime}\right)\right)=\sum_{i, j}\left(x_{j} u_{i}, u_{\sigma}\left(y_{j} v_{i}\right)\right)=\sum_{i, j}\left[-, x_{j} u_{i}\right]$ $\sigma\left(y_{i}\right) u_{\sigma}\left(v_{i}\right)=\sum_{i, j}\left[-, u_{i}\right] x_{j} \sigma\left(y_{j}\right) v_{i}=\left\{\begin{array}{cl}\sum_{j}\left[-, u_{i}\right] v_{i} ; & \text { for } \sigma=I \\ 0 \quad ; & \text { for } \sigma \neq I\end{array}=\left\{\begin{array}{ll}1 ; & \text { for } \sigma=I \\ 0 ; & \text { for } \sigma \neq I\end{array}\right.\right.$. Since $n_{i_{j}}^{\prime}$ is expressed as $n_{i j}^{\prime}=\sum_{k}\left[m_{k}, n_{k}\right] n_{i_{j}}^{\prime}=\sum_{k} m_{k}\left(n_{k}, n_{i j}^{\prime}\right)$, we have $\sum_{i, j, k}\left(m_{i j}^{\prime}, m_{k}\right) \sigma^{\prime}\left(\left(n_{k}, n_{i j}^{\prime}\right)\right)=\sum_{i, j, k}\left(m_{i j}^{\prime}, u_{\sigma}\left(m_{k}\left(n_{k}, n_{i j}^{\prime}\right)\right)\right)=\sum_{i, j}\left(m_{i j}^{\prime}, u_{\sigma}\left(n_{i j}^{\prime}\right)\right)$ $=\left\{\begin{array}{l}1 \text {; for } \sigma=I \\ 0 \text {; for } \sigma \neq I\end{array}\right.$. Therefore, $\left\{\left(m_{i_{j}}^{\prime}, m_{k}\right) ; 1 \leqq i \leqq s \leqq, 1 \leqq j \leqq n, 1 \leqq k \leqq r\right\} \quad$ and $\left\{\left(n_{k}, n_{i j}^{\prime}\right) ; 1 \leqq i \leqq s, 1 \leqq j \leqq n, 1 \leqq k \leqq r\right\}$ are G^{\prime}-Galois system of Λ and $G \cong G^{\prime}$. Thus $\Lambda \supset \Gamma$ is a G^{\prime}-Galois extension with involution.

Corollary 2. Let A be an algebra over a commutative ring R, and $A \supset R$ a G-Galois extension with involution. If M is a faithful left $\Delta(A, G)$-module such that M is finitely generated projective over A and M has a non degenerate hermitian form [,] $M \times M \rightarrow A$ satisfying $\sigma([m, n])=\left[u_{\sigma}(m), u_{\sigma}(n)\right]$ for all $n, m \in M$ and $\sigma \in G$, then $\Lambda=\operatorname{Hom}_{A}(M, M) \supset \Gamma=\operatorname{Hom}_{\Delta(A, G)}(M, M)$ is a G-Galois extension with involution.

Proof. Since, under the condition of the corollary, we have $t_{G}(A)=R$ and $M=A M^{G} \cong A \otimes_{B} M^{G}$, we conclude that M^{G} is a direct summand of M as R module. Therefore M^{G} is finitely generated projective and generator over R, and by Proposition $5 \Lambda \supset \Gamma$ is a G^{\prime}-Galois extension with involution and $G \cong G^{\prime}$.

Appendix

Let R be a commutative ring.
Lemma A. ([5], Lemma 1.2) Let (M, q) be a non degenerate hermitian R module. Then (M, q) is metabolic if and only if there is an R-direct summand N of M such that $N^{\perp}=N$.

Lemma B. (cf. [5], Lemma 1.5) Let (M, q) be any non-degenerate hermitian R-module and $\left(N, h_{m}\right)$ a metabolic R-module such that N is a projective R-module. If $\left(N, h_{m}\right) \otimes(M, q)=\left(N \otimes_{R} M, h_{m} \otimes q\right)$ is non degenerate, then $\left(N, h_{m}\right) \otimes(M, q)$ is also metabolic.

Proof. Suppose $\left(N, h_{m}\right) \simeq\left(U \oplus U^{*}, h_{g}\right)$, where $U^{*}=\operatorname{Hom}_{R}(U, R)$ and (U, g) is a hermitian R-module. By Lemma A, it is sufficient to show $\left(U^{*} \otimes M\right)^{\perp}=$ $U^{*} \otimes M$ in $\left(U \otimes M \oplus U^{*} \otimes M, h_{g} \otimes q\right)$. If $\sum u_{i} \otimes m_{i}$ is in $\left(U^{*} \otimes M\right)^{\perp} \cap(U \otimes M)$, then we have $h_{g} \otimes q\left(\sum u_{i} \otimes m_{i}, f \otimes x\right)=\sum h_{g}\left(u_{i}, f\right) q\left(m_{i}, x\right)=\sum f\left(u_{i}\right) q\left(m_{i}, x\right)=$
$q\left(\sum f\left(u_{i}\right) m_{i}, x\right)=0$, for every $x \in M$ and $f \in U^{*}$, hence $\sum f\left(u_{i}\right) m_{i}=0$ for every $f \in U^{*}$. Since U is projective over R, there exist $\left\{f_{j} \in U^{*} ; j \in I\right\}$ and $\left\{v_{j} \in U\right.$; $j \in I\}$ such that $x=\sum_{j \in I} v_{j} f_{j}(x)$ for all $x \in U$. Accordingly, $\sum u_{i} \otimes m_{i}=\sum_{i, j \in I}$ $v_{j} f_{j}\left(u_{i}\right) \otimes m_{i}=\sum_{j \in I} v_{j} \otimes \sum_{i} f_{i}\left(u_{i}\right) m_{i}=0$. We obtain that $\left(U^{*} \otimes M\right)^{\perp} \cap(U \otimes M)$ $=0$ and so $\left(U^{*} \otimes M\right)^{\perp}=U^{*} \otimes M$.

Osaka City University

References

[1] H. Bass: Topics in Algebraic K-theory, Tata Institute Notes, 41, Bombay, 1967.
[2] H. Bass: Unitary K-theory, Springer lecture notes, 343, 1973.
[3] T. Kanzaki: Non-commutative quadratic extension of a commutative ring, Osaka J. Math. 10 (1973), 597-605.
[4] M. Knebusch and W. Scharlau: Über das Verhalten der Witt-Gruppe bei galoischen Körpererweiterungen, Math. Ann. 193 (1971), 189-196.
[5] M. Knebusch, A. Rosenberg and R. Ware: Structure of Witt rings and quotient of aberian group rings, Amer. J. Math. 94 (1972), 119-155.
[6] M. Knebusch, A. Rosenberg and R. Ware: Signatures on semilocal rings, J. Algebra 26 (1973), 208-250.
[7] T.Y. Lam: The Algebraic Theory of Quadratic Forms, Benjamin 1973.
[8] A. Micali and O.E. Villamayor: Sur Les algebras de Clifford. II, J. Reine Angew. Math. 242 (1970), 61-90.
[9] A. Rosenberg and R. Ware: The zero-dimensional Galois cohomology of Witt ring, Invent. Math. 11 (1970), 65-72.
[10] T.A. Springer: Sur les formes d'indices zero, C.R. Acad. Sci. 234 (1952), 15171519.
[11] W. Scharlau: Quadratic reciprocity law, J. Number Theory 4 (1972), 78-97.
[12] W. Scharlau: Zur Pfistersch Theorie der quadratischen Formen, Invent. Math. 6 (1969), 327-328.

[^0]: 1) In order that $\mathfrak{g}_{r}(A)$ becomes a set, we need to do an restriction on the cadinal number of module, for example, $\mathfrak{g}_{r}(A) \subset\{(M, q)$; cardinal number of $M \leqq \mathbb{X}\}$.
