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ON CLASSIFICATION OF Q-FANO 3-FOLDS OF

GORENSTEIN INDEX 2. I

HIROMICHI TAKAGI

Abstract. We formulate a generalization of K. Takeuchi’s method to classify
smooth Fano 3-folds and use it to give a list of numerical possibilities of

�
-Fano

3-folds X with Pic X = � (−2KX) and h0(−KX) ≥ 4 containing index 2 points
P such that (X, P ) ' ({xy + z2 + ua = 0}/ � 2(1, 1, 1, 0), o) for some a ∈ � . In
particular we prove that then (−KX)3 ≤ 15 and h0(−KX) ≤ 10. Moreover we
show that such an X is birational to a simpler Mori fiber space.

Notation and Conventions

N: The set of positive integers.

∼: Linear equivalence.

≡: Numerical equivalence.

Fn: Segre-del Pezzo scroll of degree n.

Fn,0: Surface obtained by contracting the negative section of Fn.

Q3: Smooth quadric 3-fold.

ODP: Ordinary double point, i.e., singularity analytically isomorphic to

{xy + z2 + u2 = 0 ⊂ C4}.

QODP: Singularity analytically isomorphic to

{xy + z2 + u2 = 0 ⊂ C4/Z2(1, 1, 1, 0)}.

Bi (1 ≤ i ≤ 5): Factorial Gorenstein terminal Fano 3-fold of Fano index 2,

and with Picard number 1 and (−K)3 = 8i, where K is the canonical

divisor.

A2g−2 (1 ≤ g ≤ 12 and g 6= 11): Factorial Gorenstein terminal Fano 3-fold

of Fano index 1, and with Picard number 1 and genus g.

§0. Introduction

In this paper we work over C, the complex number field.
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Definition 0.0. (Q-Fano variety) Let X be a normal projective vari-
ety. X is said to be a terminal (resp. canonical, klt, etc.) Q-Fano variety if
X has only terminal (resp. canonical, Kawamata log terminal, etc.) singu-
larities and −KX is ample. By replacing ‘ample’ with ‘nef and big’, terminal
(resp. canonical, klt, etc.) weak Q-Fano varieties are similarly defined. If
X has only terminal singularities, then we say that X is a Q-Fano variety
for short and if X has only Gorenstein terminal (resp. canonical, klt, etc.)
singularities, we say that X is a Gorenstein terminal (resp. canonical, klt,
etc.) Fano variety.

Let I(X) := min{I | IKX is a Cartier divisor} and we call I(X) the
Gorenstein index of X.

Write I(X)(−KX) ≡ r(X)H(X), where H(X) is a primitive Cartier
divisor and r(X) ∈ N. (Note that H(X) is unique since Pic X is torsion
free.) Then we call r(X)/I(X) the Fano index of X and denote it by F (X).

G. Fano started the study of Fano 3-folds to prove the irrationality

of smooth cubic 3-folds. Since then many people studied smooth Fano 3-

folds. The minimal model program asserts that every projective variety is

birationally equivalent to a minimal variety or a variety having a Q-Fano

fiber space structure. So it is important to study Q-Fano varieties, which

is a generalization of Fano varieties.

Here we mention the known results about the classification of Q-Fano

3-folds:

(1) G. Fano started the classification of smooth Fano 3-folds and it was

completed by V. A. Iskovskih [Isk77], [Isk78], [Isk79] and [Isk90],

V. V. Shokurov [Sho79b], [Sho79a], T. Fujita [Fuj80], [Fuj81] and

[Fuj84], S. Mori and S. Mukai [MM81], [MM83] and [MM85].

(2) S. Mukai [Muk95] classified indecomposable Gorenstein canonical

Fano 3-folds by using vector bundles.

(3) T. Sano [San95] and independently F. Campana and H. Flenner

[CF93] classified non-Gorenstein Fano 3-folds of Fano index > 1.

(4) T. Sano [San96] classified non-Gorenstein Fano 3-folds of Fano index 1

and with only cyclic quotient terminal singularities. Recently T. Mi-

nagawa [Min99] proved that non-Gorenstein Q-Fano 3-folds with Fano

index 1 can be deformed to one with only cyclic quotient terminal sin-

gularities.

(5) A. R. Fletcher [Fle00] gave the classification of Q-Fano 3-folds which

are weighted complete intersections of codimension 1 or 2. Recently
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S. Altınok [Alt] (see also [Reid96]) obtained a list of Q-Fano 3-folds

which are subvarieties in a weighted projective space of codimension

3 or 4.

On the other hand, K. Takeuchi [Take89] simplified and amplified V. A.

Iskovskih’s method of classification by simple numerical calculations based

on the theory of the extremal rays. In particular he reproved Shokurov’s

theorem [Sho79a], the existence of lines on a smooth Fano 3-fold of Fano

index 1 and with Picard number 1.

In this paper, we formulate a generalization of Takeuchi’s construction

for a Q-factorial Q-Fano 3-fold X with ρ(X) = 1, and use it to classify

Q-factorial Q-Fano 3-folds X with the following properties.

Main Assumption 0.1. (1) ρ(X) = 1,
(2) I(X) = 2,
(3) F (X) = 1/2,
(4) h0(−KX) ≥ 4, and
(5) there exists an index 2 point P such that

(X,P ) ' ({xy + z2 + ua = 0}/Z2(1, 1, 1, 0), o)

for some a ∈ N.

The intent of the assumption (5) is explained in the end of 0.2.

A generalized Takeuchi’s construction 0.2. Here we explain a
generalization of Takeuchi’s construction. Let X be a Q-factorial Q-Fano
3-fold with ρ(X) = 1. Suppose that we are given a birational morphism
f : Y → X with the following properties.

(1) Y is a weak Q-Fano 3-fold, and
(2) f is an extremal contraction such that E := exc f is a prime Q-Cartier

divisor.

Then we obtain the following diagram (see §3).

Y0 := Y
f

��� � � � � � � � �
g0 ����� Y1

g1 �� ��� · · ·
gk−1�� ��� Yk

f ′

�� 								

X X ′,

where
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(1) Y0 99K Y1 is a flop or a flip and Yi 99K Yi+1 is a flip for i ≥ 1, and
(2) f ′ is a crepant divisorial contraction (in this case, k = 0) or an ex-

tremal contraction which is not isomorphic in codimension 1.

We use the following notation.

• Y ′ := Yk,
• Ei := the strict transform of E on Yi,
• Ẽ := the strict transform of E on Y ′,
• e := E3 − E1

3 if Y0 99K Y1 is a flop or e := 0 otherwise, and
• di := (−KYi

)3 − (−KYi+1
)3 (resp. ai := Ei·li

(−KYi
)·li

) if Yi 99K Yi+1 is a

flip with a flipping curve li, or di := 0 (resp. ai := 0) otherwise.

We define rational numbers z and u as follows. In case f ′ is birational, the
f ′-exceptional divisor E′ satisfies E′ ≡ z(−KY ′)− uẼ. Otherwise the pull-
back L of the ample generator of Pic X ′ ' Z satisfies L ≡ z(−KY ′) − uẼ.

We note the following.

(1)

(−KY ′)2Ẽ = (−KY )2E −
∑

aidi,

(−KY ′)Ẽ2 = (−KY )E2 −
∑

ai
2di,

Ẽ3 = E3 − e −
∑

ai
3di

(See Lemma 3.1 for details).

(2) On the other hand, the properties of f ′ in various cases restrict the
relation of (−KY ′)3, (−KY ′)2Ẽ, (−KY ′)Ẽ2 and Ẽ3. For example,
assume that dimX ′ = 1. Then we have

(−KY ′)L2 = z2(−KY ′)3 − 2zu(−KY ′)2Ẽ + u2(−KY ′)Ẽ2 = 0,

ẼL2 = z2(−KY ′)2Ẽ − 2zu(−KY ′)Ẽ2 + u2Ẽ3 = 0,

(−KY ′)2L = z(−KY ′)3 − u(−KY ′)2Ẽ = deg F,

where F is a general fiber of f ′ and deg F := (−KF )2.

(1) and (2) give equations of Diophantine type. In this paper, we
show that under Assumption 0.1, Construction 0.2 works for X and the
weighted blow-up f with weights 1

2 (1, 1, 1, 2) at an index 2 point satisfying
Assumption 0.1 (5). By the description of the weighted blow-up f and
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the flips Yi 99K Yi+1, the index of Yi’s are not greater that 2. Hence the
equations of Diophantine type can be solved and we obtain the following
possibilities of X.

Main Theorem 0.3. (see Theorem 5.0) Let X be as in Main Assump-
tion 0.1, and f : Y → X the weighted blow-up at P with weights 1

2 (1, 1, 1, 2).
Then Y is a weak Q-Fano 3-fold with I(Y ) = 2.

Consider the diagram as in 0.2. Then the possibilities of X are clas-
sified as in Tables 1–5 and Tables 1′–5′ with the notation of 0.2 and the
following additional notation (the possibilities in Tables 1′–5′ are excluded
in the forthcoming paper [Taka02]). In particular we have (−KX)3 ≤ 15
and h0(−KX) ≤ 10.

h := h0(−KX),
N is the number of 1

2 (1, 1, 1)-singularities obtained by deforming non-
Gorenstein points of X locally, and
n is the sum of the number of 1

2 (1, 1, 1)-singularities obtained by de-
forming non-Gorenstein points on flipping curves of Yi locally, where
the sum is taken over all i such that Yi 99K Yi+1 is a flip.

Table 1. f ′ is of (2, 1)-type. I

No. h (−KX)3 N e n z deg C g(C) X ′

1.1 6 7 2 7 0 4 7 8 [5]

1.2 6 15/2 3 7 0 2 3 0 [2], I(X ′) = 2

1.3 6 15/2 3 6 1 4 6 3 [5]

1.4 7 17/2 1 6 0 3 9 9 P3

1.5 7 9 2 6 0 2 6 3 [3]

1.6 7 9 2 5 1 3 8 5 P3

1.7 7 19/2 3 5 1 2 5 0 [3]

1.8 7 19/2 3 4 2 3 7 1 P3

1.9 8 21/2 1 6 0 1 3 0 B3

1.10 8 21/2 1 5 0 2 9 6 Q3

1.11 8 11 2 4 1 2 8 3 Q3

1.12 9 25/2 1 5 0 1 5 1 B4

1.13 10 29/2 1 4 0 1 7 2 B5

1.14 10 15 2 3 1 1 6 0 B5
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Table 1′. f ′ is of (2, 1)-type. I

h (−KX)3 N e n z deg C g(C) X ′

8 23/2 3 3 2 2 7 0 Q3

Notation and Remarks for Table 1 and Table 1′.
C := f ′(E′),

deg C := (H(X ′) · C) (see Definition 0.0 for the definition of H(X ′)),
g(C) := the genus of C in case X has only 1

2 (1, 1, 1)-singularities,
see Theorem 1.6 for the definition of [i],

u = z + 1.

Table 2. f ′ is of (2, 1)-type. II

No. (−KX)3 N e deg C X ′

2.1 7/2 3 10 1 A6

2.2 4 4 8 2 A8

2.3 9/2 5 6 3 A10

2.4 5 6 4 4 A12

Table 2′. f ′ is of (2, 1)-type. II

(−KX)3 N e deg C X ′

11/2 7 2 5 A14

Notation and Remarks for Table 2 and Table 2′.
C := f ′(E′),

deg C := (−KX′ · C),
z = u = 1,

h = 4 and n = 0.

Table 3. f ′ is (2, 0)-type or crepant divisorial.

No. h (−KX)3 N e n type of f ′

3.1 4 5/2 1 15 0 (2, 0)4

3.1′ 4 5/2 1 / / crep. div.

3.2 4 3 2 12 0 (2, 0)8

3.3 4 4 4 9 3 (2, 0)1

3.4 4 9/2 5 8 3 (2, 0)5
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Remarks for Table 3.
z = u = 1,

(No. 3.1) X ′ also belongs to this class,
(No. 3.1′) X ′ is a Fano 3-fold of (−KX′)3 = 2 and with

a canonical singularity along the image
of f ′-exceptional divisor,

(No. 3.2) X ′ ' A4 with one Gorenstein terminal singularity,
(No. 3.3) X ′ is smooth, isomorphic to A10,
(No. 3.4) X ′ is smooth, isomorphic to A16.

Table 4. f ′ is of (3, 2)-type.

No. h (−KX)3 N e n deg ∆

4.1 5 11/2 3 8 0 8

4.2 5 6 4 7 1 6

4.3 6 13/2 1 7 0 7

4.4 6 7 2 6 1 6

4.5 6 15/2 3 5 2 5

4.6 6 8 4 4 3 4

4.7 6 17/2 5 3 4 3

4.8 10 29/2 1 6 0 0

Table 4′. f ′ is of (3, 2)-type.

h (−KX)3 N e n deg ∆

5 13/2 5 6 2 4

5 7 6 5 3 2

5 15/2 7 4 4 0

6 9 6 2 5 2

6 19/2 7 1 6 1

Notation and Remarks for Table 4 and Table 4′.
∆ := the discriminant divisor of f ′,

deg ∆ is measured by the ample generator of PicX ′,
in case h = 5, z = u = 2 and X ′ ' F2,0,
in case h = 6, z = u = 1 and X ′ ' P2,

in case h = 10, z = 1, u = 2 and X ′ ' P2.



167-07 : 2002/9/5(14:32)

124 H. TAKAGI

Table 5. f ′ is of (3, 1)-type.

No. h (−KX)3 N e n deg F

5.1 4 9/2 5 9 0 6

5.2 5 9/2 1 9 0 3

5.3 5 5 2 8 1 4

5.4 5 11/2 3 7 2 5

5.5 5 6 4 6 3 6

Table 5′. f ′ is of (3, 1)-type.

h (−KX)3 N e n deg F

4 5 6 8 1 8

Notation and Remarks for Table 5 and Table 5′.
F := a general fiber of f ′,
in case h = 4, z = u = 2,
in case h = 5, z = u = 1.

In the forthcoming paper [Taka02], we will study the geometric realiza-

tion of the diagram in Construction 0.2.
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§1. Preliminaries

Theorem 1.0. (Vanishing theorem) Let f : X → Y be a projective
morphism from a normal variety X with only Kawamata log terminal sin-
gularities. Let D be a Q-Cartier integral Weil divisor such that D −KX is
f -nef and f -big. Then Rif∗OX(D) = 0 for all i > 0.
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We quote this theorem as KKV vanishing theorem.

Proof. See [Kod53], [Kaw82] and [Vie82].

Definition 1.1. (Axial weight) Let (X,P ) be a germ of 3-dimensional
terminal singularity of index > 1. By the classification of such singu-
larities [Mor85], we can easily see that a general deformation of (X,P )
has only cyclic quotient singularities. The number of these cyclic quo-
tient singularities is said to be the axial weight of (X,P ) and denote it by
aw(X,P ). Let X be a 3-fold with only terminal singularities. We define
aw(X) :=

∑
aw(X,P ), where the summation takes place over points of

index > 1.

Theorem 1.2. (Special case of the singular Riemann-Roch Theorem)
Let X be a 3-fold with at worst index 2 terminal singularities and D an
integral Weil divisor on X. Then the following formula holds.

χ(OX(D)) = χ(OX)+
1

12
D(D−KX)(2D−KX)+

1

12
D ·c2(X)+

∑
cQ(D),

where the summation takes place over index 2 points where D is not Cartier
and

∑
cQ(D) = −n/8 for some non-negative integer n. (See [Reid87, The-

orem 10.2] for the definition of cQ(D).)

Proof. See [Reid87, Theorem 10.2].

Theorem 1.3. Let X be a projective 3-fold with at worst index 2 ter-
minal singularities. Then −KX · c2(X) = 24 − 3N/2, where N := aw(X).
Moreover assume that X is a Q-factorial Q-Fano 3-fold with ρ(X) = 1.
Then −KX · c2(X) > 0. In particular N ≤ 15.

Proof. See [Kaw86, Lemma 2.2 and Lemma 2.3] and [Kaw92, Propo-
sition 1].

Corollary 1.4. Let X be a weak Q-Fano 3-fold with I(X) = 2. Then
h0(−KX) = 3 + 1

2 (−KX)3 − N
4 , where N := aw(X).

Proof. This follows directly from Theorem 1.0, Theorem 1.2 and The-
orem 1.3.
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Proposition 1.5. Let X be a 3-fold with only terminal singularities
and D a Cartier divisor on X. Let f : X → (Y,Q) be a D-flopping con-
traction (i.e., a flopping contraction such that −D is f -ample) to a germ
(Y,Q) and f+ : X+ → Y the D-flop constructed as in [Kol89, Theorem 2.4].
Then if (Y,Q) is not exceptional type of index 4 (the type (2) of [Reid87,
Theorem (6.1)]), the strict transform D+ of D on X+ is a Cartier divisor.

Proof. By passing to the analytic category and taking algebraization
[Art69, Theorem 3.8], we may assume that C := exc f is irreducible. More-
over since we can deform X to a 3-fold with only cyclic quotient terminal
singularities [Mor88, (1b.8.2) Corollary] and such a deformation lifts to
that of f : X → Y [KM92, (11.4) Proposition], we may assume that X has
only cyclic quotient terminal singularities. Let H ′ be a general hyperplane
section through Q and H := f∗H ′. Then it is well known that

(1.5.1) H ′ and H have only canonical singularities and H is dominated
by the minimal resolution of H ′.

We show that X has at most 2 singularities on C. Assume the contrary.
Then X has 3 singularities on C, and they coincide with the singularities
of H on C by (1.5.1). Let p : Ỹ → Y be the index 1 cover, X̃ := X ×Y Ỹ ,
C̃ (resp. H̃ ′, H̃) the pull-back of C (resp. H ′, H) on X̃ and f̃ : X̃ →
Ỹ the induced morphism. Then X̃ is smooth and f̃ is also a flopping
contraction. We prove that C̃ is irreducible. If C̃ is reducible, then there
are components which intersect at 3 points since (Y,Q) is not of exceptional
type, a contradiction to R1f̃∗O �

X
= 0. Hence C̃ is irreducible. By [Reid87,

(4.10)], H̃ must be smooth. Hence H̃ ′ has only ODP whence H ′ has a
canonical singularity of type A. But then H has at most 2 singularities, a
contradiction. So we have the assertion.

Now also H has exactly two singularities. For otherwise aw(Y,Q) = 1
since aw(Y,Q) = aw(X). Hence Q is a cyclic quotient singularity but then
there is no flopping contraction to Q, a contradiction. We can prove as
above that C̃ is irreducible. Let r be the index of Q. Let P be a non-
Gorenstein point on C and P̃ the inverse image on X̃. Then P is also of
index r and by [Reid87, (4.10)], we have locally analytically

(P̃ ∈ C̃ ⊂ X̃) ' (o ∈ {x = y = 0} ⊂ C3),

where x, y, z are coordinates of C3 which are semi-invariants of the Zr-
action. Let Ẽ be a Cartier divisor which is localized to z = 0 and E the
image of Ẽ on X. Then we have E ·C = 1/r. Since rE is a Cartier divisor
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and Pic X ' Pic C, we have D ∼ r(D · C)E. Then D+ ∼ r(D · C)E+,
where E+ is the strict transform of E on X+ because linear equivalence is
preserved by a flop. Since the analytic types of X and X+ are the same by
[Kol89, Theorem 2.4], r(D · C)E+ is Cartier and so is D+.

Theorem 1.6. Let X be a Q-Fano d-fold of F (X) > d− 2, I := I(X)
and H := H(X). Then (X,H) be one of the following.

[1] ((6) ⊂ P(12, 2, 3, Id−2),O(I)) with I = 2, 3, 4, 5, 6 and d ≥ 3.
[2] ((4) ⊂ P(13, 2, Id−2),O(I)) with I = 2, 3 and d ≥ 3.
[3] ((3) ⊂ P(14, 2d−2),O(2)) with I = 2 and d ≥ 3.
[4] ((2) ⊂ P(15, 2d−3),O(2)) with I = 2 and d ≥ 4, and the defining

equation does not contain the coordinate of weight 2.
[5] (P(13, 2d−2),O(2)) with I = 2 and d ≥ 3.
[6] (P(13, 2, 4d−3),O(4)) with I = 4 and d ≥ 4.
[7] (P(14, 3d−3),O(3)) with I = 3 and d ≥ 4.
[8] (P(15, 2d−4),O(2)) with I = 2 and d ≥ 5.

Proof. See [San96].

§2. Extremal contractions from 3-folds with only terminal singu-

larities of index 2

The results in this section are well known to the experts, except Propo-

sition 2.3.

Definition 2.0. (Extremal contraction) Let X be an analytic 3-fold
with only terminal singularities and f : X → (Y,Q) a projective morphism
onto a germ of a normal variety with only connected fibers. Let exc f be
the locus where f is not isomorphic. Assume that −KX is f -ample.

(1) If dim Y = 3 and dim exc f = 1, then we say that f is a flipping
contraction.

(2) Only in this case, we assume that −KX is f -numerically trivial instead
that −KX is f -ample. If dim Y = 3 and dim exc f = 1, then we say
that f is a flopping contraction.

(3) Assume that dimY = 3, exc f is purely 2-dimensional and every com-
ponent of the exceptional divisor E is contracted to a curve. Let
C := f(E). Assume moreover that over a general point of every com-
ponent of C, f coincides with the blow-up along C and −E is f -ample.
Then we say that f is an extremal contraction of (2, 1)-type. We say
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f is an extremal divisorial contraction if f is an extremal contraction
of (2, 1)-type or (2, 0)-type.

(4) Assume that dimY = 3, exc f is an irreducible divisor E and f(E) is
a point. Then we say that f is an extremal contraction of (2, 0)-type.

(5) If dim Y = 2 and every fiber is 1-dimensional, then we say that f is
an extremal contraction of (3, 2)-type.

(6) If dim Y = 1 and f−1(Q)red is irreducible, then we say that f is an
extremal contraction of (3, 1)-type.

Proposition 2.1. (Flipping contraction) Let X be an analytic 3-fold
with only index 2 terminal singularities and f : X → (Y,Q) a flipping con-
traction to a germ (Y,Q). Let C be its exceptional curve. (Since (Y,Q) is
a germ, C is connected.) Then we have the following.

(1) C ' P1 and there is only one index 2 singularity on C and −KX ·C =
1/2.

(2) Let P be the unique index 2 singularity on C. Then locally analytically
(P ∈ C ⊂ X) ' (o ∈ {x2 = x3 = x4 = 0} ⊂ {x1x2 + p(x3

2, x4) =
0}/Z2(1, 1, 1, 0)).

(3) Let p(0, x4) = ax4
k, where a is a unit in C{x1, x2, x3, x4} and k ∈ N

(note that k = aw(X,P )). Then there is a deformation f : X → Y

of f over a 1-dimensional disc (∆, 0) such that for t 6= 0, Xt has
only k 1

2 (1, 1, 1)-singularities and ft : Xt → Yt is a bimeromorphic
morphism which is localized to k flipping contractions.

(4) Assume that P is a 1
2 (1, 1, 1)-singularity. Then we can construct the

flip of f as follows. Let g : X1 → X be the blow-up of P and E1

the exceptional divisor. Let h : X2 → X1 be the blow-up along the
strict transform C1 of C on X1 and E2 the exceptional divisor. Then
E2 ' P1 × P1 and we can blow it down to another direction. Let
i : X2 → X1

+ be the blow-down and E1
+ the strict transform of E1

on X1
+. Then E1

+ ' F1 and we can blow it down to the ruling
direction. Let j : X1

+ → X+ be the blow-down. Then X 99K X+ is
the flip.

(5) If X is projective and f is an algebraic flipping contraction, then
(−KX+)3 = (−KX)3− n

2 , where n =
∑

aw(X,P ) and the summation
is taken over the index 2 points on flipping curves.

Proof. As for (1), (2) and (4), see [KM92, (4.2) and (4.4.5)]. We prove
(3). Construct Y ′ as in [ibid. (4.3)]. Then Y ′ = {y1y3+y2p(y2

2, y4) = 0} as
in [ibid. (4.4.2)]. Then f is obtained by blow-up of Y ′ along {y2 = y3 = 0}
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and dividing by the Z2 action. Let Y′ = {y1y3 +y2(p(y2
2, y4)+ ty4) = 0} be

a deformation of Y ′ over a 1-dimensional disc (∆, 0). Then by blow-up of Y′

along {y2 = y3 = 0} and dividing by the induced Z2 action, we obtain the
desired f. Next we prove (5). If we compactify X in (3), then (5) holds by
(4) and the invariance of (−K)3 in a flat family. Since (−KX)3 − (−KX+)3

can be expressed by an intersection number of the pull-back of (−KX) with
exceptional divisors on a simultaneous resolution of X+ and X (and hence
it is determined locally around flipping curves), the general case follows.

Proposition 2.2. (Contraction of (2, 1)-type) Let X be an analytic 3-
fold with only index 2 terminal singularities and f : X → (Y,Q) an extremal
contraction of (2, 1)-type to a germ (Y,Q). Let E be the exceptional divisor
and C := f(E). Let l be the fiber over Q.

(1) Assume that l contains no index 2 point. Then Q is a smooth point
and f is the blow-up along C.

(2) Assume that l contains an index 2 point. Then l contains only one
index 2 point (we denote it by P ) and every component l′ of l passes
through P and satisfies −KX · l′ = 1/2. Moreover Y is Gorenstein.

(3) Assume that X is projective. Then the following formula holds.

(−KE)2 = 8(1 − g(C)) − 2m,

where C is the normalization of C and m is a non-negative integer.
(4) Assume that X has only 1

2 (1, 1, 1)-singularities. Then

(4a) C is a smooth curve.

(4b) (Q ∈ Y ) ' (o ∈ ({xy + zw = 0} ⊂ C4)) or (o ∈ ({xy + z2 +w3 =
0} ⊂ C4)).

(4c) f is constructed as follows. Let g : Z → Y be the blow-up of Y
at Q and F the exceptional divisor. Let h : W → Z the blow-up
of Z along the transform C ′ of C and G the exceptional divisor.
Since C is smooth, C ∩ F is a smooth point of F . So if Y '
({xy + zw = 0} ⊂ C4), then the transforms l1 and l2 of two
rulings of F ' P1 × P1 through C ∩ F are the flopping curves
(resp. if Y ' ({xy + z2 + w3 = 0} ⊂ C4), then the transform
l of a ruling F ' F2,0 through F ∩ C is the flopping curve).
Let W 99K W+ be the flop and F ′ the strict transform of F on
W+. Then (F,−F |F ) ' (P2,O(2)). Hence we can contract it.
Let h′ : W+ → X be the contraction and f : X → Y the natural
morphism.
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(4d) In the former case of (b), Sing E ∩ l = {P}, P is an ordinary
double point of E and l is a reducible conic. In the latter case of
(b), Sing E ∩ l = {P,P ′}, P , P ′ are ordinary double points of E
and l is a double line.

(4e) If X is projective, then m is the number of 1
2 (1, 1, 1)-singularities

contained in E.

Proof. See [Mor82, Theorem 3.3] for (1) and [KM92, (4.6), (4.7)] for
(2).

Assume that X is projective. Let µ : E → E be the normalization
and define a Q-divisor Z by KE = µ∗KE − Z. Then Z is effective and
its support is contained in fibers. Hence Z.(−KE) ≥ 0 and (−KE)2 ≤
(−KE)2 ≤ 8(1 − g(C)). Since −KX − E ∼ f∗(−KY ) − 2E, (−KE)2 =
(−KX − E)2E = 2(2E3 − 2f∗(−KY )E2) ∈ 2Z. Hence we have the formula
as in (3).

Assume that X has only 1
2 (1, 1, 1)-singularities.

(4a) Let X̃ := Spec(OX ⊕ OX(KX)), where we define a ring structure
of OX ⊕ OX(KX) by a smooth general element G of |−2KX |. Let
Ẽ be the pull-back of E. Note that X̃ is smooth. Then there is
a natural crepant contraction of Ẽ from X̃ which contracts Ẽ to a
curve C̃ ' C. Note that Ẽ is negative for exceptional curves of the
crepant contraction and the contraction coincides with the blow-up
of C̃ at a general point of C̃. By these and the proof of [Wil93,
Theorem 2.2] and [Wil97, Proposition 3.1], we know that C̃ (and
hence C) is smooth.

(4b) By (4a), we know that Case 1 in [KM92, (4.8.3)] does not occur by
[KM92, Proposition 4.10.1], and (4b) follows from [KM92, (4.8.4) and
(4.8.5)].

(4c) It is clear that f constructed as in the statement satisfies the assump-
tion of Proposition 2.2. By the uniqueness of such a contraction, (c)
follows.

(4d), (4e) This easily follows from (4c).

Proposition 2.3. (Contraction of (2, 0)-type) Let X be a 3-fold with
only index 2 terminal singularities and f : X → (Y,Q) an extremal contrac-
tion of (2, 0)-type to a germ (Y,Q) which contracts a divisor E to Q.

(1) Assume that E contains no index 2 point. Then one of the following
holds.
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(2, 0)1 : (E,−E|E) ' (P2,O�
2(1)) and Q is a smooth point.

(2, 0)2 : (E,−E|E) ' (P1 × P1,O�
3(1)|�

1×
�

1) and
(Y,Q) ' (({xy + zw = 0} ⊂ C4), o).

(2, 0)3 : (E,−E|E) ' (F2,0,O�
3(1)|�

2,0
) and

(Y,Q) ' (({xy + z2 + ua = 0} ⊂ C4), o) with a ≥ 3.

(2, 0)4 : (E,−E|E) ' (P2,O�
2(2)) and Q is a 1

2 (1, 1, 1)-singularity.

Moreover in any case, f is the blow-up of Q.
(2) Assume that E contains an index 2 point. Then one of the following

holds:

(2, 0)5 : (E,−E|E) ' (F2,0, l), where l is a ruling of F2,0. Q is a
smooth point and f is a weighted blow-up with weight (2, 1, 1).
In particular we have KX = f∗KY + 3E.

(2, 0)6 : KX = f∗KY + E and Q is a Gorenstein singular point.
E3 = 1/2.

(2, 0)7 : KX = f∗KY + E and Q is a Gorenstein singular point.
E3 = 1.

(2, 0)8 : KX = f∗KY + E and Q is a Gorenstein singular point.
E3 = 3/2.

(2, 0)9 : KX = f∗KY + E and Q is a Gorenstein singular point.
E3 = 2.

(2, 0)10 : (E,−E|E) ' (({xy + z2 = 0} ⊂ P(1, 1, 1, 2)),O(2)), and
(Y,Q) ' (({xy + z2 + ua = 0} ⊂ C4/Z2(1, 1, 1, 0)), o), a ≥ 2. f
is the weighted blow-up with weights 1

2 (1, 1, 1, 2). In particular
we have KX = f∗KY + 1

2 E.

(2, 0)11 : (E,−E|E) ' (F2,0, 3l). Q is a 1
3 (2, 1, 1)-singularity and f

is a weighted blow-up with a weight 1
3 (2, 1, 1). In particular we

have KX = f∗KY + 1
3 E.

Proof. (1) is proved in [Mor82, Theorem 3.4 and Corollary 3.5] and
[Cut88] and in case Q is a non-Gorenstein point, (2) is proved in [Luo98,
Corollary 2.5 and Theorem 2.6]. We prove here that if E contains an index 2
point and Q is a Gorenstein point, f is of (2, 0)5–(2,0)9-type. Let a be the
discrepancy for E. Since Q is assumed to be Gorenstein, a is a positive
integer.

First assume that a ≥ 2. Let L := −2E. Then L is free by [AW93]
since KX + a

2 L ≡ 0 and a/2 ≥ 1. Let D be a general member of |L| and
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C := E|D. Since −KD ≡ −(a − 2)E|D is nef and big, C is a tree of P1 by
KKV vanishing theorem. Let µ : Ẽ → E be the normalization of E. If C is
reducible, then µ∗C is not connected, a contradiction to the ampleness of
µ∗C. Hence C ' P1. By this we know that E is normal since E satisfies S2

condition. Since C is ample and isomorphic to P1, E ' P2, Fn (n ≥ 1) or
Fn,0 (n ≥ 2) by a classical result (see for example [Bǎd84]). But if former 2
cases occur, X is smooth, a contradiction to the assumption of (2). Hence
E ' Fn,0 (n ≥ 2). We prove that n = 2. Let v be the vertex of E. Then
v is the unique singularity on E and hence it is of index 2. If E is Cartier
at v, then for a exceptional divisor F over v with discrepancy 1/2 (such
an F exists by [Kaw93]), the discrepancy of F for KY is not an integer, a
contradiction. Hence KX + E is a Cartier divisor and hence KE is Cartier
at v. So n must be 2. Moreover by KE = (a + 1)E|E , a = 3 since a ≥ 2
and E ' F2,0. By taking the canonical cover near v of X, we know that v
is a 1

2 (1, 1, 1)-singularity. We prove that Q is smooth and f is a weighted
blow-up with a weight (2, 1, 1). Let X → X be the blow-up at v. We see
that the strict transform E of E on X is contracted to a curve and let
X → X ′ the contraction. Then next we can contract the strict transform
of F to a smooth point, which is no other than Q. We can easily show that
a weighted blow-up with a weight (2, 1, 1) is decomposed into contractions
as above. So we are done.

Next we assume that a = 1. Let P be an index 2 point on X. If E is
Cartier at P , then for a exceptional divisor F over P with discrepancy 1/2,
the discrepancy of F for KY is not an integer, a contradiction. Hence E is
not Cartier at P whence M := −KX −E is an ample Cartier divisor. So E
is a Gorenstein (possibly non normal) del Pezzo surface since −KE = M |E .
Since χ(OE) = 1 by [Sak84, Theorem (5.1)] and [Reid94, Corollary 4.10],
Pic E is torsion free. So −KX + E|E ∼ 0 and hence −KX + E ∼ 0 by
Pic X ' PicE. So we have M ∼ −2KX . Since (−KE)2 = 4E3 ≥ 2, |−KE |
is free by [Reid94, Corollary 4.10] and [Fuj90, Corollary 1.5]. By the exact
sequence

0 −→ OX(−2E − KX) −→ OX(−E − KX) −→ OE(−KE) −→ 0

and the KKV vanishing theorem, |M | is also free. Let G be a general
member of |M |, l := E|G and G′ := f(G). Then Q is a minimally elliptic
singularity of G′ by the formula KG = f |G

∗KG′ − l and [Lau77, Theo-
rem 3.4]. On the other hand, the embedded dimension of G′ at Q is at
most 4 since Q is a cDV singularity on Y . Hence we have −(l2)G ≤ 4 by
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[Lau77, Theorem 3.13] whence (−KE)2 = −2(l2)G = 2, 4, 6, 8. These corre-
spond to type E6 ∼ E9 respectively.

Proposition 2.4. (Contraction of (3, 2)-type) Let X be an analytic 3-
fold with only index 2 terminal singularities and f : X → (Y,Q) an extremal
contraction of (3, 2)-type to a germ of surface. Let l be the fiber over Q.
Then Q is a smooth point or an ordinary double point. Moreover the fol-
lowing description holds.

(1) If l contains no index 2 point, Q is a smooth point and f is a usual
conic bundle.

(2) If l contains an index 2 point and Q is a smooth point, l contains
only one index 2 point and every component l′ of l passes through it.
Moreover −KX · l′ = 1/2.

(3) If l contains an index 2 point and Q is an ordinary double point, f is
analytically isomorphic to one of the following.

(3-1) Let P1 × (C2, o) → (C2, o) be the natural projection. Define the
action of the group Z2 on P1

x0,x1
× C2

u,v:

(x0, x1;u, v) 7−→ (x0,−x1;−u,−v).

Set X = P1 × C2/Z2 and (Y,Q) = (C2/Z2, o).

In particular X has two 1
2 (1, 1, 1)-singularities on l and lred ' P1

and −KX · lred = 1.

(3-2) Let X ′ be a hypersurface in P2
x0,x1,x2

×C2
u,v defined by the equa-

tion x0
2 + x1

2 + x2
2φ(u, v) = 0, where φ(u, v) has no multi-

ple factors and contains only monomials of even degree. Let
f ′ : X ′ → C2 be the natural projection. Define the action of the
group Z2 on X ′ as follows.

(x0, x1, x2;u, v) 7−→ (−x0, x1, x2;−u,−v).

Set X := X ′/Z2 and (Y,Q) = (C2/Z2, o).

In particular P is the unique index 2 point and aw(X,P ) = 2. If
mult(0,0)(φ) = 2, then (X,P ) is a cA/2 point or if mult(0,0)(φ) ≥
4, then (X,P ) is a cAx/2 point.

Proof. See [Mor82, Theorem 3.5] for (1) and [Pro97, Theorems 3.1,
3.15 and Examples 2.1 and 2.3] for (2) and (3).
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Proposition 2.5. (Contraction of (3, 1)-type) Let X be an analytic 3-
fold with only index 2 terminal singularities and f : X → (C,Q) be an
extremal contraction of (3, 1)-type to a germ of a curve. Let F be the fiber
over Q. Then Q is a smooth point and the following description holds.

(1) If F contains no index 2 point, then all fibers are irreducible and
reduced and (possibly non-normal) Gorenstein del Pezzo surfaces.
Moreover if (−KF )2 = 9, we can write −KX ∼ 3A for some rela-
tively ample divisor A and X = P(f∗OX(A)) which is a P2-bundle.
If (−KF )2 = 8, we can write −KX ∼ 2A for some relatively am-
ple divisor A and X is embedded in P3-bundle P(f∗OX(A)) as a
quadric bundle (the last means all fibers are quadrics in P3). The
case (−KF )2 = 7 does not occur.

(2) If F contains an index 2 point, then F is irreducible and reduced,
or F = 2Fred and Fred is irreducible. Fred is a del Pezzo surface of
Gorenstein index ≤ 2.

Proof. See [Mor82, Theorem 3.5] for (1). (2) follows from the existence
of a section [CT86].

§3. A generalization of Takeuchi’s construction

In this section, we explain the construction as in 0.2 in a more general

setting. The situation of Set up 3.3 is closer to that of 0.2. We use slight

different notation to 0.2 for unified treatment of several cases. The differ-

ences between the notation of this section and that of 0.2 are as follows. D,

Di and D̃ of this section correspond to E, Ei and Ẽ in 0.2 respectively. D′

of this section corresponds to E′ in 0.2 in case f ′ is birational, or L in 0.2

in case f ′ is not birational.

Set up 3.0. Let Y be a Q-factorial terminal with ρ(Y ) = 2. Assume
that there exists a diagram as follows.

Y0 := Y
g0 �� ��� Y1

g1 �� ��� · · ·
gk−1����� Yk

f ′

�� 								

X ′,

where

(1) Yi 99K Yi+1 is a flop or a flip.
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(2) f ′ is an extremal contraction which is not isomorphic in codimension
1, or a crepant divisorial contraction.

We define Y ′ := Yk.

We do calculations which are similar to ones Kiyohiko Takeuchi did in

[Take89]. The following lemma is basic for our computations.

Lemma 3.1. We use the notation of Set up 3.0. Let D be a divisor on
Y . Let γi be an irreducible component of the flipping (or flopping) curve
for gi and Di the strict transform of D on Yi (we set D0 = D). Then

(1) If Yi
g0

99K Yi+1 is a flop, then (−KYi+1
)3 = (−KYi

)3, (−KYi+1
)2Di+1 =

(−KYi
)2Di, (−KYi+1

)Di+1
2 = (−KYi

)Di
2 and ei := Di

3 − Di+1
3 ∈

Z/s3, where s is a positive rational number such that sDi is numeri-
cally equivalent to a Cartier divisor relatively with respect to the flop-
ping contraction. The sign of ei is the same as one of (Di · li).

(2) If Yi
gi

99K Yi+1 is a flip, let di := (−KYi
)3 − (−KYi+1

)3. Then di > 0
and (−KYi+1

)2Di+1 = (−KYi
)2Di − aidi, (−KYi+1

)Di+1
2 = (−KYi

)

Di
2 −ai

2di and Di+1
3 = Di

3 −ai
3di, where ai := Di·γi

(−KYi
)·γi

(note that

this number ai is well defined since flipping curves are numerically
proportional).

(3) We define ei (resp. ai and ni) to be 0 if Yi 99K Yi+1 is not a flop
(resp. a flip). Then we have

(−KY ′)2D̃ = (−KY )2D −
∑

aidi,

(−KY ′)D̃2 = (−KY )D2 −
∑

ai
2di,

D̃3 = D3 −
∑

ei −
∑

ai
3di.

(4) If D is a non-zero effective divisor and D · γ0 > 0, then Di · γi > 0
for any i.

Proof.

(1) Let

Z
p

��� � � � � � �
q

�� �������

Y0 Y1
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be the common resolution of Yi and Yi+1. Then by the negativity
lemma ([K+92, Lemma 2.19]), we can easily see that p∗KYi

= q∗KYi+1

(for example, see [Kol89, Proof of Lemma 4.3] or below argument).
Thus, the former 3 equalities follow. Since sDi+1 is numerically
equivalent to a Cartier divisor relatively by Proposition 1.5, we have
ei ∈ Z/s3. Let

p−1Di = p∗Di − R = q∗Di+1 − R′,

where R and R′ are effective divisors which are exceptional for p and
q. Rewrite this as

−p∗Di = −q∗Di+1 + R′ − R.

We only treat the case that Di · li > 0. Then −q∗Di+1 is p-nef.
Hence we see that R′ − R > 0 and p∗(R

′ − R) 6= 0 by the negativity
lemma. So we can write p∗Di = q∗Di+1 −F , where F := R′−R is an
effective divisor. Consider the identity (p∗Di)(q

∗Di+1)
2 = (q∗Di+1 −

F )(q∗Di+1)
2. Its right side is equal to Di+1

3. Its left side is equal
to (p∗Di)(p

∗Di + F )2 = D3 + D.p∗(F
2). By p∗F 6= 0, we know that

−p∗(F
2) is a non-zero effective 1-cycle. Hence Di.p∗(F

2) < 0 and we
are done.

(2) The proof is very similar to one of (1). Let

Z
p

��� � � � � � �
q

�� ��������

Yi Yi+1

be the common resolution of Yi and Yi+1. By the definition of ai,

(a) Hi := ai(−KYi
) − Di

is numerically trivial for the flipping curves. Let Hi
+ be the strict

transform of Hi. By the negativity lemma, we can easily see that
p∗Hi = q∗Hi

+ and p∗(−KYi
) = q∗(−KYi+1

) − G, where G is an effec-
tive divisor which is exceptional for p and q. di > 0 can be proved
similarly to the proof of positivity of e. Consider the following iden-
tities.

(−KYi
)2Hi = (p∗(−KYi

))2p∗Hi = (q∗(−KYi+1
) − G)2q∗Hi

+(b)

= (−KYi+1
)2Hi

+
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and similarly

(c) (−KYi
)Hi

2 = (−KYi+1
)Hi

+2

and

(d) Hi
3 = H+

i
3
.

By (a)–(d) and the definition of di, we obtain the assertion.
(3) This follows from (1) and (2).
(4) We prove this by induction on i. Assume that Di · γi > 0 is proved.

Then Di+1.γi
+ < 0, where γi

+ is the flopped or flipped curve corre-
sponding to γi. If Di+1 · γi+1 ≤ 0, then Di+1 is non-positive for two
extremal rays of Yi+1 and hence Di+1 is non positive for all effective
curves on Yi+1 since ρ(Yi+1) = 2. But this contradicts the effectivity
of Di+1 and Di+1 6= 0.

From now on, we divide f ′ into several cases.

Case 1. f ′ is an extremal contraction of (2, 1)-type.

Case 2. f ′ is an extremal contraction of (2, 0)-type.

Case 3. f ′ is an extremal contraction of (3, 2)-type.

Case 4. f ′ is an extremal contraction of (3, 1)-type.

Case 5. f ′ is a crepant divisorial contraction.

Assume that D and −KY are numerically independent. Let D̃ be the

strict transform of D on Y ′. In case f ′ is birational (resp. f ′ is not bira-

tional), let D′ be the exceptional divisor of f ′ (resp. the pull-back of the

ample generator of Pic X ′). By ρ(Y ′) = 2, we can write

(3.1) D′ ≡ z(−KY ′) − uD̃.

In case f ′ is birational and −KY ′ is f ′-ample, let d′/r′ be the discrep-

ancy of D′ for KX′ , where r′ is 1 in Case 1, or the index of f ′(D′) in Case 2.

Note that d′ = 1 in Case 1.

Claim 3.2. zd′ + r′ = uk for some k ∈ Z.

Proof. By (3.1) and −KY ′ = f ′∗(−KX′)− d′

r′ D′, we have (zd′+r′)D′ ≡

r′zf ′∗(−KX′)− ur′D̃. Since r′f ′(D̃) is Cartier divisor along f ′(D′) outside
a finite set of points in Case 1 (resp. at f ′(D′) in Case 2), zd′+r′

u is an
integer.
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Case 1. Let C := f ′(D′). We have the following.

(−KY ′ + D′)2(−KY ′)(3-1-1)

= u2
{
k2(−KY ′)3 − 2k(−KY ′)2D̃ + (−KY ′)D̃2

}
= (−KX′)3.

(−KY ′ + D′)2D̃ = u2
{
k2(−KY ′)2D̃ − 2k(−KY ′)D̃2 + D̃3

}
(3-1-2)

=
z

u
(−KX′)3.

z(−KY ′ + D′)2(−KY ′) − (z + 1)(−KY ′ + D′)D′(−KY ′)(3-1-3)

= u2
{
k(−KY ′)2D̃ − (−KY ′)D̃2

}

= z(−KX′)3 − (z + 1)(−KX′ · C).

z2(−KY ′ + D′)2(−KY ′) − (z + 1)2(−KY ′)D′2(3-1-4)

= 2zu(z + 1)(−KY ′)2D̃ − (2z + 1)u2(−KY ′)D̃2

= z2(−KX′)3 − (z + 1)2
{

2(g(C) − 1) +
m

2

}
,

where C is the normalization of C and m ∈ N. (The last equality of (3-1-4)

can be proved similarly to that of Proposition 2.2 (3).)

We rewrite these by using Lemma 3.1 as follows.

{
k2(−KY )3 − 2k(−KY )2D + (−KY )D2 −

∑
di(ai − k)2

}
u2(3-1-1′)

= (−KX′)3.

e +
∑

diai(ai − k)2(3-1-2′)

= k2(−KY )2D − 2k(−KY )D2 + D3 −
z

u3
(−KX′)3.

u2
{
k(−KY )2D − (−KY )D2 +

∑
diai(ai − k)

}
(3-1-3′)

= z(−KX′)3 − (z + 1)(−KX′ · C).

2zu(z + 1)(−KY )2D − (2z + 1)u2(−KY )D2(3-1-4′)

+
∑

diaiu
2{ai(2z + 1) − 2zk}

= z2(−KX′)3 − (z + 1)2
{

2(g(C) − 1) +
m

2

}
.
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Case 2. We have the following.

z3(−KY ′)3 − 3z2u(−KY ′)2D̃ + 3zu2(−KY ′)D̃2 − u3D̃3 = D′3.(3-2-1)

D̃D′2 = z2(−KY ′)2D̃ − 2zu(−KY ′)D̃2 + u2D̃3 = −
k

r′
D′3.(3-2-2)

(−KY ′)D′D̃ = z(−KY ′)2D̃ − u(−KY ′)D̃2 =
d′k

r′2
D′3.(3-2-3)

We rewrite these by using Lemma 3.1 as follows.

z3(−KY )3 − 3z2u(−KY )2D + 3zu2(−KY )D2 − u3D3(3-2-1′)

+
∑

di(uai − z)3 + u3e = D′3.

∑
diai(aiu − z)2 + u2e(3-2-2′)

= z2(−KY )2D − 2zu(−KY )D2 + u2D3 +
k

r′
D′3.

(3-2-3′) z(−KY )2D − u(−KY )D2 +
∑

diai(aiu − z) =
d′k

r′2
D′3.

Case 3. We have the following.

D′3 = z3(−KY ′)3 − 3z2u(−KY ′)2D̃ + 3zu2(−KY ′)D̃2 − u3D̃3 = 0.

(3-3-1)

D̃D′2 = z2(−KY ′)2D̃ − 2zu(−KY ′)D̃2 + u2D̃3 =
2z

u
l2.(3-3-2)

z(−KY ′)3 − u(−KY ′)2D̃ = (−KY ′)2D′.(3-3-3)

We set u = mz and l = f ′
∗D

′. We rewrite these by using Lemma 3.1 as

follows.

(−KY )3 − 3m(−KY )2D + 3m2(−KY )D2 − m3D3(3-3-1′)

+
∑

di(mai − 1)3 + m3e = 0.

z2
{∑

diai(mai − 1)2 + m2e
}

(3-3-2′)

= z2{(−KY )2D − 2m(−KY )D2 + m2D3} −
2

m
l2.
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z
{

(−KY )3 − m(−KY )2D +
∑

di(mai − 1)
}

= (−KY ′)2D′.(3-3-3′)

If l is free, then (−KY ′)2D′ = 8(1 − g(l)) − ∆ · l + 4l2.

Case 4. We calculate the following.

(−KY ′)D′2 = z2(−KY ′)3 − 2zu(−KY ′)2D̃ + u2(−KY ′)D̃2 = 0.(3-4-1)

D̃D′2 = z2(−KY ′)2D̃ − 2zu(−KY ′)D̃2 + u2D̃3 = 0.(3-4-2)

(−KY ′)2D′ = z(−KY ′)3 − u(−KY ′)2D̃ = deg F,(3-4-3)

where F is a general fiber of f ′ and deg F := (−KF )2.

We set u = mz. We rewrite these by using Lemma 3.1 as follows.

2m(−KY )2D − m2(−KY )D2 +
∑

di(mai − 1)2 = (−KY )3.(3-4-1′)
∑

diai(mai − 1)2 + m2e = (−KY )2D − 2m(−KY )D2 + m2D3.(3-4-2′)

z
{

(−KY )3 − m(−KY )2D +
∑

di(mai − 1)
}

= deg F.(3-4-3′)

Case 5. Since −KY ′ · l = 0 and D′ · l = −2 for a general fiber l of D′, we

have u(D · l) = 2. By (−KY )2D′ = 0, we have

(3-5-1′)
∑

di(z − uai) = z(−KY )3 − u(−KY )2D

Set up 3.3. From now on we moreover assume that Y is a weak Q-
Fano 3-fold and there exists an extremal contraction f : Y → X which is
not isomorphic in codimension 1. In case excep f is a divisor, let D be
the exceptional divisor, or the pull-back of the ample generator of Pic X
otherwise. Let R be the extremal ray other than one associated to f . If R
is a ray associated to a contraction which is not isomorphic in codimension
1, denote the contraction by f ′ : Y := Y0 → X ′. If R is a flopping ray, then
after the flop Y0 99K Y1, another extremal ray of Y1 is KY1

-negative because
KY1

is not nef and ρ(Y1) = 2. By this consideration, we see that we can
run the minimal model program from Y0 or Y1 and we obtain the diagram
as in Set up 3.0. Note that if Yi 99K Yi+1 is a flop, then i = 0, and if f ′ is
a crepant contraction, then Y = Y ′ and dim X ′ = 3. We denote e0 by e for
simplicity.

Claim 3.4. (1) In case f ′ is of (3, 2)-type, then X ′ is a log del Pezzo
surface with ρ(X ′) = 1.
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(2) In case f ′ is of (3, 1)-type, then X ′ ' P1 and hence D′ = f ′∗O�
1(1).

Proof.

(1) By [Pro97, Lemma 1.10], X ′ has only cyclic quotient singularities.
By the general theory of the conic bundle, −4KX′ ≡ f ′

∗(−KY ′
2)+∆,

where ∆ is the discriminant divisor of f ′. Hence −KX′ .A > 0 for any
ample divisor A on X ′ since −KY ′ is big. Hence X ′ is a log del Pezzo
surface with ρ(X ′) = 1.

(2) By the edge sequence of the Leray spectral sequence

0 −→ H1(X ′,OX′) −→ H1(Y ′,OY ′) (exact)

and H1(Y ′,OY ′) = 0, we have H1(X ′,OX′) = 0, i.e., X ′ ' P1 and
hence D′ = f ′∗O�

1(1).

Claim 3.5. D and −KY are numerically independent.

Proof. D and −KY are non-zero and Q-effective. Hence they are
positive for general curves. On the other hand D is f -semi-negative and
−KY is f -ample. Hence we have the assertion.

Claim 3.6. (1) Assume that f is birational. Write −KX ≡ qS,
where S is the positive generator of Z1(X)/≡ and q is a positive
integer. Let d/r be the discrepancy of D for KX , where r is 1 in case
f(D) is a curve, or the index of f(D) in case f(D) is a point. Note
that d = 1 in the former case. Then z ∈ N/q, u > 0 and dz + ru ∈ N.

(2) Assume that f is of (3, 2)-type. Then z ∈ N/2 and u > 0. Assume
moreover that there exists a degenerate fiber contained in Reg Y . Then
z ∈ N.

(3) Assume that f is of (3, 1)-type. Then u > 0. Let F be a general fiber.
Then

(1-1) in case F 6' P1 × P1, P2, we have z ∈ N.
(1-2) In case F ' P1 × P1, we have z ∈ N/2.
(1-3) In case F ' P2, we have z ∈ N/3.

Proof. Let D′ be the strict transform of D′ on Y . Assume that f is
birational. Then on X, f(D′) ≡ zqS. So z ∈ N/q. By (3.1), we have
D′ ≡ zf∗(−KX) −

(
dz
r + u

)
E. Hence dz

r + u ∈ N/r.
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Assume that f is not birational. Let l be a curve in a fiber of f . Then
0 ≤ D′ · l = z(−KY ) · l. Hence z ≥ 0. If z = 0, then D′ ≡ −uD and u < 0
whence D′ is positive for the extremal ray different from one associated to
f . Hence by Lemma 3.1 (4), D′ is f ′-ample, a contradiction. Thus we have
z > 0.

In case f is (3, 2)-type, let l be a general fiber. Then D′ · l = 2z ∈ N.
Assume that there exists a degenerate fiber contained in Reg Y and let l′

be a component of it. Then D′ · l′ = z ∈ N.

In case f is of (3, 1)-type, let F be a general fiber and l ⊂ F a (−1)-
curve in case F 6' P1 × P1, P2 or a ruling ⊂ F if F ' P1 × P1 or a line ⊂ F
if F ' P2. Then we obtain the similar assertion.

If u ≤ 0, then D′ is big, a contradiction.

Claim 3.7. (1) If Yi
gi

99K Yi+1 and Yi+1

gi+1

99K Yi+2 are flips, then
ai+1 < ai.

(2) If Yi 99K Yi+1 is a flip, then k < d′ai in case f ′ is birational (resp.
mai > 1 in case f ′ is not birational).

Proof. We use the notation of Lemma 3.1 and let γi
+ be a flipped

curve on Yi+1.

(1) By (ai(−KYi+1
)−Di+1).γi

+ = 0 and (ai(−KYi+1
)−Di+1) ·m > 0 for

a general curve m on Yi+1, we have (ai(−KYi+1
) − Di+1) · γi+1 > 0.

On the other hand we have (ai+1(−KYi+1
) − Di+1) · γi+1 = 0. Hence

we are done.
(2) If Yi 99K Yi+1 is a flip and k ≥ d′ai (resp. mai ≤ 1) for some i, then

(k(−KYi
) − d′Di) · γi ≥ 0 and hence (k(−KYi+1

) − d′Di+1).γi
+ ≤ 0

(resp. (−KYi
−mDi) · γi ≥ 0 and hence (−KYi+1

−mDi+1).γi
+ ≤ 0).

Note that f ′∗(−KX′) ≡ u
r′ {k(−KY ′) − d′D̃} in case f is birational

(resp. D′ ≡ z(−KY ′ − mD̃) in case f is not birational). Hence
k(−KYi

)−d′Di (resp. −KY ′−mD̃) is a non-zero Q-effective divisor for
any i. Thus by ρ(Yi+1) = 2, k(−KYi+1

)− d′Di+1 (resp. −KYi
−mDi)

is positive for another extremal ray of Yi+1. So k(−KY ′)− d′D̃ (resp.
−KYi

− mDi) is positive for a fiber of f ′. But this is absurd.

By an additional assumption that |−KY − D| 6= φ, the relation of u

and z is restricted as follows.
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Claim 3.8. If |−KY −D| 6= φ, then z ≤ u. Moreover in Case 3, m = 1
or 2, or in Case 4, m = 1 or m = 2 and F ' P1 × P1 or m = 3/2 or 3 and
F ' P2.

Proof. By (3.1), we have

(3.2) D′ ≡ (z − u)(−KY ′) + u(−KY ′ − D̃).

By the assumption, |−KY ′ − D̃| 6= φ. Hence if z > u, then D′ is big by
(3.2), a contradiction. So z ≤ u.

In Case 3, for a general fiber l, we have D̃ · l = 2z
u ∈ N. So 2z

u = 1 or
2 since z ≤ u. In Case 4, let l be a (−1)-curve in F if F 6' P1 × P1, P2 or a
ruling if F ' P1 × P1 or a line if F ' P2. By calculating D̃ · l, we obtain
the assertion similarly to Case 3.

§4. Existence of a weak Q-Fano blow-up for a Q-Fano 3-fold with

I(X) = 2

Definition 4.0. Let X be a Q-Fano variety. We say that a birational
morphism f : Y → X is a weak Q-Fano blow-up if the following hold.

(1) Y is a weak Q-Fano variety.
(2) f is an extremal contraction whose exceptional locus is a prime Q-

Cartier divisor.

Theorem 4.1. Let X be a klt weak Q-Fano 3-fold. Assume the fol-
lowing.

(1) I(X) ≤ 2,
(2) there are only a finite number of non-Gorenstein points on X, and
(3) (−KX)3 ≥ 1 and h0(−KX) ≥ 1.

Then |−2KX | is free.

Proof. By replacing X by its anti-canonical model, we can assume
that X is a klt Q-Fano 3-fold. Let S be a general member of |−2KX |. By
[Amb99, Theorem 1.2], S has only log terminal singularities. By the exact
sequence

0 −→ OX −→ OX(−2KX) −→ OS(−2KX |S) −→ 0

and h1(OX ) = 0, we have |−2KX |S | = |−2KX ||S and Bs|−2KX | =
Bs|−2KX |S |. Note that −KX |S = KS . Hence it suffices to prove that
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|KS + KS | is free. Assume that |2KS | is not free. Let y be a base point
of |KS + KS |. Assume that y is worse than canonical. By [Kawa00, Theo-
rem 9], y is a cyclic quotient singularity of index 2. So Kawachi’s invariant
δ′ defined in [Kawa00] is 1/2 at y. On the other hand, by the assumption
that (−KX)3 ≥ 1, KS

2 ≥ 2 holds. So KS
2 > δy holds (δy is defined in

[KaM98]). But by (1), we have KS · C = −KX · C ≥ 1/2 for any curve C
whence by [ibid.], y cannot be a base point of |2KS |, a contradiction. So
we may assume that S does not contain a non-Gorenstein point of X by
(2) and has only canonical singularities. Let µ : S̃ → S be the minimal res-
olution. Since h0(K �

S
) = h0(KS) = h0(−KX) ≥ 1, |2K �

S
| is free by [Fra91]

and hence |2KS | is free, a contradiction again.

Hence |KS + KS | is free and also |−2KX | is free.

Proposition 4.2. Let X be a weak Q-Fano 3-fold with I(X) = 2 such
that |−2KX | is free. Let P be an index 2 point such that there is no curve
l through P such that −KX · l = 0. Let f : Y → X an extremal contraction
of (2, 0)-type from a 3-fold Y with only terminal singularities such that

(1) f -exceptional divisor is a prime Q-Cartier divisor. We call it E,
(2) P := f(E) and −KY = f∗(−KX) − 1

2 E, and
(3) (−KY )3 > 0.

Then Y is a weak Q-Fano 3-fold.

Proof. By the assumption that there is no curve l through P such
that −KX · l = 0, Bs|−2KX − P | is a finite set of points near P . So by
H0(−2KY ) ' H0(O(−2KX) ⊗ mP ), we know −KY is nef. So by (3), it is
also big and we are done.

We need the following technical lemma.

Lemma 4.3. Let X be a Q-factorial Q-Fano 3-fold with ρ(X) = 1,
I(X) = 2 and F (X) = 1/2. Let f : Y → X be a weak Q-Fano blow-up with
I(Y ) = 2 and E the f -exceptional divisor. Assume that

(1) f(E) is a point,
(2) |−2KY | is free,
(3) h0(−KY − E) > 0, and
(4) there is no divisor contracted to a point by a multi-anti-canonical mor-

phism.
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Then H0(OY (−2KY )) → H0(OE(−2KY |E)) is surjective.

Proof. We are inspired by [Reid80, p.29, Step 4]. It suffices to prove
that h1(OY (−2KY − E)) = 0. Take a general member T ∈ |−2KY |. Then
by the exact sequence

0 −→ OY (−E) −→ OY (−2KY − E) −→ OT (−2KY − E|T ) −→ 0

and hi(OY (−E)) = 0 for i = 1, 2 (these vanishing easily follows from

0 −→ OY (−E) −→ OY −→ OE −→ 0

since by Proposition 2.3, h1(OE) = 0), we obtain h1(OY (−2KY − E)) =
h1(OT (−2KY − E|T )). By Serre duality, we have h1(OT (−2KY − E|T )) =
h1(OT (2KT − E|T )) = h1(OT (KY + E|T )). We prove that h1(OT (KY +
E|T )) = 0 below. Take a member F ∈ |−KY − E| 6= φ. Then since
ρ(X) = 1 and −KX is a positive generator of Z1(X)/≡, we can write
F = F ′ + rE, where F ′ is a prime divisor and r is a non-negative integer.
Since |−2KY | is free and T is general, we may assume that F ′|T and E|T is
irreducible by (4). Note that (F ′ + rE)|T ·E|T = (−KY −E)E(−2KY ) > 0
and (E|T )2 < 0. Hence if r > 0, for every integer b ∈ [1, r], we have
(F ′|T +(r−b)E|T )(bE|T ) > 0, which means F |T is numerically 1-connected.
So by [Ram72, Lemma 3], we have H0(OF |T ) ' C. Hence by the exact
sequence

0 −→ OT (−F |T ) −→ OT −→ OF |T −→ 0,

we have h1(OT (−F |T )) = 0 which is exactly what we want.

§5. Solution of the equations of Diophantine type for a Q-Fano

3-fold with I(X) = 2

We will prove the following theorem in this section, which is a slight

generalization of the main theorem (compare the assumption (3)).

Theorem 5.0. Let X be a Q-factorial Q-Fano 3-fold with the following
properties.

(1) ρ(X) = 1,
(2) I(X) = 2,
(3) −KX is the positive generator of Z1(X)/≡,
(4) h0(−KX) ≥ 4, and
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(5) there exists an index 2 point P such that

(X,P ) ' ({xy + z2 + ua = 0}/Z2(1, 1, 1, 0), o)

for some a ∈ N.

Let f : Y → X be the weighted blow-up at P with weight 1
2 (1, 1, 1, 2) and

E the exceptional divisor. Then Y is a weak Q-Fano 3-fold with I(Y ) = 2.
Run the program as in Set up 3.3. Then z ≤ u and Yi 99K Yi+1 is a flip
for at most one i and ai = 2 for such i (we use the notation as in Set
up 3.3). Moreover we figure out the solutions of equations in Section 3
as in Tables 1–5 and Tables 1′–5′ of the main theorem with the following
additional possibilities for the case that F (X) = 1.

f ′ is of (2, 1)-type.

(−KX)3 N e deg C X ′

6 8 0 6 B2

z = u = 1.

f ′ is of (3, 2)-type.

h (−KX)3 N e n deg ∆

6 10 8 0 7 0

Proof. By (4) and Corollary 1.4, we have (−KX)3 > 2. Moreover
(−KY )3 = (−KX)3 − 1

2 > 0. Hence by Proposition 4.2, Y is a weak Q-
Fano 3-fold. We can easily check that I(Y ) = 2 by calculating the weighted
blow-up (here we need the assumption (5)).

We run the program as in Set up 3.3. We follow the notation in 0.2.
The differences between the notation of 0.2 and Set up 3.3 are explained in
the beginning of Section 3.

By the assumption (4) and the description of the extraction f as in
Proposition 2.3 (2, 0)10, the exact sequence

0 −→ OY (−KY − E) −→ OY (−KY ) −→ OE(1) −→ 0,

yields |−KY − E| 6= φ. Hence by Claim 3.8, we have z ≤ u.

Claim 5.1. Ei is a Cartier divisor for any i. In particular ai is an
even integer.
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Proof. Assume that g0 is a flop. By Proposition 1.5, E1 is a Cartier
divisor since E is a Cartier divisor. If gi is a flip, there is no non-Gorenstein
point on the flipped curves. Hence Ei is Cartier by induction on i. The
latter half follows from Proposition 2.1 (1).

We follow the case division in Section 3. Note that by Claim 3.7 and
Claim 5.1, once we prove that ai = 2 if ai > 0, we see that there is at most
one flip.

Case 1. In this case we first show that F (X ′) ≥ 1. In fact by (3.1), we
have −KX′ ≡ u

z f ′(Ẽ). Since f ′(Ẽ) is Cartier by Proposition 2.2 (2) and
Claim 5.1, and u ≥ z, the assertion holds. Moreover by [Isk79] and [San96],
F (X ′) = 1, 3/2, 2, 5/2, 3 or 4.

We note that by Proposition 2.2, we have (−KE′)2 = 8(1− g(C))− 2m
with some non-negative integer m. By z + 1 = uk and z ≤ u, we have
z + 1 = u or z = u = 1.

First assume that z + 1 = u. Define a ∈ Z by the formula f ′(Ẽ) = aH,
where H is a primitive Cartier divisor of X ′. Then F (X ′) = a z+1

z . Hence
z = 1, 2, 3, 4 and if z = 1, then F (X ′) = 2 or 4, if z = 2, then F (X ′) = 3/2
or 3, if z = 3, then F (X ′) = 4, or if z = 4, then F (X ′) = 5/2. But we prove
that the case that z = 1 and F (X ′) = 4 does not occur. For otherwise, let
H ′ be the strict transform of f ′∗H on Y . Then we have −KY ≡ 2H ′ + E
and hence −KX ≡ 2f(H ′), a contradiction to the assumption (3).

Assume ai ≥ 4 for some i. Note that aiu > z by u ≥ z. By (3-1-2′),
e ≤ (k + 2)2 − 2(4 − k)2 < 0, a contradiction.

Set n := 2
∑

di. We obtain the following.

(5-1-1) (−KX)3 =
9 + n

2
+

1

u2
(−KX′)3

obtained by (3-1-1′),

(5-1-2) e + n = 9 −
u − 1

u3
(−KX′)3

obtained by (3-1-2′),

(5-1-3) (−KX′ · C) =
u − 1

u
(−KX′)3 − (3 + n)u

obtained by (3-1-3′),

(5-1-4) −6u + 6 − 2nu +
(u − 1)2

u2
(−KX′)3 = 2g(C) +

m

2
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obtained by (3-1-4′). We use (5-1-4) for the bound of n.
By (3.1), we have Ẽ · l = 1 for a general fiber l of E′. If E′ contains an

index 2 point, then there is a component l′ of a fiber such that −KY ′ ·l′ = 1/2
by Proposition 2.2. So we have Ẽ · l′ = 1/2. But this contradicts the fact
that Ẽ is a Cartier divisor. Hence E′ contains no index 2 point. This fact
and information from X ′ determine N . Hence we can easily figure out the
solutions as in Tables 1 and 1′.

Next assume z = u = 1. By Claim 3.7 (2) and Claim 5.1, ai ≥ 4 if ai >
0. Assume that ai ≥ 6 for some i. By (3-1-2′), e ≤ (k + 2)2 − 3(6− k)2 < 0,
a contradiction. Hence we must have ai = 4 for all i such that Yi 99K Yi+1

is a flip. By setting n := 2
∑

di, we obtain the following.

(5-1-1′) (−KX)3 = 6 −
1

4
e −

3

2
n

obtained by (3-1-1′) and (3-1-2′),

(5-1-2′) e + 8n = 16 − (−KX′)3

obtained by (3-1-2′),

(5-1-3′) (−KX′ · C) = 6 −
1

2
e − 6n

obtained by (3-1-2′) and (3-1-3′),

(5-1-4′) (−KX′)3 − 2 − 16n = 8g(C) + 2m.

By (5-1-3′) and (−KX′ · C) > 0, we must have n = 0, i.e., there is no
flip while Y 99K Y ′.

By (5-1-1′) and (5-1-2′), we deduce that (−KX′)3 = 16 − e > 0. By
(5-1-2′) and (5-1-3′), we have (−KX′ ·C) = 1

2 (−KX′)3 − 2 > 0. Therefore,
(−KX′)3 = 6, 8, 10, 12, 14, 16.

Claim 5.2. h0(−KX) = 4.

Proof. By Ẽ ≡ −KY ′ − E′, we have E ≡ −KY − Ẽ′, where Ẽ′ is the
strict transform of E′. Since E − (−KY − Ẽ′) is a Cartier divisor, we must

have E ∼ −KY − Ẽ′ since PicY is torsion free. Hence h0(−KY − E) = 1.
But by the exact sequence

0 −→ OY (−KY − E) −→ OY (−KY ) −→ OE(−KY |E) −→ 0,
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we have

h0(−KX) = h0(−KY ) ≤ h0(−KY − E) + h0(−KY |E) = 4.

So h0(−KX) = 4.

Hence we have N = 16−e
2 .

We prove that X ′ is Gorenstein. Assume that X ′ is non-Gorenstein. If
F (X ′) = 1, then by [San96], N − 1 ≥ 8, a contradiction. Since (−KX′)3 =
16 − e, F (X ′) > 1 does not hold by [San95]. Hence X ′ is Gorenstein.

Next we prove that F (X ′) = 1, 2 and if F (X ′) = 2, then F (X) = 1 and
N = 8. By (−KX′)3 = 16 − e, we clearly have F (X ′) = 1, 2. Assume that
F (X ′) = 2. Let H be the ample generator of Pic X ′ and H ′ := f ′∗H. This
is a Cartier divisor on Y ′ and so is the strict transform H ′′ on Y since n = 0.
Since H ′′ ≡ 1

2 (−KY + Ẽ′) ≡ (−KY ) − 1
2 E, we have f∗f∗H

′′ = H ′′ + E.
By this, we know f∗H

′′ is a Cartier divisor on X ([KMM87, Lemma 3-2-5
(2)]). On the other hand, f∗H

′′ ≡ −KX and so F (X) must be an integer.
Hence F (X) = 1 by (3) of Main Assumption 0.1 and moreover by [San96],
N = 8.

So we obtain the solutions as in Tables 2 and 2′.

Case 2. By Proposition 2.3, we obtain the values of E′3, (−KY ′)E′2 and
(−KY ′)2E′ as follows.

(2, 0)1 (2, 0)2,3 (2, 0)4,10 (2, 0)5 (2, 0)6 (2, 0)7 (2, 0)8 (2, 0)9 (2, 0)11

E′3 1 2 4 1/2 1/2 1 3/2 2 9/2

(−KY ′ )E′2 −2 −2 −2 −3/2 −1/2 −1 −3/2 −2 −3/2

(−KY ′ )2E′ 4 2 1 9/2 1/2 1 3/2 2 1/2

Assume that f ′ is of (2, 0)1-type. By (3-2-3′), we have z + 2u ≤ 2k.
On the other hand, we have 1 + 2z = uk ≥ zk. Hence z = u = 1 and
k = 3 or z = 1, u = 3/2 and k = 2. First we treat the former case. By
(3-2-3′) again,

∑
diai(ai − 1) = 3. Since ai ≥ 2 if ai > 0, we have ai = 2

if ai > 0. By setting n := 2
∑

di, we have n = 3. We can easily see that
e = 9, (−KX)3 = 4 and (−KX′)3 = 10. By the assumption (4), we have
N = 4. This also proves that X ′ is Gorenstein and hence X ′ is A10.

Next we deny the latter case. If this case occurs, then for a flopped
curve l on Y ′, we have E′ ·l = − 3

2 Ẽ ·l = 3/2 since by Lemma 4.3, g(E) ' E,
where g is the flopping contraction from Y . But this contradicts the fact
that E′ is a Cartier divisor.

We prove that f ′ cannot be of (2, 0)2-type or (2, 0)3-type. Assume that
f ′ is of (2, 0)2-type or (2, 0)3-type. Similarly to the above case, we have
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k = 2 and
∑

diai(ai − 1) = 1 using (3-2-3′). But by Claim 3.7 (2), we have
ai ≥ 4 if ai > 0, a contradiction.

If f ′ is of (2, 0)4–(2, 0)11-type, then we can figure out the solution sim-
ilarly.

Therefore we can obtain the solutions as in Tables 3 and 3′.

Case 3. By Proposition 2.4, X ′ has at worst ordinary double points as
singularities. Hence X ′ ' P2 and L = f ′∗O�

2(1), or X ′ ' F2,0 and L =
f ′∗(O�

3(1)|�
2,0

).
Assume ai ≥ 4 for some i. Note that aiu > z by u ≥ z. By (3-3-2′),

m2e < (2m + 1)2 − 2(4m − 1)2 < 0, a contradiction. Hence ai = 2 for all i
such that Yi 99K Yi+1 is a flip.

By setting n := 2
∑

di, we have the following.

(−KX)3 =
1

2
+ m(4m2 + 6m + 3) −

n

2
(2m − 1)3 − m3e.(5-3-1)

mz2{(2m + 1)2 − n(2m − 1)2 − m2e} = 2l2 =

�
2

2,
�
2,0

4.(5-3-2)

mz{2(2m + 1)(m + 1) − 2n(2m − 1)(m − 1) − m2e}(5-3-3)

=

�
2

12 − ∆ · l,
�
2,0

16 − ∆ · l.

By Claim 3.8, we have m = 1 or 2.
If m = 2, we can easily figure out the solution.
Assume that m = 1. Then we have 3 sequences of solutions as follows.

(1) X ′ ' P2, z = 1, n + e = 7, ∆ · l = e and h0(−KX) = 25+n−N
4 .

(2) X ′ ' F2,0, z = 1, n + e = 5, ∆ · l = 4 + e and h0(−KX) = 29+n−N
4 .

(3) X ′ ' F2,0, z = 2, n + e = 8, ∆ · l = 2e − 8 and h0(−KX) = 23+n−N
4 .

If X ′ ' P2 and Y ′ has an index 2 point (resp. If X ′ ' F2,0 and
aw(Y ′) > 2), then there is a fiber containing a component l such that
−KY ′ · l = 1/2 by Proposition 2.4. But these cases do not occur. For
otherwise we have Ẽ · l = z/2u < 1, a contradiction to the fact that Ẽ is
a Cartier divisor. Hence for (1) and (2) (resp. (3)), we have N − n = 1
(resp. N − n = 3) since aw(Y ′) = aw(Y ) − n = N − n − 1. But if (2) and
N −n = 1 hold, Y ′ must be Gorenstein, a contradiction to Proposition 2.4.
Hence we figure out the solutions as in Tables 4 and 4′.

Case 4. Similarly to Case 3, we can prove that ai = 2 for all i such that
Yi 99K Yi+1 is a flip using (3-4-2′).
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By setting n := 2
∑

di, we rewrite (3-4-1′)–(3-4-3′) as follows.

(−KX)3 =
1

2
+ 2m(m + 1) +

1

2
n(2m − 1)2.(5-4-1)

(2m + 1)2 = n(2m − 1)2 + m2e.(5-4-2)

z{m(2m + 1) + nm(2m − 1)} = deg F.(5-4-3)

By Claim 3.8, we have m = 1, 3/2, 2 or 3.
We can easily see that there is no solution for m = 3/2, 2 or 3.
If m = 1, then we have n + e = 9, (−KX)3 = n+9

2 and z(3 + n) =
deg F . Since h0(−KX) = 3 + 9+n−N

4 ≥ 4, we have N − n = 1 or 5. If
N − n = 1, then Y ′ is Gorenstein. Hence by the primitivity of L, z = 1. If
N −n = 5 and u = z = 1 or 3, L 6∼ z(−KY ′ − Ẽ) since the right side is not
Cartier. By Riemann-Roch theorem, χ(O(L))−χ(O(z(−KY ′ − Ẽ))) = 1/2,
a contradiction. Hence if N − n = 5, then z = 2 and so n = 0 or 1 by
z(3 + n) = deg F .

We prove n ≤ 3. If n = 4, then deg F = 7, a contradiction to Propo-
sition 2.5. If n = 5, then Y ′ → X ′ is a quadric bundle over a P1 by
Proposition 2.5. But then (−KY ′)3 must be a multiple of 8, a contradic-
tion. If n = 6, then Y ′ → X ′ is a P2-bundle over a P1 by Proposition 2.5.
But then (−KY ′)3 must be 54, a contradiction.

Hence we obtain the solutions as in Table 5 and 5′.

Case 5. Since u ∈ N/2 and E · l ∈ N, we have u = 1/2, 1, 2 by u(E · l) = 2.
Moreover since z(−KY )3 = u, (−KY )3 > 3/2 and z ≤ u, we have z = 1,
u = 2 and (−KY )3 = 2. Hence we are done in this case.

Finally we prove that if N = 8, then F (X) = 1.

The case f ′ is of (2, 1)-type. Note that Y = Y ′ holds since e = 0. By the
proof of Case 1 above, we have only to prove that F (X ′) = 2. Assume that
F (X ′) = 1. By ρ(X ′) = 1, I(X ′) = 1, F (X ′) = 1 and the Q-factoriality of
X ′, there exists a line l intersecting C. Let l′ be the strict transform of l on
Y . By −KY · l′ = −KX′ · l − E′ · l′ and the fact that −KY is nef, we have
−KY ·l′ = 0 and E′ ·l′ = 1 or −KY ·l′ = 1/2 and E′ ·l′ = 1/2. But the former
case does not occur since e = 0. In the latter case E ∩ l′ = φ by E · l′ = 0.
Hence −KX · f(l′) = 1/2, which in turn show that for a Q-Fano blow-up
whose center is an index 2 point on f(l′), the resulting weak Q-Fano 3-fold
is not a Q-Fano 3-fold. But by Tables 1–5 and 1′–5′ in the main theorem
and additional possibilities in Theorem 5.0, we again fall into this case for a
Q-Fano blow-up at another index 2 point, a contradiction (the new e must
be 0). Hence we are done.
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The case f ′ is of (3, 2)-type. In this case, f ′ is a P1-bundle associated to

some vector bundle E of rank 2 on P2. Let T be its tautological divisor. By
the adjunction formula −KY ′ ∼ 2T − (c1(E)−3)L, we have 6 = (−KY ′)3 =
8T 3−6c1(E)2 +54 and hence c1(E) is an even. Hence H ′ := 3T − ( 3

2 c1(E)−

4)L is an integral Cartier divisor. Note that H ′ ≡ −KY ′ + 1
2 Ẽ. Hence for

a flipped curve li
+ on some Yi and the strict transform Hi of H ′ on Yi, we

have Hi · li
+ = −2. Hence the strict transform H of H ′ on Y is a Cartier

divisor numerically equivalent to −KY + 1
2 E. Note that H is f -numerically

trivial. So by [KMM87, Lemma 3-2-3 (2)], f(H) is a Cartier divisor and
clearly numerically equivalent to −KX .

We postpone to [Taka02] the proof of the nonexistence of a Q-Fano
3-fold in Tables 1′–5′. See §5 of [Taka02].

Remark. If X is a Q-Fano 3-fold of I(X) = 2 and F (X) = 1, we see
the case N = 8 in Table 2′ or Table 4′ actually occurs by [San95].
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rationnels, Proc. Int. Conf. Math. (1986), 641–653.

[Cut88] S. Cutkosky, Elementary contractions of Gorenstein threefolds, Math. Ann.,

280 (1988), 521–525.

[Fle00] A. R. Fletcher, Working with weighted complete intersections, Explicit bira-

tional geometry of 3-folds (2000), pp. 101–174.

[Fra91] P. Francia, On the base points of the bicanonical system, Symposia Math., 32

(1991), 141–150.

[Fuj80] T. Fujita, On the structure of polarized manifolds with total deficiency one,

part I, J. Math. Soc. of Japan, 32 (1980), 709–725.

[Fuj81] T. Fujita, On the structure of polarized manifolds with total deficiency one,

part II, J. Math. Soc. of Japan, 33 (1981), 415–434.



167-07 : 2002/9/5(14:32)

�
-FANO 3-FOLDS I 153

[Fuj84] T. Fujita, On the structure of polarized manifolds with total deficiency one,

part III, J. Math. Soc. of Japan, 36 (1984), 75–89.

[Fuj90] T. Fujita, On singular Del Pezzo varieties, Lecture Notes in Math. vol. 1417,

Springer-Verlag, Berlin-New York (1990), pp. 117–128.

[Isk77] V. A. Iskovskih, Fano 3-folds 1, Izv. Akad. Nauk SSSR Ser. Mat, 41 (1977);

English transl. in Math. USSR Izv. 11 (1977), 485–527.

[Isk78] V. A. Iskovskih, Fano 3-folds 2, Izv. Akad. Nauk SSSR Ser. Mat, 42 (1978),

506–549; English transl. in Math. USSR Izv. 12 (1978), 469–506.

[Isk79] V. A. Iskovskih, Anticanonical models of three-dimensional algebraic varieties,

Itogi Nauki i Tekhniki, Sovremennye Problemy Matematiki, 12 (1979), 59–157;

English transl. in J. Soviet. Math. 13 (1980), 745–814.

[Isk90] V. A. Iskovskih, Double projection from a line on Fano threefolds of the first

kind; English transl. in Math. USSR Sbornik 66 (1990), 265–284.

[K+92] J. Kollár et al., Flips and abundance for algebraic threefolds, vol. 211,
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